Reaction of Benzyne with Salicylaldehydes: General Synthesis of Xanthenes, Xanthones, and Xanthols

ORGANIC LETTERS 2009 Vol. 11, No. 1 169–171

Kentaro Okuma,* Akiko Nojima, Nahoko Matsunaga, and Kosei Shioji

Department of Chemistry, Faculty of Science, Fukuoka University, Jonan-ku, Fukuoka 814-0180, Japan

kokuma@fukuoka-u.ac.jp

Received November 10, 2008

ABSTRACT

The reaction of salicylaldehydes with benzyne prepared from *o*-trimethylsilyphenyl triflate and CsF gave xanthenes and xanthones. When the reaction was carried out under basic conditions, 9-hydroxyxanthenes (xanthols) were obtained in good yields.

Arynes are highly reactive intermediates that have found numerous applications in organic synthesis.^{1,2} Our ongoing interest in the exploration of reactive benzyne with thio- and selenocarbonyl compounds for the synthesis of functionalized S- and Se-heterocycles has led to our investigation of the synthesis of benzothietes, benzothianes, and benzoselenates.³ Although reactions of aldehydes with benzyne to give C=O bond insertion products (ca. 20%) were reported in the early seventies,⁴ Yoshida et al. reported the formation of 9-arylx-anthenes by a novel insertion reaction of benzyne derived

from *o*-trimethylsilylphenyl triflate (1) with aromatic aldehydes (22-70%).⁵ Larock and Zhao have reported the reaction of arynes with benzoates, which afforded xanthones and thioxanthones, and acridones (35-81%).⁶

The reaction of benzyne derived from benzenediazonium carboxylate with *N*,*N*-dimethylformamide was reported by Yaroslavsky, in which the product was only salicylaldehyde (**2a**) in 32% yield.⁷ These interesting observations raise the question whether salicylaldehydes will react with benzyne to give xanthene derivatives, which constitute functionalized molecules as dyes, natural products, and pharmaceuticals.⁸ Herein, we report our preliminary results on the annulation of arynes by salicylaldehydes.

(8) Wang, S.-Y.; Ji, S.-J. Synlett 2007, 2222–2226. Garcia, A.; Gomez, E; Dominguez, D. Synlett 2004, 2331–2334. Han, Y.; Barany, G. J. Org. Chem. 1997, 62, 3841–3848. Tsukada, S.; Miki, H.; Lin, J.-M.; Suzuki, T.; Yamada, M. Anal. Chim. Acta 1998, 371, 163–170. Borg, R. M.; Winnik, A. J. Poly. Sci., A 1990, 28, 2075–2083. Ishibashi, H.; Takagaki, K.; Imada, N.; Ikeda, M. Synlett 1994, 433–434. de la Fuente, M. C.; Castedo, L.; Dominguez, D. Tetrahedron 1996, 52, 4917–4924. de la Fuente, M. C.; Pullan, S. E.; Biesmans, I.; Dominguez, D. J. Org. Chem. 2006, 71, 3963–3966. Tseng, Y.-H.; Shih, P.-I.; Chien, C.-H.; Dixit, A. K.; Shu, C.-F.; Liu, Y.-H.; Lee, G.-H. Macromolecules 2005, 38, 10055–10060. Kobayashi, T.; Urano, Y.; Kamiya, M.; Ueno, T.; Kojima, H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 6696–6697. Peres, V.; Nagem, T. J.; Faustido de Oliveira, F. Phytochemistry 2000, 55, 683. Schwaebe, M. P.; Molan, T. J.; Whitten, J. P. Tetrahedron Lett. 2005, 46, 827–829.

⁽¹⁾ For reviews, see: (a) Hoffmann, R. W. Dehydrobenzene and Cycloalkynes; Academic Press: New York, 1967. (b) Hart, H. In The Chemistry of Triple-Bonded Functional Groups, Supplement C2; Patai, S., Ed.; Wiley: Chichister, U.K., 1994; Chapter 18. (c) Penam, D.; Perez, D.; Guitian, E. Angew. Chem., Int. Ed. 2006, 45, 3579–3581.

⁽²⁾ Carre, M. C.; Gregoire, B.; Caubere, P. J. Org. Chem. **1984**, 49, 2050–2052. Cossu, S.; De Lucchi, O. *Tetrahedron* **1996**, 52, 14247–14252. Escudero, S.; Perez, D.; Guitian, E.; Castedo, L. *Tetrahedron Lett.* **1997**, 38, 5375–5378.

⁽³⁾ Okuma, K.; Shirokawa, T.; Yamamoto, T.; Kitamura, T.; Fujiwara, Y. *Tetrahedron Lett.* **1996**, *37*, 8883–8886. Okuma, K.; Shiki, K.; Shioji, K. *Chem. Lett.* **1998**, 79–80. Okuma, K.; Sonoda, S.; Koga, Y.; Shioji, K. *J. Chem. Soc., Perkin Trans. 1* **1999**, 2997–3000. Okuma, K.; Shiki, K.; Sonoda, S.; Koga, Y.; Shioji, K.; Kitamura, T.; Fujiwara, Y.; Yokomori, Y. *Bull. Chem. Soc. Jpn.* **2000**, *73*, 155–161. Okuma, K.; Okada, A.; Koga, Y.; Shioji, T.; Subone, T.; Shigetomi, T.; Shioji, K.; Yokomori, Y. *Heterocycles* **2005**, *65*, 1553–1556. Shigetomi, T.; Soejima, H.; Nibu, Y.; Shioji, K.; Okuma, K.; Yokomori, Y. *Chem. Eur. J.* **2006**, *12*, 7742–7748.

⁽⁴⁾ Heaney, H.; McCarty, C. T. J. Chem. Soc. D, Chem. Commun. 1970, 123–124. Nakayama, J.; Yoshida, M.; Simamura, O. Chem. Lett. 1973, 451–452. Bowne, A. T.; Levin, R. H. Tetrahedron Lett. 1974, 2043–2046.

⁽⁵⁾ Yoshida, H.; Watanabe, M.; Fukushima, H.; Ohshita, J.; Kunai, A. Org. Lett. **2004**, *6*, 4049–4051.

⁽⁶⁾ Zhao, J.; Larock, C. J. Org. Chem. 2007, 72, 583–588.

⁽⁷⁾ Yaroslavsky, S. *Tetrahedron Lett.* **1965**, 1503–1507.

We started our investigation using commercially available *o*-trimethylsilylphenyl triflate **1a** and salicylaldehyde **2a**. Treatment of **1a** with **2a** in the presence of CsF at room temperature for 13 h resulted in the formation of xanthene **3** and xanthone **4** in 42% and 46% yields, respectively. When the reaction was carried out with Bu₄NF instead of CsF, the yields of **3** and **4** were only 10% and 12%, respectively. When benzenediazonium carboxylate was added to a solution of **2a** at reflux, complex mixtures were produced. The results are shown in Table 1.

Table 1. Reaction Optimization

 a Benzenediazonium carboxylate was used as a benzyne precursor. b 18-Crown ether (2 equiv) was also added.

Since salicylaldehyde 2 could react with benzyne at room temperature, we investigated the reaction of several substituted salicylaldehydes with triflate 1a in the presence of CsF. As shown in Table 2, xanthenes 3 and xanthones 4 were obtained in moderate yields.

Table 2. Reaction of 1a with 2 in the Presence of CsF

	T C 1a	MS R + DTf 2a	OH CsF CHO CH ₃ CN rt, 15 h	$\begin{array}{c} R & 4 \\ 3 \\ 2 \\ 1 \\ R' \\ 3a - e \\ 4a - e \end{array}$	R' R' = H R' = 0
R		3	yield (%)	4	yield (%)
Н		3a	42	4a	46
4-MeO		3b	42	4b	47
4-Me		3c	43	4c	46
4-tert-Bu		3d	21	4d	26
2-Cl		3e	40	4e	42

It is known that phenol derivatives react with benzyne to afford the corresponding diaryl ethers.⁹ Intramolecular trapping of benzynes by phenols to give xanthenes was reported by Knight and Little.¹⁰ However, to the best of our knowledge, there is no report on the reaction of benzyne with **2a**. As acidic and metal-catalyzed disproportionation of 9-hydroxyxanthene **5a** was already reported,¹¹ we investigated the present reaction under basic conditions to isolate **5**. When CsF was added to a suspension of triflate **1a**, salicylaldehydes **2a**–**d**, and K₂CO₃ in acetonitrile, compounds **5a**–**d** were obtained in good yields (Table 3).

Table 3. Reaction of 1a with 2 in the Presence of CsF and

K₂CO₃

TMS OTf	$\begin{array}{c} R \\ + \\ + \\ - \\ - \\ - \\ CHO \\ - \\ CHO \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ $		
5	R	yield (%)	
5a 5b′ 5b′ 5c 5d	H 4-MeO 3-MeO 4-Me 4- <i>t</i> -Bu	91 86 88 52 85	

Since benzenediazonium carboxylate did not afford the corresponding adduct and TBAF as a fluoride source afforded low yields of xanthene and xanthone, the cesium cation plays an important role in the present reaction. Thus, the reaction might proceed as follows: salicylaldehyde solvates CsF to acetonitrile to give Cs-complexed salicylaldehyde, which reacted with adjacent triflate **1a** to afford benzyne. Reactive benzyne further reacted with the salicylaldehyde to give the 9-hydroxyxanthene **5**, which disproportionated to give xanthene **3** and xanthone **4** (Scheme 1).

The substituted triflate **1b** also reacted with benzyne to afford 9-hydroxyxanthene **5f** in 83% yield (Scheme 2).

⁽⁹⁾ Himeshima, Y.; Sonoda, T.; Kobayashi, H. Chem. Lett. **1983**, 1211–1214. Bates, R. B.; Janda, K. D. J. Org. Chem. **1982**, 47, 4374–4376.

⁽¹⁰⁾ Knight, D. W.; Little, P. B. J. Chem. Soc., Perkin Trans. 1 2001, 1771–1777.

We applied the present method to the reaction with 2-hydroxyphenyl ketone derivatives in the hope that 9-substituted 9-hydroxylxantenes would be obtained. When a solution of 2-hydroxyacetophenone and **1a** was treated with CsF in acetonitrile at room temperature for 12 h, 9-methylenexanthene (**6**) was obtained in 86% yield. Initially formed 9-hydroxy-9-methylxanthene was dehydrated to give **6**. When 2-hydroxybenzophenone was used as a substrate, 9-hydroxy-9-phenylxanthene (**7**) was obtained in 82% yield (Scheme 3).

The present method provides a novel approach to the synthesis of 9-hydroxyxanthenes, xanthones, and xanthenes by reaction of benzyne with salicylaldehyde and its derivatives. Further studies on the synthetic application of this procedure are underway.

Supporting Information Available: Experimental details of xanthenes, xanthone, 9-hydroxylxanthenes, and 9-meth-ylenexanthene including full ¹H and ¹³C NMR spectra. This material is available free of charge via the Internet at http://pubs.acs.org.

OL802597X

⁽¹¹⁾ Goldberg, A. A.; Wragg, A. H. J. Chem. Soc. **1957**, 4823–4829. Zhu, Z.; Espenson, J. H. J. Org. Chem. **1996**, 61, 324–328. Ivanov, G. E.; Turov, A. V.; Kornilov, M. Y. Ukr. Khim. Zh. (Russ. Ed.) **1987**, 53, 743– 746.

⁽¹²⁾ General Procedure. To a suspension of triflate 1 (1.5 mmol), salicylaldehyde 2 (1.0 mmol), and K_2CO_3 (3.0 mmol) in 5 mL of acetonitrile was added CsF (3.0 mmol). The reaction mixture was stirred at room temperature for 15 h, and the reaction mixture was poured into aqueous Na₂CO₃ and extracted with ether. The combined organic layers were dried over sodium sulfate, evaporated, and purified by alumina chromatography to give 5.