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Aryl and benzyl azides react smoothly with aryl cuprates, generated in situ from aryl magnesium bro-
mide and CuCN in THF to furnish a variety of unsymmetrical diaryl amines in good yields. This is the first
report on the synthesis of diarylamines from aryl azides and aryl bromides via an organometallic
approach.

� 2009 Published by Elsevier Ltd.
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Diaryl amines are important industrial intermediates and are
frequently found in a variety of biologically active molecules such
as natural products,1 agrochemicals,2 and HIV-1 protease inhibi-
tors.3 They are also widely used as stabilizers and antioxidants
for rubber and polymers, stabilizers for explosives, as polymeriza-
tion and corrosion inhibitors, and in dye preparation.4 Tradition-
ally, the N-arylation of amines has been carried out under
copper-mediated Ullmann-type conditions involving the coupling
of amines with aryl halides.5 Although these copper-promoted
reactions are useful, they usually require harsh reaction conditions
and stoichiometric amounts of copper, and the yields are not
reproducible.6 Recently, various diaryl amines have been prepared
by palladium-catalyzed cross-coupling reactions of amines with
aryl halides.7 Other transition metals such as copper8 and nickel9

have also been used for C–N bond-formation reactions. Oxidative
coupling procedures between arylboronic acids and aromatic or
heterocyclic amines mediated by Cu(II) salts are also effective.10

Addition of aromatic Grignard reagents to nitroarenes has also
been reported for the synthesis of diaryl amines.11 Despite these
significant recent improvements, there are still limitations such
as the use of expensive catalysts and ligands in the present N-ary-
lation methods. Furthermore, there have been no reports on the
synthesis of unsymmetrical diaryl amines via aryl cuprate addi-
tions to organic azides.

In continuation of our work on metal-mediated reactions of or-
ganic azides,12 we herein report a novel procedure for the prepara-
tion of unsymmetrical diaryl amines by means of addition of aryl
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cuprates to azides. Initially, we attempted arylation of phenyl azide
(1) with phenyl magnesium bromide (2) in THF at 0 �C. To our sur-
prise, no desired diphenyl amine was obtained using phenylmag-
nesium bromide alone. However, the corresponding diphenyl
amine 3a was obtained in 65% by phenyl cuprate generated
in situ from phenyl magnesium bromide and CuCN (Scheme 1).

Next, we examined the reactivity of various azides and aryl ha-
lides. Interestingly, several aryl azides reacted readily with aryl
cuprates to produce a wide range of diaryl amines (Table 1). This
method worked well with aryl and benzyl azides. Though alkyl
azides failed to react with aryl cuprates, benzyl azide reacted well
with phenyl cuprate because of its high reactivity compared to al-
kyl azides. Furthermore, this method is highly selective for the
monoarylation of azides, whereas Pd(II)/base-promoted arylation
of amines produce a mixture of products. The reaction conditions
are compatible with various functionalities such as chloro, nitro,
and aryl ethers (Table 1). The steric and electronic factors had
shown some effect on the conversion. In general, electron-rich
azides gave higher conversion than electron-deficient counterpart
(Table 1, entries d–f). Similarly, sterically hindered azides gave
lower yields compared to simple aromatic azides (Table 1, entries
i and l).
1 2 3a

Scheme 1.
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Table 1
Preparation of diaryl amines via the addition of aryl cuprates to azides

Entry Azide Aryl halide Diaryl aminea Time (h) Yieldb,c (%)

a
N3 Br N

H
1.5 65

b
N3

I

OMe

N
H OMe

2.0 62

c
N3

I

Me

N
H

Me

2.0 58

d
N3

O2N

I

Me

N
H

MeO2N

2.5 56

e
N3

O2N

I
N
H

O2N

2.5 54

f
O2N N3 Br N

H
O2N 2.0 61

g
N3

Br

Br
N
HBr

1.5 70

h
N3

Cl

Br N
H

Cl

1.5 63

i N3

Me Me

Me
Br N

HMe

Me Me

2.0 60

j

N3 Br
N
H

2.0 67

k
N3O

O

Br N
H

O

O

1.5 75

l
N3

MeBr I

OMe
N
H

Br

Me OMe

3.0 57

m N3
Br

N
H

1.5 60

a The products were characterized by 1H NMR, IR, and mass spectrometry.
b Yield refers to pure products after chromatography.
c The reactions were performed in 1 mmol scale at 0 �C.
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Table 2
Effect of various Cu(I) salts in the preparation of 3a

Entry Cu(I) salt Quantitya (mmol) Yieldb (%)

1 CuI 0.2 10
2 CuI 1.2 32
3 CuBr 0.2 8
4 CuBr 1.2 24
5 CuCN 0.2 15
6 CuCN 1 60
7 CuCN 1.2 65
8 CuCN 2 65
9 CuCN 3 65

a The reaction was carried out with phenyl azide (1 mmol), bromobenzene (1.2 mmol), and magnesium (2.5 mmol).
b Yield refers to pure products after chromatography.
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The products were characterized by 1H NMR, IR, and mass spec-
trometry. No improvement in yield was observed either by increas-
ing the reaction time or by increasing the amount of copper(I) salt.
In the absence of CuCN, 1,4-diaryl triazene was formed from aryl-
magnesium halide and azide, which was unstable and decomposed
rapidly to give the respective orange-red diazo compound. The
reaction was successful only with aryl cuprates. The scope and
generality of this procedure is illustrated with respect to various
organic azides and aryl halides and the results are presented in Ta-
ble 1.13

The effect of various Cu(I) salts such as CuI, CuBr and CuCN,
CuCN was studied in the reaction of phenyl azide (1 mmol), bro-
mobenzene (1.2 mmol), and magnesium (2.5 mmol). Low yields
(10–24%) were obtained when CuI and CuBr were used as addi-
tives. The use of catalytic amount of CuCN (0.2 equiv) gave the de-
sired product 3a in 15% yield. Under optimized conditions,
1.2 equiv of CuCN is essential to achieve high conversion. No in-
crease in the yield was observed even by increasing the quantity
of the CuCN (Table 2).

It is noteworthy to mention that the reaction needs to be carried
out under anhydrous conditions to obtain the desired product.
Mechanistically, the reaction proceeds via the formation of aryl-
magnesium halide, from aryl halide and magnesium metal, which
subsequently reacts with CuCN to produce aryl cuprate. This aryl
cuprate may attack on azide to give the diaryl amine with concom-
itant loss of nitrogen (Scheme 2).

In conclusion, we have developed a novel approach for the syn-
thesis of unsymmetrical diaryl amines by means of addition of aryl
cuprates to aryl azides. This is a versatile method to accomplish the
synthesis of a series of diaryl amines from azides in a single-step
operation.
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