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Abstract: The oxidation of alcohols to aldehydes
and ketones has been described using silica-sup-
ported vanadium(IV) oxide (V/SiO,, 1) in the pres-
ence of tert-butyl hydroperoxide in tert-butyl alco-
hol at ambient temperature with quantitative yields.
The procedure is simple, efficient and environmen-
tally benign.
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The oxidation of alcohols to aldehydes and ketones is
one of the fundamental processes in organic synthe-
sis.'?! The traditional methods for this purpose usual-
ly employ stoichiometric quantities of inorganic re-
agents such as chromate and permanganate, which
often generate significant amount of inorganic salt-
containing effluent along with the target molecules.!
Removal of traces of these effluents from the reaction
mixture is often difficult and demands laborious
work-up procedures. To circumvent this problem,
much attention has been recently focused on the
design and development of catalytic systems, especial-
ly without reducing agents in ecologically benign con-
ditions to reduce the environmental impact of the
process (E factor).**! During the course of our inves-
tigation on the oxidation of organic compounds,’*! we
found that the silica-supported vanadium(IV) oxide 1
catalyzed efficiently the oxidation of heteroatoms
with 30% H,O, in high yields."¥ Since the catalyst 1
is readily accessible, cheap and provides simplified
product isolation, we wanted to further explore its ap-
plication to other reactions. In this contribution, we
report the oxidation of alcohols to aldehydes and ke-
tones in the presence of fert-butyl hydroperoxide (z-
BuOOH) in tert-butyl alcohol (--BuOH) at ambient
temperature (Scheme 1). It is a clean technological
process and no additive is involved. Since the reac-
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Scheme 1.

tions usually take place with 100 % conversion, after
filtering the catalyst 1, the filtrate could be evaporat-
ed to provide the aldehydes or ketones as the only
products.

The oxidation of p-anisyl alcohol was first studied
as a standard substrate using 1 in the presence of ¢-
BuOOH at ambient temperature (Table 1). We were
pleased to find that the reaction occurred to afford p-
anisaldehyde in quantitative yield when it was al-
lowed to stir with 15mg of 1 (5 mol% V) and
1.2 equivs. of +-BuOOH (5M in decane) for 3 h in ¢-

Table 1. Oxidation of anisyl alcohol.”!
5 mol % catalyst

- =

p-Anisyl alcohol p-Anisaldehyde/p-Anisic acid

Oxidant
3h,25°C
Ent Catalvst Oxidant H Product(s) [%]"®!
ntry atalys xidan p RCHO RCOOH
1 1 -BuOOH 523 >99 0
2lcl VO(acac), t-BuOOH 383 38 21
3 1 30% HO0, 263 trace
4 1 50% H,0, 203 14 6
5 1 UHP - - -

2] Substrate (1 mmol), ROOH (1.2 mmol) and catalyst 1
(15mg, 5 mol% V) were stirred in +-BuOH (1 mL) at
ambient temperature for 3 h.

] R =p-MeOC:H,-.

I £ BuOOH was consumed in 1 h.
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BuOH. Hydrogen peroxides [30-50% H,0O, and urea
hydrogen peroxide (UHP)] were also investigated as
terminal oxidants, but they are less effective providing
either no reaction or a mixture of aldehyde and car-
boxylic acid in moderate yield (entries 3-5).1 Also,
the reaction with VO(acac), was found to be efficient,
but less selective giving a mixture of p-anisaldehyde
and p-anisic acid in 38 % and 21 % yields, respective-
ly.

To study the scope of the procedure, the oxidation
of other alcohols was next studied (Table 2). Benzyl
alcohols were oxidized to give the corresponding al-
dehydes with 100 % conversion (entries 1-7). The sub-
strates having electron-donating and -withdrawing
substituents in the aromatic ring were compatible
with this protocol. 9-Anthracenemethanol, 2-furanme-
thanol and 2-pyridinemethanol were transformed to
the respective aldehydes in high yields (entries 8-10).
It is noteworthy that the reactions stopped at the al-
dehyde stage without overoxidation to the carboxylic
acid. Secondary alcohols, e.g., 1-phenylethanol and
benzoin, could be converted to the respective ketones
in >99% yields (entries 11 and 12). Aliphatic alco-
hols were less reactive in comparison to aromatic al-
cohols. The oxidations of cyclohexanol and cyclodode-
canol were studied (entries 13 and 14). They required
longer reaction times and were effective in the pres-
ence of 10 mol% of 1 and 2 equivs. of -BuOOH to
afford the corresponding ketones. Similarly, allylic al-
cohols, such as cinnamyl alcohol and geraniol, under-
went oxidation to give a mixture of the corresponding
epoxy alcohols and aldehydes.'®!

The difference in the reactivity of 1 with --BuOOH
and H,O, might be due to the pH and nature of the
peroxide involved in the reaction process (Table 1).1!")
Since the systems of 50% H,0,/1 and ~BuOOH/
VO(acac), are found to be more acidic (pH 2.03-3.83)
than -BuOOH/1 (pH 5.23), the former may lead to
the formation of a hydrate which would undergo sub-
sequent oxidation to its carboxylic acid. Furthermore,
peroxo complexes formed in these reactions should
also be different since their formation depends on the
pH of the medium.'"! The reaction of 1 with 50%
H,O, generates brown-colored species while the com-
bination of 1 and ~BuOOH produces a yellow com-
plex. Thus, the electrophilic character of the peroxo
oxygen atoms might also be different leading to varia-
tion in the reactivity toward aldehydes. When these
peroxo species are quenched with Na,SO; or con-
sumed during the oxidation processes, the color of the
catalyst changes to its initial green color [V(IV)]
(Scheme 2)."I The solid could be then filtered and
the filtrate, after evaporation, provides the corre-
sponding carbonyl compounds which usually do not
require further purification.

Finally, the oxidation of p-anisyl alcohol was stud-
ied on a 100-mmol scale. As above, the reaction oc-
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Table 2. Vanadium-catalyzed oxidation of alcohols to alde-
hydes and ketones with ~-BuOOH.

Entry Substrate Time [h] Product Yield [%]®"]
1 (jA OH 3 ©/\o >99
O,N O,N
T N
O O
Br Br
4 >99
Cl 4 cl
OH e
5 5 >99
O;N O,N
N
S ST s
HO HO
MeO OH MeO \O
7 MeO S MeO >99
OMe OMe
OH /o
~
8 | 5 ,I >99
] T o
9 O OH 4 o >99
/\__OH / N\ _AP
10 —N 5 =N >99
OH O
1 ©’§ 5 ©—< >99

O
T

12 O 10 >99
o o)
(ron (o
130 25 95
OH o
24 25 87

[a

Substrate (1 mmol), -BuOOH (1.2 mmol, 5M in decane)
and catalyst 1 (15mg, 5 mol% V) were stirred in ¢-
BuOH (1 mL) at ambient temperature.

Isolated yield.

Catalyst 1 (10 mol%, 30 mg) and +-BuOOH (2 mmol)
were used.

b

[c

curred to afford p-anisaldehyde in 95% yield. This
result suggests that the present system could be used
for medium-scale syntheses.

In conclusion, the vanadium catalyst 1 has been
found to catalyze efficiently the oxidation of alcohols
to aldehydes and ketones in the presence of -
BuOOH in -BuOH at ambient temperature. It is a
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V(1V)
‘ ROH
7
V(HOR)
R'CHO + H,0 ROOH
- SO,
R = t-Bu
R'CH,OH V(HOOR)
= ROH
Scheme 2.

clean technological process and no halogenated sol-
vents are involved.

Experimental Section

Typical Procedure for the Oxidation of Alcohols

To a stirred solution of the alcohol (1 mmol) and catalyst V/
SiO, 1 (5 mol%, 15mg) in +BuOH (1 mL) at 25°C, ¢-
BuOOH (1.2-2 mmol, 5M solution in decane) was added.
The progress of the reaction was monitored by TLC using
ethyl acetate and hexane as eluent. After completion, the
reaction mixture was quenched with Na,SO; (10 mg). The
salt was then filtered and the filtrate was evaporated on a
rotary evaporator to afford the products.
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