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The first one-pot diazotization/aminocarbonylation reaction of anilines to benzamides has been devel-
oped. In the presence of commercially available palladium acetate/P(o-Tolyl)3 as the catalyst system
without base at low temperature (50 �C) a variety of amides were synthesized in moderate to good yields.
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Palladium-catalyzed coupling reactions have become a general azonium tetrafluoroborate salts ArN BF as coupling partners.5–11
tool for achieving all kinds of synthetic transformations of aryl
and heteroaryl compounds.1,2 Nowadays, palladium catalysts are
regularly applied for the synthesis of pharmaceuticals, agrochemi-
cals, as well as advanced materials both on the laboratory as well
as on the industrial scale. Among the different known palladium-
catalyzed coupling processes, carbonylation reactions allow for
the direct incorporation of CO, the most inexpensive and readily
available C1-source, into parent molecules resulting in a variety
of carboxylic acid and carbonyl derivatives.3

Compared to aryl halides, aryldiazonium salts have been so far
much less explored as substrates in palladium-catalyzed cross-
coupling reactions.4 The first carbonylation reactions of the latter
substrates were reported by Matsuda and co-workers already in
1981.5 Here, sodium acetate was used as the nucleophile to pro-
vide mixed anhydrides. More recently, improvements of this meth-
odology were realized by Siegrist et al.6 Nevertheless, until date
only few examples of alkoxycarbonylations7 and reductive car-
bonylations 8 of diazonium compounds were reported. In addition,
carbonylative coupling reactions of aryldiazonium salts with
organotin reagents to give ketones were disclosed by Kikukawa’s
group.9 Instead of organotin reagents also aryl boronic acids can
be used as shown in 2002 by Andrus et al.10 Later on, the same
group described the related coupling of aryl boronic acids, aryldi-
azonium salts, ammonia, and CO in the presence of palladium cat-
alysts to give aryl amides in high yields.11 Notably, all these
published carbonylation processes make use of pre-formed aryldi-
ll rights reserved.

eller).
2 4

With respect to the commercial availability and the hazardous
preparation of ArN2BF4, it would be interesting to develop pro-
cesses in which anilines can be in situ activated to give the respec-
tive aryldiazonium salts. Based on our continuing interest in
palladium-catalyzed carbonylations,12 and considering the impor-
tance of benzamides,13 here we wish to report for the first time a
general palladium-catalyzed one-pot diazotization/aminocarbony-
lation sequence of anilines to benzamides.14 Compared with the
more common aminocarbonylation of aryl halides,15 this method-
ology proceeds under milder conditions and allows for the use of
abundant and easily available anilines.

Initially, the carbonylation of aniline was studied as a model
reaction. Activation of aniline should proceed via well known diaz-
otization with tert-butyl nitrite in the presence of 1.3 equiv of ace-
tic acid. Subsequent formation of the aryl–palladium complex,
carbonylation, and amidation would then lead to the product.
Indeed, the desired transformation took place toward N-phenylb-
enzamide and in the first set of experiments we tested the influ-
ence of different phosphine ligands (2 or 4 mol %) in the presence
of 2 mol % of Pd(OAc)2 in DMF at 90 �C (Table 1). In general, mono-
dentate phosphines such as PPh3, PCy3, TFP, BuPAd2, and P(o-To-
lyl)3 gave better yields (Table 1, entries 1–5; 38–81%) compared
to bidentate ligands (Table 1 and 6–12; 16–61%).

Best results were obtained in the presence of inexpensive
P(o-Tolyl)3, which was used as a standard ligand for further optimi-
zation experiments.

Next, the influence of different solvents was investigated in
more detail (Table 2). Nonpolar solvents, for example, heptane
resulted in only 17% of the amide (Table 2, entry 1). Also DME,
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Table 3
Palladium-catalyzed aminocarbonylation of anilinesa

NH2

N
H

O
CO

R
R

R

Pd(OAc)2 (2mol%)
P(o-Tolyl)3 (4mol%)
ter t-BuONO (1.3equiv)
AcOH (1.3equiv)
DMF (2ml), 50oC, 16h2.3 mmol 10 bar

Entry Product
Isolated 

Yield [%]b
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O
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3 N
H

O

O

O

50

4 N
H

O

S

S
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5 N
H

O
O
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6 N
H

OO

O

50

7 N
H

OO

O

58

Cl

Table 1
Aminocarbonylation of aniline: variation of ligandsa

NH2
N
H

O

CO

Entry Ligand (mol %) Yieldb (%)

1 PPh3 62
2 PCy3 75
3 TFP 57
4 BuPAd2 38
5 P(o-Tolyl)3 81
6 DPPE 16
7 DPPP 35
8 DPPF 23
9 Xantphos 39

10 DIOP 43
11 DPPB 40
12 DPEphos 61

a Pd(OAc)2 (2 mol %), ligand (4 mol % P), AcOH (1.3 mmol), DMF (2 mL), aniline
(2.3 mmol), tert-BuONO (1.3 mmol), CO (10 bar), 90 �C, 16 h.
b Yield was determined by GC using hexadecane as internal standard. TFP = tris-
2-furylphosphine; P(o-Tolyl)3 = tri(o-toyl)phosphine; DPEphos = bis(2-diphenyl-
phosphinophenyl)ether; Xantphos = 4,5-bis(diphenylphosphino)-9,9-dimethylx-
anthene; DIOP = (+)-2,3-O-isopropylidene-2,3-dihydroxy-1,4-bis(diphenylphosphino)
butane.
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dioxane, and toluene gave low yields of the product (20–29%; Table
2, entries 2–4). In acetonitrile and NMP 44% and 41% of the amide
were produced, respectively (Table 2, entries 5 and 6), while DMF
gave surprisingly N-phenylbenzamide in 81% yield. The yield of the
product is further improved to 99% by decreasing the reaction tem-
perature to 50 �C (Table 2, entry 7). Obviously, the in situ generated
PhN2OAc is more stable and gives less side reactions at lower tem-
perature. However, running the model reaction under 1 bar of CO,
only 25% yield of the amide was achieved (Table 2, entry 8).

With optimized conditions in our hands (Table 2, entry 7), we
studied the scope and limitations of this novel methodology (Table
3). p-Toluidine gave 75% of the corresponding N-aryl amide (Table
3, entry 1). Electron-rich methoxy- and methylthio-substituted
anilines are more sensitive and led to decreased yields of the cor-
responding N-aryl benzamides (Table 3, entries 3–6). On the other
hand, anilines with electron-withdrawing substituents gave im-
proved yields (58–96%) of amides (Table 3, entries 7–11). Chloride-
and bromide-substituted anilines showed no additional activation
8 N
H

O

Cl

96

9 N
H

O

Br

Br

78

10 N
H

O

F

F

89

11 N
H

O

F3C

CF3

69

a Pd(OAc)2 (2 mol %), P(o-Tolyl)3 (4 mol %), AcOH (1.3 mmol), DMF (2 mL), Aniline
(2.3 mmol), tert-BuONO (1.3 mmol), CO (10 bar), 50 �C, 16 h.

b Yield was calculated based on 1 mmol of starting material.

Table 2
Aminocarbonylation of aniline: variation of solvents and reaction parametersa

NH2

N
H

O

CO

Pd(OAc)2 2%
P(o-Tolyl)3 4%
tert -Butyl-Nitrite1.3equiv
AcOH 1.3equiv

Entry Solvent Yieldb (%)

1 Heptane 17
2 DME 20
3 Dioxane 26
4 Toluene 29
5 CH3CN 44
6 NMP 41
7 DMF 99c

8 DMF 25d

a Pd(OAc)2 (2 mol %), P(o-Tolyl)3 (4 mol %), AcOH (1.3 mmol), DMF (2 mL), aniline
(2.3 mmol), tert-BuONO (1.3 mmol), CO (10 bar), 90 �C, 16 h.

b Yield was determined by GC using hexadecane as the internal standard.
c 50 �C.
d 50 �C, CO (1 bar). DME = 1, 2-dimethoxyethane.
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Scheme 1. Proposed reaction mechanism.
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of the C–X bond and isolated yields of 78–96% of halo-substituted
N-aryl benzamides were achieved (Table 3, entries 8 and 9). Unfor-
tunately, applying heterocyclic anilines no amides were obtained.
Instead, only the corresponding reduced product is detected. For
example, 5-amino-benzothiazole resulted in the formation of
benzothiazole.

With respect to the mechanism (Scheme 1) we assume that the
in situ generated PhN2OAc undergoes oxidative addition to Pd0 1,
which is easily formed from Pd(OAc)2 and the phosphine ligand,
to form aryl palladium(II) species 2. Subsequent coordination and
insertion of carbon monoxide forms the acyl palladium complex
3. Exchange of acetate by aniline should give complex 4 and final
reductive elimination leads to the terminal product 5 and regener-
ates the catalyst Pd0 1.

In conclusion, we have developed the first aminocarbonylation
of anilines to N-aryl benzamides. The procedure proceeds via
in situ formation of aryldiazonium salts, from abundantly available
anilines and subsequent palladium-catalyzed carbonylation under
base-free conditions at low temperature. 11 different N-aryl benz-
amides have been isolated in 30–96% yield.
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