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sumaq The title reaction affords the two regioisameric cycloadducts which were isolated 
and differ in their rates of nitrogen extrusion: the Spiro-1,3,4+hiadiazoline fur- 
nishes the adanen'canethicne S-metbylide which undergoes in situ cycloadditicms to 
electron-deficient dipolarophiles. 

According to Krapcho et al., 
1 

adamantanethione (1)2 combines with dia- 

zomethane at 0°C in the two conceivable addition directions to give the spiro- 

1,3,4_thiadiazoline 2 and the Spiro-1,2,3_thiadiazoline 1. The claim was based 

only on 'H NMR singlets at 6 5.82 and 5.0 (CH2). The ratio of the integrals of 

the mentioned singlets exhibited a noteworthy dependence on solvent polarity, 

from 87:13 in petroleum ether to 22:78 in methanol. 
3 

1 2 3 

The experimental evidence may be meager, yet we can 

tion of 2 and 3. For the reaction of 1 with diazomethane, we - - 

confirm the forma- 

observed a ratio 

of 91:9 in pentane at -20°C and of lo:90 in methanol at -30°C. This enrichment 

allowed the crystaZZization of the pure thiadiazolines: 2, mp 37.5-38.5'C, and 

3, mp 64.5-65.5°C.4 When separated by chromatography on silica gel, 2 moves fa- - 

ster than 3. 

With CH2 being the more nucleophilic of the termini of diazomethane, 

the additions to thiobenzophenone, 
5 

2,2,4,4-tetramethylcyclobutane-I-one-3- 

thione, 
6 

thiofenchone, and thiocampher 
7 

exclusively follow the "thiophilic" 

direction providing the 1,3,4-thiadiazolines. In contrast, the high electrophi- 

licity of the central C-atom of isothiocyanates favors the opposite direction 

yielding S-amino-1,2,3-thiadiazoles. 
a 

Thioacetone + diazomethane use both re- 

giochemical pathways, the preference for the 1,2,3-thiadiazoline being higher 

than for 1. 
9 

Despite its lower bond energy, the 1,2,3_thiadiazoline 3 is - as was - 

expected - more thermostable than the 1,3,4-isomer 2. The nitrogen extrusion of 

2 has a half-reaction time of 58 set at 80°C and 33 min at 45"C, whereas t 
l/2 

of 3 amounts to 4.6 min at 126'C, 25.6 min at llO"C, and ca. 9 h at 80°C in - 

xylene. The N2 elimination from 2 yields an attractive all-octet intermediate, 
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the resonance-stabilized thiocarbonyl ylide 4, which rests in a relatively deep 

energy well and is easily intercepted by dipolarophiles to furnish cycloadducts 

5. In analogy to the thermolysis of I-pyrazolines, the 1,2,3_thiadiasoline 2 

gives rise to a high-energy intermediate: The thiatrimethylene species 7 can - 
be described as a biradical or a carbonium zwitterion. Its flat hypersurface 

in the energy profile thwarted interception. 

In xylene at 80°C in the absence of trapping reagents, the S-methylide 

4 underwent eZectrocycZi.zation yielding the thiirane 5, mp 135-137'C; 
1 
H NMR 

analysis of the CH2 singlet at 6 2.37 indicated 94% 5. By the same method, 2 

was shown to be the main product of thermolysis of 2 via 1, here accompanied 

by homoadamantane-2-thione (8, 6 3.27, 3-H2) and 3% of methyleneadamantane (s, 

4.50, 2 vinyl-H). The thiirane-2-Spiro-2'-adamantane (5) was identified with 

an authentic specimen 
10 

and 8 was compared with the product from homoadamanta- 

none " + H2S + HCl, mp 122-123'C. 

Adamantanethione S-methylide (4) is an active 1,3-dipole. Its in situ 

cycloadditions were carried out by warming the 1,3,4_thiadiazoline 2 with 1.1 - 
equiv of dipolarophile in THF at 40°C for 8 h; in the case of less active part- 

ners, the excess of dipolarophile served as solvent. Most of the yields of Tab- 

le 1 are based on the 'H NMR analysis, the standard usually being 1,1,1,2-te- 

trachloroethane. Purification was achieved by recrystallization or chromatogra- 

phy. 

Thiocarbonyl ylides are nucZeophiZic 1,3-dipoles which preferably com- 

bine with electron-deficient dipolarophiles as previously demonstrated for 

thiobenzophenone S-methylide (z).12'13 In spite of the steric hindrance by the 

adamantylidene residue, the S-methylide 2 appears to surpass 2 in 1,3-dipolar 

activity. Ethylenetetracarboxylic ester, maleic ester and propiolic ester com- 

bined with 2 in poor yields due to the competing dimerization; 12 the additions 

of 4 are more productive (Table I). The S-methylides 4 and 9 did not react with - - 
enol ethers or common alkenes, not even with norbornene which adds diazometha- 

ne 5 000 times faster than cyclohexene. 14 The twisted double bond of trans-cyc- 

looctene, however, accepts the S-methylide 4. 
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TABLE 1. Cycloadducts 5 of Adamantanethione S-methylide (4) 4 

Dipolarophile % yield mp ("CI Formula 

Acrylonitrile 

Methyl acrylate 

Fumaronitrile 

Dimethyl fumarate 

Dimethyl maleate 

Maleic anhydride 

N-Phenylmaleimide 

Tetracyanoethylene 

Tetramethyl ethylenetetracarboxy- 
late 

Dimethyl 2,3_dicyanofumarate 

trans-Cyclooctene 

82 71-72 

89 101-102 

87 159-160 

90 76-78 

92 131-132 

95 142-143 

92 167-168 

94 181-182 

84 

95 

48 

Methyl propiolate 
11 II 

Dimethyl acetylenedicarboxylate 

38 

27 

87 

Benzaldehyde 82 

Chloral 81 

Butyl glyoxalate 98 

Diethyl mesoxalate 87 

N-Benzylidenemethylamine 13 

Dimethyl azodicarboxylate 90 

N-Phenyl-1,2,4-triazoline-3,5-dione 55 

Cs+,- 
I 

CH2 

(345 R (35 

9 10 R=CN 12 x=0 

11 R= C02CHa 13 X=NCH, 

10 - 

11 - 

16 - 

17 - 

122-123 

178-179 

83-85 

123-124 

oil 

119-120 

oil 

oil 

35-37 

oil 

97-99 

112-113 

156-158 

14 - 

15 - 

12 - 

13 - 

18 - 

H C02CH, H,C02C H 

14 15 

Thiocarbonyl ylides are ambident nucleophiles. The formation of 10 and - 

J_l with acrylonitrile and methyl acrylate suggests that the terminal CH2 of 4 - 

is the more nucleophilic center. The low-field 3-H of 10 occurs as dd at 6 3.60 - 
with J3,4 = 5.0 and J3,4, = 1.3 Hz (CDC13). The addition to aldehydes obeyed 

the same regiochemistry. Benzaldehyde which did not combine with 2, afforded 

here 90% of the 

established the 

1,3-oxathiolane 12; the fully resolved ABX spectrum (CDC13) 

structure: 6 5.13 (5-H), 3.22 (4-HA), 2.90 (4-HB) with J4A 5 = 

9.8 Hz, J4A,4B = 10.0 Hz. N-Benzylidenemethylamine - likewise 

- is border-line here, too; the yield fell to 13% and the ABX 

thiazolidine protons confirms structure 13 _* If the azomethine 

% of benzaldehyde, more 12 than 13 is observed. - - 

4.5 Hz, J4B 5 = 

inert towards 9 

spectrum of the 

contained a few 
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In contrast, methyl propiolate furnished the regioisomers 14 and 15 in com- - - 
parable yields. Both the vicinal coupling in 15 and the allylic one in 14 sho- - - 
wed J Q 2 Hz. We assign the 

14 and 6.07 in 15, assuming - 
and CC double bond in 15 -* 

structures on the basis of the vinyl-H, 6 7.27 in 

steric hindrance of resonance between ester group 

16 

The configuration 

in the cycloadducts of 

16 

of cis,trans isomeric ethylene derivatives 
1 17 

is retained 

4 _* 'H and "C NMR spectra reflect the symmetry proper- 

ties of the Spiro-thiolanes. Whereas, e.g., 15 6C values for the maleic anhy- 

dride adduct 16 confirm the non-equivalence of all C-atoms, the tetracyanoethy- - 
lene adduct 17 reveals the symmetry plane with the singlet for 5-H2 as well as - 
a reduction of 6 

C 
values for the adamantane skeleton: 4 of the 5 CH2 and 2 of 

the 4 CH are pairwise equivalent. Exceptional is the adduct 18 of dimethyl azo- - 
dicarboxylate; with two AB spectra for 5-H2, the 'H NMR spectrum unveils a 3:1 

equilibrium of diastereomeric conformations. Many adducts display cycloreversi- 

on in their mass spectra by the occurrence of m/e = 180 for the radical cation 

of 4, sometimes as the base peak. 
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