

Accepted Article

Title: Cyclohexene Promoted the Efficient Biomimetic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by Manganese Porphyrin under Mild Conditions

Authors: Xiao-Hui Liu, Hai-Yang Yu, Can Xue, Xian-Tai Zhou* and Hong-Bing Ji*

This manuscript has been accepted and appears as an Accepted Article online.

This work may now be cited as: *Chin. J. Chem.* **2020**, *38*, 10.1002/cjoc.201900426.

The final Version of Record (VoR) of it with formal page numbers will soon be published online in Early View: http://dx.doi.org/10.1002/cjoc.201900426.

WILEY-VCH SIOC CCS

ISSN 1001-604X • CN 31-1547/O6 mc.manuscriptcentral.com/cjoc www.cjc.wiley-vch.de

Cyclohexene Promoted the Efficient Biomimetic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by Manganese Porphyrin under Mild Conditions

iao-Hui Liu,^a Hai-Yang Yu,^a Can Xue,^a Xian-Tai Zhou^{*, a} and Hong-Bing Ji^{*b,c}

School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R.China

^b Fine Chemical Industry Research Institute, the Key Laboratory of Low-carbon Chemistry & Energy Conservation of Guangdong Province, School of Chemistry, In Yat-sen University, Guangzhou 510275, P. R. China

School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, P. R.China

ite this paper: Chin. J. Chem. 2019, 37, XXX-XXX. DOI: 10.1002/cjoc.201900XXX

Summary of main observation and conclusion Selective oxidation of alcohols to corresponding carbonyl compounds is one of the most important processes both in academic and application research. As one kind of biomimetic catalysts, metalloporphyrins-catalyzed aerobic oxidation of alcohols with aldehyde as hydrogen donator is gathering much attention. However, using olefins as another kind hydrogen donator for the aerobic oxidation of alcohols as not been reported. In this study, a system comprising managenese porphyrin and cyclohexene for the biomimetic aerobic oxidation of alcohols to carbonyl compounds was developed. The catalytic system exhibited excellent catalytic performance and selectivity towards the corresponding products for nost primary and secondary alcohols under mild conditions. Based on the results obtained from experiments as well as *in situ* EPR (Electron Paramagnetic nesonance) and UV–vis spectroscopy, the role of cyclohexene was demonstrated.

Background and Originality Content

The selective oxidation of alcohols to carbonyl compounds is ne of the most important processes because the products are v luable in organic synthesis¹. Numerous methods for the oxidation of alcohols have been developed involve the use of stochiometric oxidants such as chromium oxides², TBHP (*tert*-butyl hydrogen r roxide)³, hydrogen peroxide⁴ etc., which causes environmental and high cost problems. From the viewpoints of enviroment and cost, selective oxidation of alcohols with molecular oxygen is extremely valuable and particularly attractive. The aerobic oxidation of alcohols catalyzed by TEMPO (2,2,6,6-tetran ethylpiperidyl-l-oxy) or its derivatives in absence of transition metal is gathering much attention⁵. And variety of methods were reported on the aerobic oxidation of alcohols catalyzed by metal catalysts like ruthenium⁶, manganese⁷, cobalt⁸, and Au-Pd alloy noparticles⁹ or vanadium oxide¹⁰ presented excellent activity.

Particularly, most common transition metals like iron and copper are also efficient for the aerobic oxidation of alcohols¹¹. Ma oup reported a general an practical catalytic protocol of Fe(NO₃)₃·9H₂O/TEMPO/NaCl to accomplish the selective aerobic oxidation of alcohols to aldehydes or ketones at room mperature¹². Copper complexes bearing redox-active ligands catalyzed the aerobic oxidation of alcohols to aldehydes efficiently ithout using any additives at room temperature¹³. Most recently, cu(NO₃)₃·3H₂O/TEMPO or (4-HO) TEMPO catalyst presented excellent performance in the selective aerobic oxidation of alcohols to corresponding aldehydes using readily available reagents, at room temperature with O₂ or ambient air as the oxidant¹⁴.

There is always imbalance between conversion and selectivity

in the aerobic catalytic oxidation reaction. This is mainly due to the harsh conditions for activating molecular oxygen in the oxidation process¹⁵. Therefore, it is of great concern to achieve the activation of dioxygen under mild conditions. Metalloporphyrins-mediated biomimetic catalytic system is the promising approach due to the similar reactivity as enzyme-catalyzed oxidation, which has been gathering much attention in recent years¹⁶.

In bio-oxidation mediated by cytochrome P450 enzymes, hydroxylation can be achieved by utilizing NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) as the hydrogen donator for activating molecular oxygen¹⁷. Therefore, aldehydes acts as NAD(P)H-like hydrogen donator are widely used to activate dioxygen in metalloporphyrins-catalyzed oxidation system¹⁸. Other compounds that containing active α -hydrogen are desired to have the efficiency of molecular oxygen activation. Recently, our group reported the biomimetic aerobic epoxidation of olefins with isopropylbenzene as hydrogen donator, with excellent conversion and selectivity up to 94%¹⁹. The biomimetic aerobic oxidation of cyclohexane and diphenylmethane in the presence of cyclohexene as hydrogen donator were also reported recently²⁰.

However, the selective aerobic oxidation of alcohols in presence of cyclohexene as hydrogen donator catalyzed by metalloporphyrins with molecular oxygen as oxidant is still limited. As part of our ongoing interests in biomimetic catalytic oxidations process with dioxygen, the aerobic oxidation of alcohols to carbonyl compounds catalyzed by manganese porphyrin in the presence of cyclohexene has been developed in this work (*Scheme* 1). The catalytic system exhibited excellent catalytic performance and selectivity towards the corresponding products for most primary and secondary alcohols under mild conditions. Based on the results

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1002/cjoc.201900426

obtained from experiments as well as *in situ* EPR and UV–vis spectroscopy, a plausible mechanism for the alcohol aerobic oxidation catalyzed by MnTPPCI (*meso*-triphenylporphyrin manganese chloride) in presence of cyclohexene was proposed.

Scheme 1 Aerobic oxidation of alcohols catalyzed by manganese porphyrins in presence of cyclohexene

Results and Discussion

Catalytic performance

Using benzyl alcohol as testing substrate, the reactivity and clectivity of catalytic system involved metalloporphyrins and cvclohexene were explored (Figure 1). In the control experiments, at is the reaction was conducted in absence of either MnTPPCl or cyclohexene, almost no oxidation occurred after 60 min stirring. Then, about 25% benzyl alcohol was converted to corrresponding a dehyde in excellent selectivity when the oxidation was carried out with either MnTPPCl or cyclohexene alone. However, the simultaneous presence of MnTPPCl and cyclohexene could make the oxidation exhaustivity. This result indicates that the synergistic a tion plays significant role in the biomimetic catalytic oxidation of alcohols.

Igure 1. Aerobic oxidation of benzyl alcohol. Benzyl alcohol (2.0 mmol), MnTPPCI (0.1 mol%), benzotrifluoride (5 mL), O_2 bubbling, 60°C, 60 min. A: absence of catalyst and cyclohexene; B: MnTPPCI (0.1 mol%); C: cyclohexene (1.0 mmol); D: in presence of MnTPPCI (0.1 mol%) and cyclohexene (1.0 mmol).

Followed, the activities of different metalloporphyrins that have

same ligand but different metal ions were tested. Comparison among the tested catalysts revealed that manganese porphyrins (MnTPPCI) exhibited higher catalytic activity than iron, copper, cobalt and zinc porphyrins (entries 1-5, Table 1). These catalytic performance differences could be ascribed to the stability of highvalent species during the oxidation²¹. Manganese complexes have been reported to be efficient for alcohols oxidation due to its various multiple valence²². Meng group also reported the aerobic oxidation of benzyl alcohol to benzaldehyde with 95% yield by using decacarbonyldimanganese [$Mn_2(CO)_2$] as catalyst at $120^{\circ}C^{23}$.

Interestingly, the selectivity of benzaldehyde was excellent whatever metalloporphyrins catalyst was used in this biomimetic oxidation system.

The selective oxidation of benzyl alcohol with different amount of cyclohexene were examined. The conversion of benzyl alcohol increased as cyclohexene amount rose (entries 6 and 7, Table 1). But the large excess amount of cyclohexene could promote overoxidation of benzaldehyde to benzoic acid (entry 7, Table 1). The effect of solvent on the aerobic oxidation of benzyl alcohol with MnTPPCI catalyst and cyclohexene was also examined. As shown in Table 1, the efficiency of alcohol oxidation is closely related with the polarity of the used solvents (entries 8~10, Table 1). The strong electrophilic effect of benzotrifluoride was most favorable to the alcohol oxidation. Moderate yield of benzaldehyde was obtained using ethyl acetate and acetonitrile (entries 9 and 10, Table 1). The remarkable differences could be attributed to two aspects. Beside the solvation effect, benzotrifluoride is favorable to improve the stability of free radicals²⁴.

The oxidation was greatly influenced by the reaction temperature (entries 11 and 12, Table 1). With increasing temperature, benzyl alcohol conversion increased as temperature rose. But the selectivity towards the over-oxidation product (benzoic acid) increased when the oxidation was conducted at 70 °C (entry 12, Table 1).

Entry	Catalyst	Amount of cyclohexene (mmol)	Solvent	Conv. (%)	Select. (%)	
1	FeTPPCI	1.0	Benzotrifluoride	80	>99	
2	MnTPPCI	1.0	Benzotrifluoride	97	>99	
3	CuTPP	1.0	Benzotrifluoride	72	>99	
4	CoTPP	1.0	Benzotrifluoride	82	>99	
5	ZnTPP	1.0	Benzotrifluoride	83	>99	
6	MnTPPCI	0.5	Benzotrifluoride	62	>99	
7 ^b	MnTPPCI	1.5	Benzotrifluoride	98	92(8)	
8	MnTPPCI	1.0	Toluene	76	>99	
9	MnTPPCI	1.0	Ethyl acetate	45	>99	

Table 1. Optimization of reaction conditions for the oxidation of benzyl alcohol by MnTPPCl and cyclohexene^a

 $\ensuremath{\mathbb{C}}$ 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

10	MnTPPCI	1.0	Acetonitrile	52	>99
11 ^c	MnTPPCI	1.0	Benzotrifluoride	69	>99
12 ^{<i>d</i>}	MnTPPCI	1.0	Benzotrifluoride	99	81(19)

 o Benzyl alcohol (2.0 mmol), solvent (5 mL), catalyst (0.1 mol%), O2 bubbling, 60 °C, 60 min.

^bThe numbers in parentheses indicate the selectivity of benzoic acid. \$50 °C.

^{*d*} 0 °C, the numbers in parentheses indicate the selectivity of benzoic acid.

To further identify the scope of alcohol reactions in presence of winTPPCI and cyclohexene, the study was extended to include various benzylic alcohols, primary and secondary alcohols and the sults are summarized in Table 2.

The catalytic system appeared efficient towards most benzylic imary alcohols, in which alcohols were smoothly converted to corresponding aldehydes with high yields (entries 1~6, Table 2). The officiency for the oxidation of benzylic primary alcohols in this catalytic system was dependent on the electronic property of the para substituents of the substrate. Compared to benzylic alcohols ith electron-donating groups, electron-withdrawing groups seemed unfavorable for forming carbonyl compounds, in which Inger reaction time was necessary. It could be attributed to the electronic effect promoting β -hydride elimination. The catalytic system showed also excellent efficiency towards the oxidation of saturated primary aliphatic alcohols, such as 3-phenylpropanol and 1-hexanol (entries 6 and 7, Table 2). The present catalyticic system was also efficient for basic substrates like 4-pyridinemethanol. It as converted with high conversion (87%) within 90 min (entry 8, Table 2). Furthermore, MnTPPCI with cyclohexene system was Jund to be efficient for the oxidation of most secondary to the corresponding ketones (entries 9-12, Table 3). Even sterically hindered 2-adamantanol could smoothly be converted into orresponding ketone with yield of 92% (entry 12, Table 2).

P'ausible mechansim

The profile of benzyl alcohol oxidation catalyzed by MnTPPCl nd cyclohexene in presence of molecular oxygen is shown in Figure 2 The conversion of benzyl alcohol slowly increased within the first n. Then, the reaction rate rapidly increased. It is clear that there is an induction period during the catalytic oxidaiton process, w hich exihibited the features of the radical reaction. For verifying he free-radical mechanism, 2,6-*di-tert*-butylphenol (1 mmol), serving as the free-radical inhibitor, was used. After the addition of t is inhibitor, the oxidation was subsequently quenched.

Table 2. Oxidation of various alcohols catalyzed by MnTPPCI with cyclohexene ^a							
F- try	Substrate	Product	Time /min	Conv. /%	Select. /%		
4	ОН		60	97	>99		

2	O ₂ N OH	0 ₂ N	90	90	>99
3	СІ	CI	90	92	>99
4	Мео	MeO	60	99	>99
5	ОН	0	60	99	>99
6	ОН	0	60	96	>99
7	₩	~~~~¢0	60	95	>99
8	Л		90	87	>99
9	OH	o C	60	96	>99
10	OH	o	60	97	>99
11	ОН	o L	60	93	>99
12	ОН	H ^o	90	92	>99

°Substrate (2.0 mmol), MnTPPCl (0.1 mol%), benzotrifluoride (5 mL), cyclohexene (1.0 mmol), O₂ bubbling, 60 °C.

As has been previously reported, high-valent species was generally produced in the oxidation catalyzed by metalloporphyrins²⁵. The *in situ* UV–vis spectra were recorded on a spectrophotometer connected to an AvaSpec-2048 spectrometer under the given reaction conditions, and the obtained spectra were presented in Figure 3.

www.cjc.wiley-vch.de

Figure 2. Reaction profile of benzyl alcohol aerobic oxidation catalyzed by NnTPPCI in presence of cyclohexene. Benzyl alcohol (2.0 mmol), penzotrifluoride (5 mL), MnTPPCI (0.1 mol%), cyclohexene (1.0 mmol), O_2 bubbling, 60 °C.

The spectrophotometer was programmed for acquiring UV–vis spectrum every 5 min. As shown in Figure 3, as the reaction ploceeded, the Soret band gradually decreased at 477 nm. Meanwhile, a red shift with 5 nm in the Soret band from 477 nm to 482 nm was observed. The color bleach of mixture solution from dark green to yellow was also observed. Such changes in the *in situ* UV–vis spectra have been reported to be attributed to the generation of the oxidize active species (PorMn^v=O) during oxidation²⁶.

Figure 3. *In situ* UV-vis spectra for benzyl alcohol aerobic oxidation catalyzed MnTPPCI in presence of cyclohexene (interval 5 min). Benzyl alcohol (2.0 mmol), benzotrifluoride (5 mL), MnTPPCI (0.1 mol%), cyclohexene (1.0 mmol), O₂ bubbling, 60 °C.

To obtain more insights into the role of cyclohexene in the oxidation of alcohols catalyzed by manganese porphyrins, *in situ* EPR spectra was used to record the signal changes of free radicals. The catalytic oxidation in benzotrifluoride was carried out in a

Wilmad WG-810-A quartz-flat cell. A mixture of benzotrifluoride solution comprised MnTPPCI, cyclohexene, and PBN (free-radical spin-trapping agent). The cell was sealed after filling dioxygen. EPR analyses were performed under a microwave frequency of 9.05 GHz at 333 K. The results were showed in Figure 4.

According to previous reports, the α -hydrogen atom of cyclohexene was easily abstracted under high temperature, affording an allylic radical²⁷. As shown in Figure 4A, two stable PBN radical adducts were obtained when the oxidation of cyclohexene was carried out in molecular oxygen without MnTPPCI (Figure 4A, a). Adduct 1 was characterized by hyperfine splitting constant (a_{N1} = 15.2 G, a_{H1} = 3.6 G, g = 2.0033), adduct 2 was characterized by hyperfine splitting constants, (a_{N2} = 14.0 G, a_{H2} = 2.3 G, g = 2.0033). Allylic radical can combine with dioxygen quickly to generate allylic peroxyl radical. According to our previous works, adduct 1 should be assigned to carbon-centred cyclohexenyl radical (C_6H_9OO •)^{20a}.

Figure 4. A: *in situ* EPR spectra of cyclohexene aerobic oxidation at 333K, (a) without MnTPPCI, (b) catalyzed by MnTPPCI; B: *in situ* EPR spectra of benzyl alcohol oxidation catalyzed by MnTPPCI and cyclohexene at 333K.

When MnTPPCI catalyst was added in the mixture, the signal of adduct **1** disappeared gradually, while another radical signal constantly increased (adduct **3**). Adduct **3** was characterized by hyperfine splitting constant ($a_{N3} = 15.5$ G, $a_{H3} = 3.4$ G, g = 2.0031). Therefore, the manganese porphyrin catalyst has been suggested to be favorable for the transfer of radical **2** to radical **3**. The radical transfer involves the participation of manganese porphyrins catalyst. High-valent Mn species and cyclohexenyl alkoxyl radical could be generated from the heterolysis of O-O bond in cyclohexenyl peroxyl radical (C₆H₉OO•). Hence, the radical should be assigned to cyclohexenyl alkoxyl radical (C₆H₉OO•)^{20b}.

Figure 4B shows time courses of *in situ* EPR spectra towards benzyl alcohol oxidation catalyzed by MnTPPCI and cyclohexene. As reaction progresses, the radical transformation of radical **2** to radical **3** was further confirmed. The active cyclohexenyl alkoxyl radical can react with one cyclohexene molecule to produce cyclohexen-1-ol and one cyclohexenyl radical ($C_6H_9\bullet$).

Based on the above discussions, a plausible mechanism was proposed for the aerobic oxidation of alcohols to carbonyl compounds in the presence of MnTPPCI and cyclohexene, as shown in *Scheme 2*.

The reaction initiated from the generation of cyclohexenyl radical (1, C₆H₉ \bullet), which is derived from the abstraction of hydrogen

at the allylic position under reaction temperature conditions. Cyclohexenyl peroxyl radical (2, C₆H₉OO•) is rapidly formed by the insertion of oxygen. Subsequently, cyclohexenyl alkoxyl radical (3, C₆H₉O•) and PorMn(V)=O were generated from the O-O bond cleavage of cyclohexenyl peroxyl radical (2, C₆H₉OO•). Cyclohexenyl alkoxyl radical is an active oxy radical, which can react with another cyclohexene molecule to produce 2-cyclohexen-ol and cyclohexenyl radical. The formation of benzaldehyde is attibuted to the reaction of benzyl alcohol with Mn-oxo species, followed by the β -hydride elimination.

Conclusions

In this study, a system comprising managenese porphyrin and cvclohexene for the biomimetic aerobic oxidation of alcohols to r rbonyl compounds was developed. The catalytic system exhibited excellent catalytic performance and selectivity towards the corresponding products for most primary and secondary alcohols under mild conditions. Based on the results obtained from experiments as well as *in situ* EPR and UV–vis spectroscopy, a plausible mechanism for the alcohol oxidation catalyzed by managenese porphyrin in presence of cyclohexene was presented. The role of cyclohexene was to generate Mn-oxo species through the propagation of free radical that generated from cyclohexene.

Experimental

Materials and methods

Alcohols and the corresponding carbonyl comppounds, yclohexene, *N-tert*-butyl-alpha-phenylnitrone (PBN) were purchased from J&K Scientific Ltd. Other reagents were of analytical g ade and used without further purification unless indicated. Jetalloporphyrin catalysts were prepared according to previous procedures²⁸.

FT-IR spectra were obtained on a Bruker 550 spectrometer. . ne UV–vis spectra were recorded on a Shimadzu UV-2450 spectrophotometer. ¹H NMR and ¹³C NMR spectra were recorded n a Bruker Avance III 400 M spectrometer. Elemental analysis data were received on a Vario EL III system. Mass spectra were obtained on a Shimadzu LCMS-2010A. The *in situ* UV–vis spectra were recorded on a spectrophotometer connected to an AvaSpec-2048 spectrometer. The *in situ* EPR (Electron Paramagnetic Resonance) spectroscopy measurements were performed on a JESFA-200 (JEOL, Japan) spectrometer using PBN as a free-radical spin-trapping agent.

General procedures for the biomimetic catalytic oxidation of alcohols

The catalytic oxidation of alcohols were carried out in a magnetically stirred glass reaction tube fitted with a reflux condenser. Using benzyl alcohol as a model substrate, a typical procedure was as follows: A solution of benzotrifluoride (5 mL), benzyl alcohol (2 mmol), cyclohexene (2.0 mmol), MnTPPCI (2×10^{-3} mmol, 0.1mol% based substrate) and 0.5 mmol naphthalene (inert internal standard) were added in the tube. Then the mixture was stirred at 60°C for 60 min with the bubbled molecular oxygen. The consumption of benzyl alcohol and formation of benzaldehyde were monitored by GC (Shimadzu GC-2010 plus) and GC-MS (Shimadzu GCMS-QP2010). Each catalytic reaction was repeated three times.

Oxidation of alcohol monitored by in situ UV-vis spectroscopy

Catalytic oxidation was carried out in the stainless-steel reactor (Parr 5510) equiped with a reflux condenser. The reaction mixture contained solvent (benzotrifluoride), catalyst (MnTPPCI), alcohol and cyclohexene were added into the reactor. The reactor sealed and dioxygen bubbled through the mixture. The reaction mixture was heated to 60 °C. The *in situ* UV–vis spectra of MnTPPCI were recorded on the AvaSpec-2048 spectrometer, which was equipped with a high-pressure, high-temperature probe and connected to the stainless-steel reactor. The spectrophotometer was programmed at 5 min intervals.

Oxidation of alcohol monitored by in situ EPR spectroscopy

Aerobic catalytic oxidation in benzotrifluoride was performed in a Wilmad WG-810-A quartz-flat cell with a mixture of the solution of MnTPPCI as well as cyclohexene, alcohol and PBN. A JESFA-200 (JEOL, Japan) spectrometer was utilized to record *in situ* EPR spectra. The cell was sealed after filling dioxygen. EPR analyses were performed at a microwave frequency of 9.05 GHz at 333K. Instrument conditions for all analyses were as follows: microwave frequency, 9.05 GHz; modulation amplitude, 2 mT; modulation frequency, 100 kHz; power, 0.998 mW; and time constant, 0.03 s. All spectra represent the signal-averaged sum of six scans unless otherwise noted.

Acknowledgement

This work was financially supported by the National Key Research and Development Program of China (2016YFA0602900), the National Natural Science Foundation of China (No. 21425627, 21576302, 21878344 and 21938001), the National Natural Science Foundation of China-SINOPEC Joint Fund (No. U1663220), Guangdong Provincial Key R&D Programme(2019B110206002) and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01C102).

References

[1] Badalyan, A.; Stahl, S. S., Cooperative electrocatalytic alcohol oxidation

www.cjc.wiley-vch.de

with electron-proton-transfer mediators. *Nature* **2016**, *535* (7612), 406-410; (b) Crabtree, R. H., Homogeneous Transition Metal Catalysis of Acceptorless Dehydrogenative Alcohol Oxidation: Applications in Hydrogen Storage and to Heterocycle Synthesis. *Chem. Rev.* **2017**, *117* (13), 9228-9246; (c) Koh, M. J.; Khan, R. K. M.; Torker, S.; Yu, M.; Mikus, M. S.; Hoveyda, A. H., High-value alcohols and higher-oxidation-state compounds by catalytic Z-selective cross-metathesis. *Nature* **2015**, *517* (7533), 181-186; (d) Mallat, T.; Baiker, A., Oxidation of alcohols with molecular oxygen on solid catalysts. *Chem. Rev.* **2004**, *104* (6), 3037-3058. (e) Sheldon, R. A.; Arends, I. W. C. E.; Ten Brink, G. J.; Dijksman, A., Green, catalytic oxidations of alcohols. *Acc. Chem. Res.* **2002**, *35* (9), 774-781; (f) Sigman, M. S.; Jensen, D. R., Ligand-modulated palladium-catalyzed aerobic alcohol oxidations. *Acc. Chem. Res.* **2006**, *39* (3), 221-229.

- 2] (a) Heidarnezhad, A.; Zamani, F., Chromium containing Fe₃O₄/polyacrylonitrile-ethylenediamine as a magnetically recoverable catalyst for alcohol oxidation. *Catal. Commun.* **2015**, *60*, 105-109; (b) Thao, N. T.; Nhu, N. T.; Lin, K. S., Liquid phase oxidation of benzyl alcohol to benzaldehyde over sepiolite loaded chromium oxide catalysts. *J. Taiwan Inst. Chem. Eng.* **2018**, *83*, 10-22.
- [3] (a) Kani, I.; Bolat, S., Effective catalytic oxidation of alcohols and alkenes with monomeric versus dimeric manganese(II) catalysts and t-BuOOH. *Appl. Organomet. Chem.* **2016**, *30* (8), 713-721; (b) Gogoi, N.; Begum, T.; Dutta, S.; Bora, U.; Gogoi, P. K., Rice husk derived nanosilica supported Cu(II) complex: an efficient heterogeneous catalyst for oxidation of alcohols using TBHP. *RSCAdv.* **2015**, *5* (115), 95344-95352.
- [4] (a) Zhang, Z.; Khrouz, L.; Yin, G. C.; Andrioletti, B., Efficient Oxidation of Benzylic and Aliphatic Alcohols Using a Bioinspired Cross-Bridged Cyclam Manganese Complex with H₂O₂. *Eur. J. Org. Chem.* **2019**, (2-3), 323-327; (b) Wagh, R. B.; Nagarkar, J. M., An efficient and sustainable protocol for oxidation of alcohols to carbonyl compounds. *Tetrahedron Lett.* **2018**, *59* (37), 3443-3447.
- [5] (a) Dong, Y. L.; Zhao, X. M.; Liu, R. H., 4-OH-TEMPO/TCQ/TBN/HCl: A Metal-Free Catalytic System for Aerobic Oxidation of Alcohols under Mild Conditions. *Chin. J. Chem.* 2015, *33* (9), 1019-1023; (b) Shen, J. X.; Sun, J. K.; Qin, S. S.; Chu, C. H.; Liu, R. H., 4-Benzamido-TEMPO Catalyzed Oxidation of a Broad Range of Alcohols to the Carbonyl Compounds with NaBrO3 under Mild Conditions. *Chin. J. Chem.* 2014, *32* (5), 405-409; (c) Zhang, J.; Jiang, Z. Q.; Zhao, D.; He, G. Z.; Zhou, S. L.; Han, S. Q., Transition-Metal-Free TEMPO Catalyzed Aerobic xidation of Alcohols to Carbonyls Using an Efficient Br2 Equivalent under Mild Conditions. *Chin. J. Chem.* 2013, *31* (6), 794-798.
- 5] (a) Isaka, Y.; Kondo, Y.; Kuwahara, Y.; Mori, K.; Yamashita, H., Incorporation of a Ru complex into an amine-functionalized metalorganic framework for enhanced activity in photocatalytic aerobic benzyl alcohol oxidation. *Catal. Sci. Technol.* 2019, *9* (6), 1511-1517; (b) Patil, M. R.; Kapdi, A. R.; Kumar, A. V., Recyclable Supramolecular Ruthenium Catalyst for the Selective Aerobic Oxidation of Alcohols on Water: Application to Total Synthesis of Brittonin A. *ACS Sustain. Chem. Eng.* 2018, *6* (3), 3264-3278; (c) Hao, Z. Q.; Li, N.; Yan, X. L.; Li, Y.; Zong, S. Q.; Liu, H. T.; Han, Z. G.; Lin, J., Ruthenium carbonyl complexes with pyridylalkanol ligands: synthesis, characterization and catalytic properties for aerobic oxidation of secondary alcohols. *New J. Chem.* 2018, *42* (9), 6968-6975.
- [7] (a) Jing, H.; Sun, K. Q.; He, D. P.; Xu, B. Q., Amorphous manganese oxide for catalytic aerobic oxidation of benzyl alcohol. *Chin. J. Catal.* 2007,

28 (12), 1025-1027; (b) Sun, H. Y.; Hua, Q.; Guo, F. F.; Wang, Z. Y.; Huang, W. X., Selective Aerobic Oxidation of Alcohols by Using Manganese Oxide Nanoparticles as an Efficient Heterogeneous Catalyst. *Adv. Synth. Catal.* **2012**, *354* (4), 569-573; (c) Su, Y.; Wang, L. C.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K. N., Microwave-accelerated solvent-free aerobic oxidation of benzyl alcohol over efficient and reusable manganese oxides. *Catal. Commun.* **2007**, *8* (12), 2181-2185.

- [8] (a) Su, H.; Zhang, K. X.; Zhang, B.; Wang, H. H.; Yu, Q. Y.; Li, X. H.; Antonietti, M.; Chen, J. S., Activating Cobalt Nanoparticles via the Mott-Schottky Effect in Nitrogen-Rich Carbon Shells for Base-Free Aerobic Oxidation of Alcohols to Esters. *J. Am. Chem. Soc.* 2017, 139 (2), 811-818; (b) Zhao, X.; Zhou, Y.; Huang, K.; Li, C. Z.; Tao, D. J., Ultralow Loading Cobalt-Based Nanocatalyst for Benign and Efficient Aerobic Oxidation of Allylic Alcohols and Biobased Olefins. *ACS Sustain. Chem. Eng.* 2019, 7 (2), 1901-1908; (c) Albadi, J.; Alihosseinzadeh, A.; Jalali, M.; Shahrezaei, M.; Mansournezhad, A., Highly dispersed cobalt nanoparticles supported on a mesoporous Al₂O₃: An efficient and recyclable catalyst for aerobic oxidation of alcohols in aqueous media. *Mol. Catal.* 2017, 440, 133-139.
- [9] Zhang, W.; Xiao, Z. A.; Wang, J. J.; Fu, W. Q.; Tan, R.; Yin, D. H., Selective Aerobic Oxidation of Alcohols over Gold-Palladium Alloy Catalysts Using Air at Atmospheric Pressure in Water. *ChemCatChem* **2019**, *11* (6), 1779-1788.
- [10] Zavahir, S.; Xiao, Q.; Sarina, S.; Zhao, J.; Bottle, S.; Wellard, M.; Jia, J. F.; Jing, L. Q.; Huang, Y. M.; Blinco, J. P.; Wu, H. S.; Zhu, H. Y., Selective Oxidation of Aliphatic Alcohols using Molecular Oxygen at Ambient Temperature: Mixed-Valence Vanadium Oxide Photocatalysts. ACS Catal. 2016, 6 (6), 3580-3588.
- [11] (a) Jiang, X. G.; Liu, J. X.; Ma, S. M., Iron-Catalyzed Aerobic Oxidation of Alcohols: Lower Cost and Improved Selectivity. Org. Process Res. Dev. 2019, 23 (5), 825-835; (b) Wei, Z. Y.; Ru, S.; Zhao, Q. X.; Yu, H.; Zhang, G.; Wei, Y. G., Highly efficient and practical aerobic oxidation of alcohols by inorganic-ligand supported copper catalysis. Green. Chem. 2019, 21 (15), 4069-4075; (c) Wang, L. Y.; Shang, S. S.; Li, G. S.; Ren, L. H.; Lv, Y.; Gao, S., Iron/ABNO-Catalyzed Aerobic Oxidation of Alcohols and Ketones under Ambient Atmosphere. J. Org. Chem. 2016, 81 (5), 2189-2193. (d) Zhao, G.; Yang, F.; Chen, Z.; Liu, Q.; Ji, Y.; Zhang, Y., Metal/oxide interfacial effects on the selective oxidation of primary alcohols. Nat. Commun. 2017, 8, 14039; (e) Liu, Y.; Ma, S. M., CuCl-Catalyzed Aerobic Oxidation of Allylic and Propargylic Alcohols to Aldehydes or Ketones with 1:1 Combination of Phenanthroline and Bipyridine as the Ligands. Chin. J. Chem. 2012, 30 (1), 29-34; (f) Hoover, J. M.; Stahl, S. S., Highly practical copper (I)/TEMPO catalyst system for chemoselective aerobic oxidation of primary alcohols. J. Am. Chem. Soc. 2011, 133(42), 16901-16910; (g) Wu, J. L.; Liu, Y.; Ma, X. W.; Liu, P.; Gu, C. Z.; Dai, B., Cu(II)-Catalyzed Ligand-Free Oxidation of Diarylmethanes and Second Alcohols in Water. Chin. J. Chem. 2017, 35 (9), 1391-1395.
- [12] Ma, S. M.; Liu, J. X.; Li, S. H.; Chen, B.; Cheng, J. J.; Kuang, J. Q.; Liu, Y.; Wan, B. Q.; Wang, Y. L.; Ye, J. T.; Yu, Q.; Yuan, W. M.; Yu, S. C., Development of a General and Practical Iron Nitrate/TEMPO-Catalyzed Aerobic Oxidation of Alcohols to Aldehydes/Ketones: Catalysis with Table Salt. Adv. Synth. Catal. 2011, 353 (6), 1005-1017.
- [13] Rajabimoghadam, K.; Darwish, Y.; Bashir, U.; Pitman, D.; Eichelberger, S.; Siegler, M. A.; Swart, M.; Garcia-Bosch, I., Catalytic Aerobic Oxidation of Alcohols by Copper Complexes Bearing Redox-Active

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Chin. J. Chem. **2019**, 37, XXX—XXX

Ligands with Tunable H-Bonding Groups. J. Am. Chem. Soc. 2018, 140 (48), 16625-16634.

- [14] Zhai, D.; Ma, S. M., Copper catalysis for highly selective aerobic oxidation of alcohols to aldehydes/ketones. Org. Chem. Front. 2019, 6 (17), 3101-3106.
- [15] (a) Marimuthu, A.; Zhang, J. W.; Linic, S., Tuning Selectivity in Propylene Epoxidation by Plasmon Mediated Photo-Switching of Cu Oxidation State. *Science* 2013, *339* (6127), 1590-1593; (b) Punniyamurthy, T.; Velusamy, S.; Iqbal, J., Recent advances in transition metal catalyzed oxidation of organic substrates with molecular oxygen. *Chem. Rev.* 2005, *105* (6), 2329-2363.
- [16] (a) Zhou, X. T.; Ji, H. B., Cobalt Porphyrin Immobilized on Montmorillonite: A Highly Efficient and Reusable Catalyst for Aerobic Oxidation of Alcohols to Carbonyl Compounds. Chin. J. Catal. 2012, 33 (12), 1906-1912; (b) Saha, B.; Gupta, D.; Abu-Omar, M. M.; Modak, A.; Bhaumik, A., Porphyrin-based porous organic polymer-supported iron(III) catalyst for efficient aerobic oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid. J. Catal. 2013, 299, 316-320; (c) Yazdely, T. M.; Ghorbanloo, M.; Hosseini-Monfared, H., Polymeric ionic liquid material-anchored Mn-porphyrin anion: Heterogeneous catalyst for aerobic oxidation of olefins. Appl. Organomet. Chem. 2018, 32 (8); (d) Rayati, S.; Nejabat, F., The catalytic efficiency of Feporphyrins supported on multi-walled carbon nanotubes in the oxidation of olefins and sulfides with molecular oxygen. New J. Chem. 2017, 41 (16), 7987-7991; (e) Huang, G.; Yuan, R. X.; Peng, Y.; Chen, X. F.; Zhao, S. K.; Wei, S. J.; Guo, W. X.; Chen, X., Oxygen oxidation of ethylbenzene over manganese porphyrin is promoted by the axial nitrogen coordination in powdered chitosan. RSC Adv. 2016, 6 (54), 48571-48579: (f) Zhou, X. T.: Ji, H. B., Highly Efficient Oxidative Cleavage of Carbon-Carbon Double Bond over meso-Tetraphenyl Cobalt Porphyrin Catalyst in the Presence of Molecular Oxygen. Chin. J. Chem. 2012, 30 (9), 2103-2108.
- [17] Fukuzumi, S.; Lee, Y. M.; Nam, W., Catalytic recycling of NAD(P)H. J. Inorg. Biochem. 2019, 199.
 - [a) Berijani, K.; Farokhi, A.; Hosseini-Monfared, H.; Janiak, C., Enhanced enantioselective oxidation of olefins catalyzed by Mn-porphyrin immobilized on graphene oxide. *Tetrahedron* 2018, *74* (18), 2202-2210; (b) Chen, S. Y.; Zhou, X. T.; Ji, H. B., Insight into the cocatalyst effect of 4A molecular sieve on Sn(II) porphyrin-catalyzed B-V oxidation of cyclohexanone. *Catal. Today* 2016, *264*, 191-197; (c) Kameyama, H.; arumi, F.; Hattori, T.; Kameyama, H., Oxidation of cyclohexene with molecular oxygen catalyzed by cobalt porphyrin complexes immobilized on montmorillonite. *J. Mol. Catal. A* 2006, *258* (1-2), 172-177; (d) Panwar, V.; Kumar, P.; Ray, S. S.; Jain, S. L., Organic inorganic hybrid cobalt phthalocyanine/polyaniline as efficient catalyst for aerobic oxidation of alcohols in liquid phase. *Tetrahedron Lett.* 2015, *56* (25), 3948-3953.
- [19] Jiang, J.; Luo, R. C.; Zhou, X. T.; Wang, F. F.; Ji, H. B., Metalloporphyrinmediated aerobic oxidation of hydrocarbons in cumene: Co-substrate specificity and mechanistic consideration. *Mol. Catal.* **2017**, *440*, 36-42.
 - 0] (a) Jiang, J.; Wang, J. X.; Zhou, X. T.; Chen, H. Y.; Ji, H. B., Mechanistic Understanding towards the Role of Cyclohexene in Enhancing the Efficiency of Manganese Porphyrin-Catalyzed Aerobic Oxidation of Diphenylmethane. *Eur. J. Inorg. Chem.* **2018**, (23), 2666-2674; (b) Chen, H. Y.; Lv, M.; Zhou, X. T.; Wang, J. X.; Han, Q.; Ji, H. B., A novel system

comprising metalloporphyrins and cyclohexene for the biomimetic aerobic oxidation of toluene. *Catal. Commun.* **2018**, *109*, 76-79.

- [21] Hong, S.; Lee, Y. M.; Sankaralingam, M.; Vardhaman, A. K.; Park, Y. J.; Cho, K. B.; Ogura, T.; Sarangi, R.; Fukuzumi, S.; Nam, W., A Manganese(V)-Oxo Complex: Synthesis by Dioxygen Activation and Enhancement of Its Oxidizing Power by Binding Scandium Ion. J. Am. Chem. Soc. 2016, 138 (27), 8523-8532.
- [22] (a) Shaabani, A.; Boroujeni, M. B.; Laeini, M. S., Porous chitosan-MnO₂ nanohybrid: a green and biodegradable heterogeneous catalyst for aerobic oxidation of alkylarenes and alcohols. *Appl. Organomet. Chem.* **2016**, *30* (3), 154-159; (b) Elmaci, G.; Ozer, D.; Zumreoglu-Karan, B., Liquid phase aerobic oxidation of benzyl alcohol by using manganese ferrite supported-manganese oxide nanocomposite catalyst. *Catal. Commun.* **2017**, *89*, 56-59.
- [23] Meng, S. S.; Lin, L. R.; Luo, X.; Lv, H. J.; Zhao, J. L.; Chan, A. S. C., Aerobic oxidation of alcohols with air catalyzed by decacarbonyldimanganese. *Green. Chem.* 2019, 21 (22), 6187-6193.
- [24] Hasegawa, E.; Ogawa, Y.; Kakinuma, K.; Tsuchida, H.; Tosaka, E.; Takizawa, S.; Muraoka, H.; Saikawa, T., Tris(trimethylsilyl)silane promoted radical reaction and electron-transfer reaction in benzotrifluoride. *Tetrahedron* 2008, 64 (33), 7724-7728.
- [25] (a) Nam, W.; Kim, I.; Lim, M. H.; Choi, H. J.; Lee, J. S.; Jang, H. G., Isolation of an oxomanganese(V) porphyrin intermediate in the reaction of a manganese(III) porphyrin complex and H₂O₂ in aqueous solution. *Chem. Eur. J.* **2002**, *8* (9), 2067-2071; (b) Fukuzumi, S.; Fujioka, N.; Kotani, H.; Ohkubo, K.; Lee, Y. M.; Nam, W., Mechanistic Insights into Hydride-Transfer and Electron-Transfer Reactions by a Manganese(IV)-Oxo Porphyrin Complex. *J. Am. Chem. Soc.* **2009**, *131* (47), 17127-17134.
- [26] (a) Sharma, N.; Jung, J.; Ohkubo, K.; Lee, Y. M.; El-Khouly, M. E.; Nam, W.; Fukuzumi, S., Long-Lived Photoexcited State of a Mn(IV)-Oxo Complex Binding Scandium Ions That is Capable of Hydroxylating Benzene. *J. Am. Chem. Soc.* 2018, *140* (27), 8405-8409; (b) Cho, K. B.; Hirao, H.; Shaik, S.; Nam, W., To rebound or dissociate? This is the mechanistic question in C-H hydroxylation by heme and nonheme metal-oxo complexes. *Chem. Soc. Rev.* 2016, *45* (5), 1197-1210; (c) Li, Y.; Zhou, X. T.; Chen, S. Y.; Luo, R. C.; Jiang, J.; Liang, Z. X.; Ji, H. B., Direct aerobic liquid phase epoxidation of propylene catalyzed by Mn(III) porphyrin under mild conditions: evidence for the existence of both peroxide and Mn(IV)-oxo species from in situ characterizations. *RSC Adv.* 2015, *5* (38), 30014-30020.
- [27] (a) Song, Y. X.; Xin, F.; Zhang, L. X.; Wang, Y., Oxidation of Cyclohexene in the Presence of Transition-Metal-Substituted Phosphotungstates and Hydrogen Peroxide: Catalysis and Reaction Pathways. *ChemCatChem* 2017, *9* (21), 4139-4147; (b) Gupta, R.; Li, X. X.; Cho, K. B.; Guo, M.; Lee, Y. M.; Wang, Y.; Fukuzumi, S.; Nam, W., Tunneling Effect That Changes the Reaction Pathway from Epoxidation to Hydroxylation in the Oxidation of Cyclohexene by a Compound I Model of Cytochrome P450. *J. Phys. Chem. Lett.* 2017, *8* (7), 1557-1561.
- [28] Zhou, X. T.; Ji, H. B., Biomimetic kinetics and mechanism of cyclohexene epoxidation catalyzed by metalloporphyrins. *Chem. Eng. J.* 2010, *156* (2), 411-417.

(The following will be filled in by the editorial staff) Manuscript received: XXXX, 2019 Manuscript revised: XXXX, 2019 Manuscript accepted: XXXX, 2019

© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

www.cjc.wiley-vch.de

Report

Accepted manuscript online: XXXX, 2019 Version of record online: XXXX, 2019

Entry for the Table of Contents

Page No.

Cyclohexene Promoted the Efficient Biomimetic Oxidation of Alcohols to Carbonyl Compounds Catalyzed by Manganese Porphyrin under Mild Conditions

ao-Hui Liu, Hai-Yang Yu, Can Xue, Xian-Tai Zhou,* Hong-Bing Ji*

A system comprising managenese porphyrin and cyclohexene for the biomimetic aerobic oxidation of alcohols to carbonyl compounds was developed.

^a Department, Institution, Address 1 E-mail:

^b Department, Institution, Address 2 E-mail: ^c Department, Institution, Address 3 E-mail:

This article is protected by copyright. All rights reserved.