224 Papers synthesis

Reactions of 2-(Dialkylamino)arylacetonitriles with Acetylenes Under Basic Conditions. A Simple Synthesis of Substituted Mono and Diketones¹

T. Zdrojewski, A. Jończyk*

Department of Chemistry, Technical University (Politechnika) Koszykowa 75, PL-00-662 Warsaw, Poland

2-(Dialkylamino)arylacetonitriles 1 react with acetylenes 2a,b in dimethyl sulfoxide, powdered sodium hydroxide and triethylbenzylammonium chloride as a catalyst to give 3 and/or 4. The latter are formed via addition of anion 8 to immonium salt 9. The type of product formed depends on the basicity of amino moiety in 3. Furthermore, compound 1 adds to C-1 of acetylene 2c affording the vinyl derivatives 15. The products 3, 4, 11 and 15 are hydrolyzed to give ketones 5-7, 12 and 16, respectively.

While direct formation of an acyl anion via deprotonation of a formyl group is difficult to accomplish,² proper masking of this group is used to prepare compounds, the carbanions of which act as acyl anion equivalents.^{3,4} In pursuit of novel syntheses of α,β -unsaturated carbonyl compounds, we examined the reaction of acyl anion equivalents, carbanions of 2-(dialkylamino)arylacetonitriles⁴ with acetylenes. Due to electrophilic properties of the triple bond, acetylenes add to organometallic reagents⁵ and carbanions,⁶ giving C-vinyl derivatives. Unmasking of the carbonyl group in these vinyl derivatives should afford α,β -unsaturated ketones (Scheme A).

Scheme A

We have synthesized a series of 2-(dialkylamino)arylace-tonitriles $1 \mathbf{a} - \mathbf{i}$ and reacted them, under basic conditions, with phenylacetylene $(2 \mathbf{a})$, methylthioacetylene $(2 \mathbf{b})$ and ethoxyacetylene $(2 \mathbf{c})$. We found that simple stirring of amino nitriles 1 with acetylenes $2 \mathbf{a}$, b in powdered sodium hydroxide/triethylbenzylammonium chloride (TEBAC)/dimethyl sulfoxide system results in the formation of various products depending on the type of amino moiety in 1, and the reaction conditions (Scheme B, Tables 1 and 2).

Two products, namely vinyl derivatives 3 and the unexpected enamino nitriles 4 were detected in the reaction mixtures. Reactions of morpholino- 1a, N-methylpiperazino- 1b, and thiomorpholino- 1c nitriles with phenylacetylene (2a) gave the corresponding vinyl derivatives 3a,b and c, whereas the formation of 4 required an excess of 1, longer reaction times, and higher temperatures. Under these conditions 4a and 4b were isolated in good yields, while only traces of 4c were detected in the mixture.

The amino nitriles 1d-h (derivatives of dimethylamine, pyrrolidine and piperidine) reacted easily with 2a to form

TEBAC = triethylbenzylammonium chloride

1	Ar	NR_2^1
a	Ph	morpholino
b	Ph	N-methylpiperazino
c	Ph	thiomorpholino
d	Ph	NMe ₂
e	Ph	pyrrolidino
f	Ph	piperidino
g	$4-MeC_6H_4$	NMe ₂
h	4-MeOC ₆ H ₄	NMe ₂
i	Ph	N(Me)Ph

Scheme B

4. A large excess of 2a and mild reaction conditions were required for the isolation of 3 in good yields. The formation of products 3 and 4 in the reaction of 1 with methylthioacetylene (2b) did not depend significantly on the amino moiety in 1 (Tables 1 and 2).

The products 3 are formed via a simple addition of the anion 8 to the triple bond of 2. It seems reasonable to assume that enamino nitriles 4 are formed as a result of either by attack of the anion 8 on C-3 of the initial product 3 in a S_N2' process, or more probably by the addition of 8 to the immonium salt 9 (Scheme C).

$$1 \stackrel{B^{-}}{=} \left[\begin{array}{c} NR_{2}^{1} \\ Ar & CN \end{array} \right] \stackrel{\cdot 2}{=} 3 \stackrel{\bullet}{=} \left[\begin{array}{c} NR_{2}^{1} \\ NR_{2}^{1} \\ Ar & R \end{array} \right] \stackrel{\cdot 8}{=} 4$$

Scheme C

March 1990 Papers 225

A few examples of such substitution of the cyano group in β , γ -unsaturated amino nitriles by carbanions or organometallic reagents are known.⁸ Moreover, many reactions of 2-amino nitriles are thought to proceed via an immonium salt, which exists in equilibrium with 2-amino nitrile.⁹

The reason why the reaction of amino nitriles 1a-c with 2a is arrested at the stage of 3 is not fully clear at present. The concentration of the immonium salt 9 is a decisive factor, which depends on the basicity of amino moieties in 3. The relatively low basicity of 3a-c evaluated on the basis of pK_b of the corresponding amines R_2^1NH (pK_b ca. 5) compared to 3d-h (pK_b ca. 3) causes the equilibrium $3 \rightleftharpoons 9$ to shift to the left in the former case. 10

We have independently shown that 4 is formed via the vinyl derivative 3; visualized in Scheme C. Thus stirring 3a, 3e or 3h with amino nitriles 1 or with other compounds 10 containing an acidic CH group under the above cited conditions, afforded the products 4 or 11 in low to moderate yields (Scheme D, Table 2). Compounds 11 decomposed during purification and were directly transformed into ketones 12.

Scheme D

The products 3 and 4 were isolated by column chromatography and/or crystallization. In one case, e.g., the reaction of 1a with 2a, we attempted to isolate the product by vacuum distillation. However, the ¹H-NMR spectrum of the distilled material, and also cleavage under acidic conditions, revealed a compound identified as 13 (Scheme E).

The formation of 13 can be explained as a thermal 1,3-shift of the cyano group in 3a.

Furthermore we have found that amino nitrile carbanions add readily to C-1 of ethoxyacetylene (2c). In these cases, the simple vinyl derivatives 15 were formed exclusively. Further reactions of 15 with 8, the anion of 1, have not been observed (Scheme F, Table 1). This fact may be explained by the resonance structure 15', in which the negative charge on C-3 hampers the attack of the nucleophile.

Scheme F

All the prepared products contain a masked carbonyl group. Therefore they are precursors of carbonyl compounds of different structures. Hydrolysis of vinyl derivatives 3, enamines 4, 11 and vinyl ethers 15 with hydrochloric acid afforded α,β -unsaturated ketones 5, ketoamino nitriles 6, 1,4-diketones 7, ketones 12, and acetyl derivative 16, in good to high yield (Schemes B, D, F, Tables 3, 4).

The 1,4-diketones 7 were prepared via the unmasking of 6 or directly from 4 $(4 \rightarrow 7)$ without isolation of 6. In many cases, hydrolysis was conveniently carried out using crude reaction mixtures, containing intermediates with masked carbonyl groups.

The stereochemistry of the products requires an additional comment. Analysis of crude reaction mixtures by of ¹H-NMR spectroscopy, showed that the Z isomer is the major isomer in compounds 3 and a higher Z/E-ratio for 3f-h compared to 3a-e. Preferred formation of Z isomers in the addition of CH acidic compounds to acetylenes under these conditions is well documented. 6.11 Some pure Z and E isomers of 3 were separated, and their structures were unambiguously determined. Due to the presence of a double bond and two chiral centres in 4 and in some cases also in 11, each of the Z and E isomers can exist as a mixture of two diastereoisomers. Partial hydrolysis of 4 and 11 destroys the Z/E stereoisomerism but the chiral centres remain unchanged in the products 6 and 12. While, the Z/E stereochemistry of 4 and 11 remains unknown, in the case of morpholine derivatives 4a, 4h, we were able to show the presence of two diastereoisomers. Compounds 4 and 11 containing other amino groups decomposed during attempted separation of isomers by column chromatography.

Finally, carbanions of relatively low nucleophilicity, e.g. generated from 1 (Ar = 4-NCC_6H_4 ; R¹ = CH₃) or those

Starting	Reaction	Reaction Conditions	Ratio	Isolated	Yield	Ratio of	mp (°C)	Molecular	IR (KBr)	¹ H-NMR (CDCl ₃ /TMS)
Materials	Ratio of 1/2	Temp. (°C)/ Time (h)	01 3/4"	Product	(%)	-g/p-	(solvent) of bp (°C)/Torr ^e	romina	C≣N, C=C	0, 3 (112)
1a + 2a	1:1	25–30/4	6:1	38	202	12/10	Z: 80–81 (EtOH)	$C_{20}H_{20}N_2O$ (304.4)	2220, 1593	2.23–2.44, 2.58–2.79 (m, 4 H, CH ₂ NCH ₂), 3.64–3.74 (m, 4 H, CH ₂ OCH ₂), 5.85, 6.76 (2d, 1 H each, $J = 12.15$, CH = CH), 6.97–7.08 (m, 2 H _{aron}), 7.23–7.46 (m, 6 H _{aron}), 7.54–7.65 (m, 5 H)
							E: 90.5–92 (EtOH)	$C_{20}H_{20}N_2O$ (304.4)	2220, 1593	2 H _{arom}) 2 H _{arom}) 2 (m, 4H, CH ₂ NCH ₂), 3.69–3.79 (m, 4H, CH ₂ OCH ₂), 6.11, 6.98 (AB system, 2H, J = 16.02, CH = CH), 7.22–7.46 (m, 8 H _{arom}), 7.62–7.76 (m, 8 H _{arom}), 7.62
1b + 2a	1:1	25-30/4	7:1	36	.999	17/10	Z: 86–87 (hexane)	$C_{21}H_{23}N_3$ (317.4)	2220, 1596	2.26 (s, 3H, CH ₃ N), 2.30–2.80 (m, 8H, NCH ₂ CH ₂ N), 5.85, 6.73 (2d, 1H each, J = 12.16 CH = CH), 6.97–7.08 (m, 2H _{rem}), 7.24–7.46 (m, 6H) 7.54–7.64 (m, 2H)
							E: 108–109 (hexane/ cyclohexane)	$C_{21}H_{23}N_3$ (317.4)	2222, 1595	2.29 (s, 3H, CH ₃ N), 2.40-2.75 (m, 8H, NCH ₂ CH ₂ N), 6.11, 6.97 (AB system, 2H, J = 16.04 CH = CH), 7.24-7.46 (m, 8 H _{arom}), 7.62-
1c + 2a	1:1	25–30/3	ا	3c	77°	12/10	Z: 128–130 (cyclohexane)	C ₂₀ H ₂₀ N ₂ S (320.5)	2240, 1603	75 (III, 2.11 arom) 2.50–3.10 (m, 8H, NCH ₂ CH ₂ S), 5.78, 6.73 (2d, 1H each, $J = 12.14$, CH=CH), 6.97–7.08 (m, 2H, 1) 7.74 7.64 (m, 8H, 1)
							E: 142–143 (cyclohexane)	C ₂₀ H ₂₀ N ₂ S (320.5)	2240, 1600	2.45–3.10 (m, 8H, NCH ₂ CH ₂ S), 6.05, 6.95 (AB system, 2.H, and 2.H, CH ₂ CH ₂ S), 6.05, 6.95 (AB system, 2.H, $J = 16.04$, CH = CH), 7.24–7.46 (m, 8H) 7.62–7.74 (m, 2H)
1d + 2a	1:10	15–20/4	5/3	3 d	47°	1/1	v ,	I	I	2.22, 2.32 (2s, 6H each, CH ₃)NCH ₃), 5.92, 6.70 (AB system, 2H, $J = 12.16$, CH = CH), 6.17, 6.96 (AB system, 2H, $J = 16.04$, CH = CH), 6.97–7.76 (m. 20H
1f + 2a	10:1	15–20/4	23/10	3e	58°	21/10	v I	1	I	(iii, 2011 arom) 1.40–1.75 (iii, 12H, CH ₂ CH ₂ CH ₂), 2.15–2.75 (iii) 1.40–1.75 (iii) 2.84, 6.67 (AB system, 2H, J = 12.23, CH = CH), 6.11, 6.94 (AB system, 2H, J = 16.05, CH = CH), 6.17, 777 (iii) 3.04
1a + 2b	1:1	25–30/0.5	ا	3f	70	P	Z: 106–107 (cyclohexane)	C ₁₅ H ₁₈ N ₂ OS (274.4)	2220, 1600	2.26 (s, 3H, CH ₃ S), 2.33–2.80 (m, 4H, CH ₂ NCH ₂), 3.71–3.81 (m, 4H, CH ₂ OCH ₂), 5.58, 6.12 (AB system, 2.H, J = 10.71, CH = CH), 7.73 (4.12), 7.73 (4.13),
1c + 2b	1:1	25–30/0.5	ا	3g	76	p	Z: 79–80 (cyclohexane)	C ₁₅ H ₁₈ N ₂ S ₂ (290.4)	2220, 1596	7.25-7.41 (III, 3.71 arcm), 7.03-7.74 (III, 2.11 arcm) 2.25 (s, 3H, CH ₃ S), 2.65-3.05 (m, 8H, NCH ₂ CH ₂ S), 5.52, 6.09 (AB system, 2H, J = 10.71, CH = CH), 7.30-7.40 (m, 3 H _{arcm}), 7.59-7.70 (m, 2 H _{arcm})

_
ned
_
:=
=
00)
_
- :
ē
_
,ct

Starting Materials	Reaction Ratio	Reaction Conditions Ratio Temp. (°C)/ Time (4)	Ratio of 3/4ª	Isolated	Yield (%)	Ratio of Z/E ^a	mp (°C) (solvent) or bp (°C)/Torr°	Molecular Formula ^b	IR (KBr) v(cm ⁻¹) C≡N, C=C	¹ H-NMR (CDCI ₃ /TMS)
1f + 2b	1:1	25–30/0.5	7	3h	28	42/10	Z: 73-74 (hexane)	C ₁₆ H ₂₀ N ₂ S (272.4)	2220, 1608	1.45-1.70 (m, 6H, CH ₂ CH ₂ CH ₂), 2.24 (s, 3H, CH ₃ S), 2.20-2.65 (m, 4H, CH ₂ NCH ₂), 5.57, 6.05 (AB system, 2H, <i>J</i> = 10.68, CH = CH), 7.30-7.42
1a + 2c	1:1	25–30/2	1	15a	89	I	98–99 (hexane/ $C_{16}H_{20}N_2O_2$ cyclohexane) (272.3)	C ₁₆ H ₂₀ N ₂ O ₂ (272.3)	2230, 1650	(m, 3 H _{arom}), $7.61-7.71$ (m, 2 H _{arom}) E: 2.20 (s, C H ₃ S), 5.27 , 6.65 (2d, $J=15.30$, C H = C H) ⁵ =CH) ⁵ 1.21 (t, 3 H, $J=7.00$, C H ₃), $2.34-2.74$ (m, 4 H, C H ₂ NCH ₂), 3.67 (q, 2 H, $J=7.00$, C H ₂ O, C H ₃ O), $3.69-3.70$, 3.40
1d + 2c		25-30/2	f	15b	59	Ē	66–68/0.05	$C_{14}H_{18}N_2O$ (230.3)	2220, 1650	each, $J = -3.35$, $= CH_2$), 7.12, 4.03 (24, 17) each, $J = -3.35$, $= CH_2$), 7.30–7.40 (m, $3H_{atom}$), 7.67–7.77 (m, $2H_{atom}$) 1.21 (t, $3H$, $J = 7.00$, CH_3), 2.28 (s, $6H$, CH_3NCH_3), 3.66, 3.70 (dq, $2H$, $J = 7.00$), 4.08,
1f + 2c	1:1	25–30/2.5	ſ	15c	70	ì	60-61 (EtOH)	C ₁₇ H ₂₂ N ₂ O (270.4)	2220, 1650	(m, $3H_{arom}$), $7.66-7.36$ (m, $2H_{arom}$) 1.20 (t, $3H$, $J = 7.00$, CH_3), $1.45-1.75$ (m, $6H$, CH_2 CH ₂), $1.45-1.75$ (m, $6H$, CH_2 CH ₂ CH ₂), $1.45-1.75$ (m, $6H$, $2.75-2.65$ (m, $4H$, CH_2 NCH ₂), 3.66 (m, $4H$), $3.$
1g + 2c	1:1	25-30/4	ſ	15d	55	1	76–78/0.05	C ₁₅ H ₂₀ N ₂ O (244.3)	2220, 1650	each, $J = -3.22$, -1.00 , -1.02 , -1.03 ,
										$=-3.35$, $=CH_2$), 7.09–7.63 (m, $4H_{arom}$)

^a Determined by ¹H-NMR spectra at 100 MHz.

^b Satisfactory microanalyses obtained: C±0.17, H±0.16, N±0.29, S±0.17.

^c Calculated on the basis of ¹H-NMR spectra; the yield corresponds to the crude Z + E-mixture; analytically pure samples of isomers were prepared by column chromatography using basic Al₂O₃ as adsorbent and an EtOAc/hexane mixture (1:10) as eluent.

d Not determined; only traces of other products or isomers were detected by means of ¹H-NMR spectroscopy.
 Attempted purification by vacuum distillation or column chromatography failed (decomposition of material).
 f Individual isomer resonance signals, separated from the spectra

of crude reaction mixture.

Table 2. Compounds 4 Prepared

i										28
Starting Materials	Reaction	Reaction Conditions	Product	Isomer Ratio ^a	Yield	mp (°C)	Molecular Formulab	IR (KBr)	¹ H-NMR (CDCl ₃ /TMS)	
141611	Ratio of 1/2 or 2/3	Temp. (°C)/ Time (h)		II/I		(300,000)		C≡N, C≡C, C=C	(, 5 (112)	Paper
1a + 2a	2:1	35–40/20	4a	1:1	I + II: 68	(cyclohexane/	C ₃₁ H ₃₃ N ₃ O ₂ (479.6)	I	I: 3.92, 4.99 (2d, 1H each, $J = 10.72$, CHCH=C) ^d	S
					II°: 33	acctone) 150–152 (acetone)	$C_{31}H_{33}N_3O_2$ (479.6)	2215, 1622	2.27–2.60 (m, 4H, CH ₂ NCH ₂), 2.68–2.83 (m, 4H, CH ₂ NCH ₂), 3.56–3.76 (m, 8H, CH ₂ OCH ₂), 4.11, 4.84 (2d, 1H exp.), J. 10.68, CHCH=C), 6.60–6.72 (m, 2H _{aron}), 6.65, 7.40, 7.11	
1b + 2a	2:1	35–40/10	d	1:1	≥ 80€	I	I	I	2.28, 2.32 (2s, 3H each, CH ₃ N), 2.35–2.95 (m, 16H, NCH ₂ CH ₂ N), 3.90, 4.98 (2d, 1H each, $J = 10.73$, CHCH = C), 4.10, 4.85 (2d, 1H each, $J = 10.60$, CHCH = C), 6.60–	- بـ <u>-</u>
1d + 2a	2:1	35/5	4c	1:1	89 ≺	I	ı	I	6.75 (m, 4 H _{arom}), 7.00–7.45 (m, 26 H _{arom}) 2.12, 2.16, 2.52, 2.56 (4s, 3 H each, CH ₃ NCH ₃), 3.78, 4.82 (2d, 1H each, <i>J</i> = 10.44, CHCH=C), 4.01, 4.55 (AB system,	6) .
1e + 2a	2:1	35/6	4 d	2	I + II: 55	(pentane/ cyclohexane)	C ₃₁ H ₃₃ N ₃ (447.6)	2220, 1620	$2H$, $J = 10.84$, $CHCH = C$, $0.80 - 1.45$ (m, $30 H_{arom}$) $1.60 - 1.88$ (m, $8H$, CH_2CH_2), $2.35 - 2.65$ (m, $4H$, CH_2NCH_2), $2.74 - 3.00$ (m, $4H$, CH_2NCH_2), 3.75 , 4.57 and 3.87 , 4.37 (2d, $J = 10.55$ and AB system, $J = 11.08$, $2H$ together, $CHCH = C$), $6.60 - 6.75$ (m, $2H_{arom}$), $6.95 - 7.40$ (m, $13H_{arom}$)	
1f + 2a	2:1	40/5	4e		I + II: 71 I°: 35	125–127 (hexane)	$C_{33}H_{37}N_3$ (475.7)	2215, 1620	1.54 (br s, 12H, $CH_2CH_2CH_2$), 2.26 (br s, 4H, CH_2NCH_2), 2.77 (br s, 4H, CH_2NCH_2), 3.91, 4.97 (2d, 1H each, $J = 10.76$, CHCH =C), 6.60–6.70 (m, $2H_{arom}$), 6.95–7.35 (m, $2H_{arom}$)	
					II ^c : 30	133-135 (hexane)	C ₃₃ H ₃₇ N ₃ (475.7)	2220, 1622	13H _{arom}) 1.35–1.65 (m, 12H, CH ₂ CH ₂ CH ₂), 2.15–2.70 (m, 4H, CH ₂ NCH ₂), 2.78 (br s, 4H, CH ₂ NCH ₂), 4.19, 4.76 (AB system, 2H, <i>J</i> = 10.79, CHCH = C), 6.60–6.75 (m, 2H _{arom}),	
1g + 2a	2:1	35/8	4f	-	I: 76	138–140 (hexane/	$C_{29}H_{33}N_3$ (423.6)	2210, 1620	7.00–7.55 (m, 13 H_{arcon}) 2.10 (s, 6 H, CH ₃ NCH ₃), 2.34 (s, 6 H, CH ₃ Ar), 2.52 (s, 6 H, CH ₃ NCH ₃), 3.77, 4.78 (2s, H each, $J = 10.50$, CHCH – C) 6.60 6.70 (m, 2H) 6.84 7.34 (m, 4H)	
1h + 2a	2:1	30/16	4g	2:1	≥ 62°	-	ŀ	1	Loy, 0.00—0.70 (III, 2.11arom.), 0.04—7.24 (III, 11111arom.) I and II: 2.06, 2.04 (2s, 6H together, CH ₃ NCH ₃), 2.32, 2.35 (2s, 6H together, CH ₃ NCH ₃), 3.21 (s, 6H, CH ₃ O), 3.98, 4.90 and 4.20, 4.68 (2d, <i>J</i> = 10.55 and AB system, <i>J</i> = 10.45,	
1a + 2b	2:1	30/6	4 4	1:1	I + II: 88 I°: 24	168–171 (cyclohexane/ benzene)	$C_{26}H_{31}N_3O_2S$ (449.6)	2240, 1630	2. H. Logelher, CHCH = C.), 6.80-7.30 (m, 13 h _{arom}) 1.69 (s, 3 H, CH ₃ S), 2.22-2.32 (m, 4 H, CH ₂ NCH ₂), 2.70- 2.80 (m, 4 H, CH ₂ NCH ₂), 3.55-3.75 (m, 8 H, CH ₂ OCH ₂), 3.81, 4.36 (AB system, 2.H, J = 10.95, CHCH = C), 7.35-	
					II ^c : 31	158-160 (hexane/ EtOH)	C ₂₆ H ₃₁ N ₃ O ₂ S (449.6)	2240, 1620	7.45 (m, 8 H _{arom}), 7.65–7.75 (m, 2 H _{arom}) 1.70 (s, 3 H, CH ₃ S), 2.30–2.70 (m, 8 H, CH ₂ NCH ₂), 3.57–3.75 (m, 8 H, CH ₂ OCH ₂), 3.78, 3.94 (AB system, 2 H, J = 10.80, CHCH=C), 7.33–7.50 (m, 8 H _{arom}), 7.70–7.80 (m, 2 H _{arom})	SYNTHESIS

_
7
$\overline{}$
47
9
_
_
_
~
-
\sim
~
೨
۳
ತ
<u>ت</u> :۔
ح ن
<u>ن</u>
2.
le 2. (c
le 2. (c
ě
ě
aple
aple
ě

ion Conditions Product Isomer Ratio ^a	Product Isomer Ratio ^a	Isomer Ratio ^a	Isomer Ratio ^a	1 ~ ~	Yield (%)	mp (°C) (solvent)	Molecular Formula ^b	IR (KBr)	¹ H-NMR (CDCl ₃ /TMS) δ. J(Hz)
Ratio Temp. (°C)/ of 1/2 Time (h) or 2/3	Temp. (°C)/ Time (h)			11/11				C = C C = C	
1:1 25–30/1 4i		. 4		1:3	II: 57	141–145 (hexane/ benzene)	C ₂₆ H ₃₁ N ₃ S (417.6)	2220, 1612	1.70–1.87 (m, 8 H, CH ₂ CH ₂), 1.75 (s, 3 H, CH ₃ S), 2.42–2.70 (m, 4 H, CH ₂ NCH ₂), 2.75–3.00 (m, 4 H, CH ₂ NCH ₂), 3.47, 3.78 (AB system, 2 H, J = 11.06, CHCH = C), 7.30–7.50 (m, 8 H _{arom}), 7.70–7.80 (m, 2 H _{arom})
2:1 35/5 4j		. 2.		3:4	II: 55	135–137 (hexane)	C ₂₈ H ₃₅ N ₃ S (445.7)	2219, 1608	1. 3.57, 3.50 (AB system, $J = 11.00$, CHCH = C) 1.49 (br s, 12H, CH ₂ CH ₂ CH ₃), 1.68 (s, 3H, CH ₃ S), 2.25 - 2.55 (m, 4H, CH ₂ NCH ₂), 2.67 (br s, 4H, CH ₂ NCH ₂), 3.74, 3.99 (AB system, 2H, $J = 10.90$, CHCH = C), 7.30-7.50 (m, 8H _{atom}), 7.70-7.80 (m, 2H _{atom}) 1. 1.57 (s, CH ₃ S), 3.81, 4.37 (AB system, $J = 10.95$, CHCH - C) 4.
2:1 35/3 4k		4		2:3	I + II: 81	106–130 (cyclohexane/ hexane)	$C_{24}H_{31}N_3S$ (393.6)		1.66 (s, CH ₃ S), 2.05, 2.54 (2s, CH ₃ NCH ₃), 2.38 (s, CH ₃ Ar), 3.67, 4.17 (AB system, $J = 10.75$, CHCH = C) ^d
					II°: 34	119–121 (hexane)	$C_{24}H_{31}N_3S$ (393.6)	2212, 1612	1.73 (s, 3H, CH ₃ S), 2.24, 2.48 (2s, 6H each, CH ₃ NCH ₃), 2.38 (s, 3H, CH ₃ Ar), 3.62, 3.84 (AB system, 2H, $J = 10.81$, CHCH $-C$) 7.14 -7 66 (m, 13H)
1:1 35/14 41	4			٠-١	I: 27¢	141–143 (hexane/ benzene)	$C_{30}H_{33}N_3O$ (451.6)	2220, 1620	2.10 (s, 6H, CH ₃ NCH ₃), 2.36 (s, 3H, CH ₃ Ar), 2.68–2.78 (m, 4H, CH ₂ NCH ₂), 3.68–3.78 (m, 4H, CH ₂ OCH ₂), 3.68–3.78 (m, 4H, CH ₂ OCH ₂), 3.84, 4.98 (2d, H each, $J = 10.55$, CHCH=C), 6.60–6.72 (m, 2H) 7.03–7.35 (m, 12H)
1:1 35/18 4m	4 m			<u>_</u> 1	I: 24 ⁸	137–140 (cyclohexane/ henzene)	$C_{34}H_{33}N_3O$ (499.7)	2215, 1615	2.74–2.74 (m, 4H, CH ₂ NCH ₂), 2.66 (s, 3H, CH ₃ N), 3.65–3.75 (m, 4H, CH ₂ OCH ₂), 4.02, 5.01 (2d, 1H each, $J = 9.92$, CHCH+-C), 6.52–6.70 (m, 4H, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1:1 30/5 4n e	4n		•	6:10	II: 31s	(hexane)	C ₂₆ H ₃₃ N ₃ S (419.6)	2240, 1620	1.49 (br s, 6H, CH ₂ CH ₂), 1.69 (s, 3H, CH ₃ S), 2.24 (s, 6H, CH ₃ NCH ₃), 2.38 (s, 3H, CH ₃ Ar), 2.60 (s, 3H, CH ₃ S), 2.24 (s, 6H, CH ₃ NCH ₂), 3.83, 3.90 (AB system, 2H, $J = 11.0$, CHCH = C), 7.15–7.65 (m, 9H _{arom}) I: 1.64 (s, CH ₃ S), 2.03 (s, CH ₃ NCH ₃), 2.38 (s, CH ₃ Ar), 3.73, 4.34 (AB system, $J = 10.80$, CHCH=C) ^d

^a Ratio for one isomer I whose $\partial H_a - \partial H_b$ for $CH_a - CH_b = C$ is higher then that of the other II, determined by ¹H-NMR spectra at 100 MHz.

Satisfactory microanalyses obtained: $C \pm 0.29$, $H \pm 0.16$, $N \pm 0.21$.

Analytically pure samples of isomers were prepared by fractional crystallization.

^d Individual isomer resonance signals, separated from the spectra of the I + II-mixture.

* Crude I + II-mixture; yield estimated from the yield of the corresponding diketone 7.
 Not determined.
 * Overall yield based on starting aminonitrile I. Reaction without isolation of the intermediate vinylaminonitrile 3, carried-out according to the one-pot procedure (see Experimental).

containing bulky substituent at nitrogen atom (MeNPh) did not react with 2a under the described conditions.

In summary, the reactions of 2-(dialkylamino)arylacetonitrile carbanions with acetylenes readily afford carbonyl compounds of different structures.

Boiling and melting points are uncorrected, the latter were determined in a capillary tube. ¹H-NMR spectra were obtained on a Bruker WP-100 spectrometer at 100 MHz with TMS as internal standard. IR spectra were measured on Perkin-Elmer Mod. 577 or Specord M80 spectrophotometers. Microanalyses were obtained using a Perkin-Elmer 240 CHN analyser. Analytical TLC plates and silica gel (230-400 mesh) were purchased from Merck, while

Table 3. Compounds 6 and 16 Prepared

Starting Materials ^a	Prod- uct ^a	Yield (%)	mp (°C) (solvent)	Molecular Formula ^b or Lit. mp (°C)	IR (KBr) v (cm ⁻¹) $C \equiv N$, C = O	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)
4a (II)	6a (II)	89	128-129 (EtOH)	C ₂₇ H ₂₆ N ₂ O ₂ (410.5)	2250, 1670	2.44–2.94 (m, 4H, CH_2NCH_2), 3.60–3.70 (m, 4H, CH_2OCH_2), 3.58, 3.89 (part AB of ABX system, 2H, $J_{AX} = 9.36$, $J_{BX} = 3.54$, $J_{AB} = -17.43$, CH_2CO), 4.64 (part X of ABX system, 1H, CH), 7.07 (s, 5H _{arom}), 7.27
4a (I + II)	6a (I)	43	171–172 (EtOH)	$\begin{array}{c} C_{27}H_{26}N_2O_2\\ (410.5) \end{array}$	2220, 1680	(s, $5H_{arom}$), $7.40-7.55$ (s, $3H_{arom}$), $7.86-7.96$ (m, $2H_{arom}$) $2.65-2.80$ (m, $4H$, CH_2NCH_2), 3.54 , 3.59 (part AB of ABX system, $2H$, $J_{AX}=12.28$, $J_{BX}=0.97$, $J_{AB}=-15.1$, CH_2CO), $3.70-3.85$ (m, $4H$, CH_2OCH_2), 4.41 (part X of ABX system, $1H$, CH), $6.60-6.72$ (m,
4c (I + II) ^c	6b	54 ^d	165–167 (cyclo- hexane/ benzene)	166-17012	2220, 1670	$2H_{arom}$), 7.00–7.50 (m, 11 H_{arom}), 7.80–7.90 (m, 2 H_{arom}) 2.42 (s, 6H, CH ₃ NCH ₃), 3.47, 3.74 (part AB of ABX system, 2H, $J_{AX} = 11.58$, $J_{BX} = 1.67$, $J_{AB} = -17.8$, CH ₂ CO), 4.36 (part X of ABX system, 1H, CH), 6.62–6.72 (m, 2 H_{arom}), 7.00–7.50 (m, 11 H_{arom}), 7.80–7.90 (m,
4e (I) 4e (II)	6c 6c	76 70	123.5–125 (cyclo- hexane)	C ₂₈ H ₂₈ N ₂ O (408.5)	2210, 1680	2 H _{arom}) 1.57 (br s, 6H, CH ₂ CH ₂ CH ₂), 2.61 (br s, 4H, CH ₂ NCH ₂), 3.49, 3.63 (part AB of ABX system, 2H, $J_{AX} = 11.67$, $J_{BX} = 1.62$, $J_{AB} = -17.75$, CH ₂ CO), 4.44 (part X of ABX system, 1H, CH), 6.60-6.70 (m, 2H)
4f	6d	80	121–122.5 (EtOH)	C ₂₇ H ₂₈ N ₂ O (396.5)	2215, 1675	$2H_{arom}$), 7.00–7.53 (m, 11 H_{arom}), 7.80–7.90 (m, 2 H_{arom}) 2.38 (s, 12 H, C H_3 Ar and C H_3 NC H_3), 3.44, 3.65 (part AB of ABX system, 2H, $J_{AX} = 11.58$, $J_{BX} = 1.63$, $J_{AB} = -17.70$, C H_2 CO), 4.32 (part X of ABX system, 1H, CH), 6.60–6.70 (m, 2 H_{arom}), 7.00–7.25 (m, 9 H_{arom}), 7.60–7.29 (m, 2 H_{arom}),
4h (I)	6e (I)	86	159–160 (cyclo- hexane/ benzene)	$C_{22}H_{24}N_2O_2S$ (380.5)	2240, 1685	7.65–7.80 (m, $2H_{arom}$) 2.28 (s, $3H$, CH_3S), 2.57–2.72 (m, $4H$, CH_2NCH_2), 3.13, 3.49 (part AB of ABX system, $2H$, $J_{AX}=11.03$, $J_{BX}=1.29$, $J_{AB}=-17.47$, CH_2CO), 3.65–3.80 (m, $4H$, CH_2OCH_2), 4.08 (part X of ABX system, $1H$, CH), 7.35–7.60 (m, $6H_{arom}$), 7.68–7.80 (m, $2H_{arom}$), 7.83–7.95
4h (II)	6e (II)	79	112–113 (hexane/ benzene)	$C_{22}H_{24}N_2O_2S$ (380.5)	2235, 1695	(m, $2H_{arom}$) 2.07 (s, $3H$, CH_3S), 2.40–2.80 (m, $4H$, CH_2NCH_2), 3.14, 3.56 (part AB of ABX system, $2H$, $J_{AX} = 9.21$, $J_{BX} = 2.79$, $J_{AB} = -17.7$, CH_2CO), 3.67–3.77 (m, $4H$, CH_2OCH_2), 4.24 (part X of ABX system, $1H$, CH),
4k (I + II)	6f	30	133-134.5 (cyclo- hexane)	C ₂₂ H ₂₆ N ₂ OS (366.5)	2216, 1680	7.30–7.72 (m, $8H_{arom}$), 7.82–7.95 (m, $2H_{arom}$) 2.28 (s, $3H$, CH_3S), 2.32 (s, $6H$, CH_3NCH_3), 2.40 (s, $6H$, CH_3Ar), 3.04, 3.55 (part AB of ABX system, 2H, $J_{AX}=11.0$, $J_{BX}=1.30$, $J_{AB}=-17.63$, CH_2CO), 4.01 (part X of ABX system, 1H, CH), 7.19–7.27 (m,
41	6g	76	142-144 (EtOH)	$C_{26}H_{26}N_2O$ (382.5)	2220, 1670	$^4H_{arom}$), 7.55–7.84 (m, $^4H_{arom}$) 2.39 (s, 9H , 2GH_3), 3GH_3 and 3GH_3 , 3.46, 3.69 (part AB of ABX system, 3GH_3), 3GH_3 , 3GH_
4m	6h	86	132–134 (EtOH)	$C_{30}H_{26}N_2O$ (430.5)	2220, 1685	7.35–7.55 (m, $4H_{arom}$), 7.80–7.92 (m, $2H_{arom}$) 2.89 (s, 3H, CH ₃ N), 3.27, 3.80 (part AB of ABX system, 2H, $J_{AX} = 11.48$, $J_{BX} = 2.26$, $J_{AB} = -17.19$, CH ₂ CO), 4.29 (part X of ABX system 1H, CH), 6.60–6.72 (m,
15a	16	98	137-138 (hexane/ benzene)	$C_{14}H_{16}N_2O_2$ (244.3)	2225, 1670	2H _{arom}), 7.00–7.70 (m, 18H _{arom}) 2.22 (s, 3 H, CH ₃), 2.40–2.75 (m, 4 H, CH ₂ NCH ₂), 3.77–3.87 (m, 4 H, CH ₂ OCH ₂), 7.27–7.47 (m, 3 H _{arom}), 7.65–7.75 (m, 2H _{arom})

For defenition I and II, see Table 2.

Satisfactory microanalyses obtained: $C \pm 0.20$, $H \pm 0.08$, N + 0.28.

^c Crude mixture containing 4 was used (see Table 2). Yield of pure isolated product based on 2.

basic alumina from Fluka Chemical Co. DMSO and phenylacetylene (Merck) were distilled before use. Ethoxyacetylene, ¹⁴ methylthioacetylene, ¹⁴ 2-phenylpropionitrile (**10a**), ⁵ 2-phenylbutyrophenone (**10c**), ¹⁶ and amino nitriles **1**¹⁷ were prepared according to literature procedures. New amino nitriles **1b** and **1c** were identified by ¹H-NMR spectra and elemental analyses. 126–128 °C/0.3 Torr. **1b**; yield: 79 %; bp.

C₁₃H₁₇N₃ calc. C 72.52 H 7.96 N 19.52 (215.3) found 72.44 7.89 19.56

¹H-NMR (CDCl₃): $\delta = 2.28$ (s, 3 H, CH₃N), 2.35–2.70 (m, 8 H, NCH₂CH₂N), 4.83 (s, 1 H, CH), 7.34–7.58 (m, 5 H_{arom}).

1c; yield: 74%; mp 80-81°C (cyclohexane).

C₁₂H₁₄N₂S calc. C 66.02 H 6.46 N 12.83 (218.3) found 66.11 6.40 12.77

¹H-NMR (CDCl₃): $\delta = 2.62-2.92$ (m, 8 H, SCH₂CH₂N), 4.81 (s, 1 H, CH), 7.35-7.58 (m, 5 H_{arom}).

All carbanionic reactions of amino nitriles were carried out under N_2 .

Vinylamino Nitriles 3 and 15 (except 3d and 3e); General Procedure: A solution of amino nitrile 1 (10 mmol) in DMSO (10 mL) is placed in a 3-necked round-bottomed flask fitted with a mechanical stirrer and thermometer. The mixture is stirred while powdered NaOH (2.4 g, 60 mmol) and TEBAC (about 0.1 g, 0.5 mmol) are added all at once. A solution of acetylene 2a, 2b or 2c (10 mmol) in DMSO (2 mL) is then introduced with a syringe (a slight exothermal effect is observed, the temperature is kept at 25–30 °C). The mixture is stirred at the temperature and time indicated in Table 1. The mixture is poured into water (100 mL) and extracted with benzene (100 mL). The organic phase is washed with water, dried (MgSO₄), and the solvent is evaporated in vacuo. In the case of 2b or 2c the residue is crystallized or distilled in vacuo. Crude E/Z mixtures,

obtained from 2a, are separated by column chromatography on basic alumina (EtOAc/hexane, 1:10 as eluent) and crystallized to give pure Z and E isomers of 3 (Table 1).

E/Z-2-Dimethylamino-2,4-diphenyl-3-butenenitrile (3d) and E/Z-2,4-Diphenyl-2-piperidino-3-butenenitrile (3e):

A mixture of powdered NaOH (9.0 g, 200 mmol), TEBAC (0.5 g, 2.2 mmol), phenylacetylene (2a; 40.8 g, 400 mmol) in DMSO (50 mL) is vigorously stirred, while a solution of amino nitrile 1d or 1f (40 mmol) in DMSO (30 mL) is added dropwise at 15–20 °C for 3 h. The mixture is stirred for 1 h, poured into water, the organic phase separated and washed with water as quickly as possible, with cold 3% aq. HCl (5×30 mL) in order to remove the side-product 4. Finally the organic phase is washed with 5% aq. NaHCO₃ (30 mL), dried (MgSO₄), and the excess of 2a is distilled off under reduced pressure. The residue consists of crude vinylamino nitriles 3d or 3e, which decompose during attempted purification (Table 1).

Enaminoamino Nitriles 4 (except 41, m, n); General Procedure:

The reactions are carried out as described for vinylamino nitriles 3, starting from amino nitrile 1 (10 mmol), acetylene 2a or 2b (5 mmol), powdered NaOH (60 mmol) and TEBAC (ca. 0.1 g, 0.5 mmol). The reaction conditions, purification methods as well as properties of the products 4 are collected in Table 2.

Enaminoamino Nitriles 41, m, n:

Crude vinylamino nitriles 3a and 3h are prepared first starting from powdered NaOH (2.4 g, 60 mmol), TEBAC (0.1 g, 0.5 mmol), DMSO (10 mL), amino nitrile 1a (1.01 g, 5 mmol) or 1f (1.0 g, 5 mmol) and acetylene 2a (0.51 g, 5 mmol) or 2b (0.36 g, 5 mmol), respectively, as described above (Table 1). Amino nitrile 1a (0.87 g, 5 mmol) or 1i (1.11 g, 5 mmol) is then added and the reaction is stirred at the temperature and time indicated in Table 2. The mixtures are worked-up as described for 3 to give the products (Table 2).

Table 4. Diketones 7 Prepared

Starting Materials	Prod- uct	Yield (%)	mp (°C) (solvent)	Molecular Formula ^a or Lit. mp (°C)	IR (KBr) v _{C=0} (cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)
4b ^b 4c ^b 4d ^b 4e ^b	7a 7a 7a 7a	80° 68° (88) 68° 76°	126-128 (EtOH)	12613	1675	3.29, 4.22, 5.33 (3dd, 1H each, AMX system, $J_{AM} = -17.98$, $J_{AX} = 3.75$, $J_{MX} = 10.00$, $CH_AH_MCH_X$), 7.20-7.52 (m, 11 H_{arom}), 7.90-8.10 (m, 4 H_{arom})
4f ^b	7b	59°	125.5–127 (EtOH)	$C_{24}H_{22}O_2$ (342.4)	1670, 1675	2.34, 2.39 (2s, 3H each, CH_3Ar), 3.26, 4.16, 5.30 (3dd, 1H each, AMX system, $J_{AM} = -17.90$, $J_{AX} = 3.90$, $J_{MX} = 9.90$, $CH_AH_MCH_X$), 7.10–7.40 (m, 9 H_{arom}), 7.80–8.00 (m, 4H)
4g ^b	7c	62°	109–110 (<i>i</i> -PrOH/ H ₂ O)	C ₂₄ H ₂₂ O ₄ (374.4)	1665, 1675	(m, $4H_{arom}$) 3.82, 3.87 (2s, 3H each, CH ₃ O), 3.21, 4.15, 5.28 (3dd, 1H each, AMX system, $J_{AM} = -17.74$, $J_{AX} = 3.86$, $J_{MX} = 9.84$, CH _A H _M CH _X), 6.80–6.94 (m, $4H_{arom}$), 7.15–7.35
4 j	7d	88	98–99 (cyclo- hexane)	$C_{17}H_{16}O_2S$ (284.4)	1666, 1678	(m, $5H_{arom}$), 7.90–8.06 (m, $4H_{arom}$) 2.02 (s, $3H$, CH_3S), 3.42, 4.09, 4.87 (3dd, $1H$ each, AMX system, $J_{AM} = -17.83$, $J_{AX} = 3.98$, $J_{MX} = 9.75$, $CH_AH_MCH_X$), 7.20–7.60 (m, $6H_{arom}$), 7.94–8.14 (m,
4k	7e	50	101-102 (cyclo- hexane)	$C_{19}H_{20}O_{2}S$ (312.4)	1670	$^{4}H_{arom}$) 2.01 (s, 3H, CH ₃ S), 2.41 (s, 6H, CH ₃ Ar), 3.38, 4.04, 4.85 (3dd, 1H each, AMX system, $J_{AM} = -17.75$, $J_{AX} = 4.13$, $J_{MX} = 9.61$, CH _A H _M CH _X), 7.20–7.40 (m,
41	7f	83	116-118 (EtOH)	$C_{23}H_{20}O_2$ (328.4)	1670, 1675	$4H_{arom}$), 7.83-8.03 (m, $4H_{arom}$) 2.33 (s, 3H, CH_3Ar), 3.27, 4.20, 5.31 (3dd, 1H each, AMX system, $J_{AM} = -17.95$, $J_{AX} = 3.85$, $J_{MX} = 9.86$, $CH_AH_MCH_X$), 7.13-7.55 (m, $10H_{arom}$), 7.90-8.03 (m,
4n	7g	77	62.5-64 (hexane/ EtOH)	C ₁₈ H ₁₈ O ₂ S (298.4)	1680	$^{4H_{arom}}$) 2.01 (s, 3 H, CH ₃ S), 2.42 (s, 3 H, CH ₃ Ar), 3.40, 4.08, 4.86 (3dd, 1H each, AMX system, $J_{AM} = -17.81$, $J_{AX} = 4.03$, $J_{MX} = 9.62$, CH _A H _M CH _X), 7.25-7.60 (m, 5H _{arom}), 7.95-8.05 (m, 4H _{arom})

^{*} Satisfactory microanalyses obtained: $C \pm 0.21$, $H \pm 0.18$, b.c Refers to footnotes c and d in Table 3.

232 Papers synthesis

Reaction of Vinylamino Nitriles 3 with CH-Acidic Compounds 10; General Procedure:

To crude vinylamino nitrile 3a prepared as above is added 10a, 10b or 10c (5 mmol) and the mixture is stirred at 35°C for 15 h or 12 h for 10a or 10b and 10c, respectively. The mixture is worked up as described for 3 to give crude enamines 11, which decompose during attempted purification. Therefore crude 11, EtOH (30 mL) and conc. HCl (1 mL) are refluxed for 10-15 min, the solvent is evaporated, the residues are dissolved in benzene (30 mL), washed with water, dried (MgSO₄), and evaporated.

4-Benzoyl-2-methyl-2,3-diphenylbutyronitrile (12a); yield: 0.4 g (24%); purified by column chromatography on silica gel (eluent: EtOAc/hexane 1:4) and crystallization from EtOH; mp 111-112°C.

C₂₄H₂₁NO calc. C 84.92 H 6.24 N 4.13 (339.4) found 84.97 6.26 4.08

IR (KBr): v = 2240 (C \equiv N), 1682 cm⁻¹ (C \equiv O).

¹H-NMR (CDCl₃): $\delta = 1.48$ (s, 3 H, CH₃), 2.80–3.10 and 3.68–3.97 (m, 3 H together, signals not assigned to appropriate protons in CH₂CH), 7.20–7.80 (m, 15 H_{arom}).

4-Benzoyl-2,2,3-triphenylbutyronitrile (12b); yield: 1.0 g (50%); purified by crystallization from EtOH with active charcoal); mp 136-137°C.

C₂₉H₂₃NO calc. C 86.75 H 5.77 N 3.49 (401.5) found 86.80 5.69 3.41

IR (KBr): v = 2240 (C \equiv N), 1680 cm⁻¹ (C=O).

¹H-NMR (CDCl₃): δ = 3.38, 4.18, 4.73 (3 dd, 1 H each, AMX system $J_{AM} = -17.66$ Hz, $J_{AX} = 1.90$ Hz, $J_{MX} = 10.58$ Hz, CH_AH_MCH_X), 7.08 (br s, 5 H_{arom}), 7.20–7.50 (m, 6 H_{arom}), 7.68–7.90 (m, 4 H....).

2-Ethyl-1,2,3,5-tetraphenyl-1,5-pentanedione (12c); yield: 0.52 g (24%); purified by column chromatography on silica gel (eluent EtOAc/hexane 1:4) and crystallization from EtOH; mp 163–164°C.

C₃₁H₂₈O₂ calc. C 86.08 H 6.52 (432.6) found 86.10 6.58

IR (KBr): v = 1675, 1664 cm^{-1} (C=O).

¹H-NMR (CDCl₃): δ = 0.84 (t, 3 H, J = 7.35 Hz, CH₃), 2.01 (q, 2 H, J = 7.35 Hz, CH₂), 2.98, 3.81, 4.46 (3 dd, 1 H each, AMX system, J_{AM} = -15.70 Hz, J_{AX} = 11.45 Hz, J_{MX} = 2.65 Hz, CH_AH_MCH_X), 6.62-6.72 (m, 2 H_{arom}), 7.03-7.56 (m, 16 H_{arom}), 7.86-7.96 (m, 2 H_{arom}).

4-Benzoyl-2,2,3-triphenylbutyronitrile (12b) from 3e:

A mixture of crude 3e (1.4 g, 4.5 mmol) and nitrile 10b (0.9 g, 4.5 mmol), DMSO (10 mL), powdered NaOH (1.0 g, 25 mmol) and TEBAC (0.1 g, 0.5 mmol) is stirred at 30 °C for 5 h and worked up as described above to give the crude enamine 11b.

11b; ¹H-NMR (CDCl₃): $\delta = 1.42$ (br s, CH₂CH₂CH₂), 2.50–2.70 (m, CH₂NCH₂), 4.08, 5.05 (2 d, J = 10.0 Hz, CHCH=C), 6.90–7.40 (m, 20 H_{arom}).

Crude 11b is hydrolyzed as described above, affording 12b; yield: 1.26 g (63%); mp 136–137°C (EtOH).

Ketoamino nitriles 6 and 2-Morpholino-3-oxo-2-phenylbutyronitrile (16); General Procedure:

A solution of 4 (5 mmol) in benzene (30 mL) or 15a in Et₂O (30 mL) and 3% aq. HCl (50 mL) is placed in a separatory funnel and shaken vigorously from time to time until the turbidity of the water phase disappears (0.5-3 h). The organic phase is separated, washed with 5% aq. NaHCO₃ (30 mL), dried (MgSO₄), and evaporated. Crude 6 or 16 are crystallized from an appropriate solvent (Table 3).

Diketones 7; General Procedure:

For 7a-c, f: Enaminoamino nitrile 4 (5 mmol) is dissolved in EtOH (30 mL) and conc. HCl (1 mL) is added. The mixture is refluxed for 5-10 min. and the solvent is then evaporated in vacuo. The residue is dissolved in benzene (30 mL), washed with water and dried (MgSO₄). Benzene is distilled off and crude 7 is recrystallized from an appropriate solvent (Table 4).

For 7d, e, g: These are obtained from the enamines 4 by acidic hydrolysis as described for the preparation of ketoamino nitriles 6 (Table 4).

Benzylideneacetophenone (5a):

Obtained as described for diketones 7 from crude mixtures of vinylamino nitriles 3a-c; yield: 71 % from 3a, 74 % from 3b, and 80 % from 3c; mp 55-57 °C (EtOH) (Lit. 18 mp 57-58 °C).

E/Z-4-Morpholino-2,4-diphenyl-3-butenenitrile (13):

The crude vinylaminonitrile 3a, prepared from amino nitrile 1a (4.0 g, 20 mmol) and acetylene 2a (2.0 g, 20 mmol) is distilled, the fraction boiling at 200-205°C/0.2 Torr (4.1 g) is collected, treated with MeOH (10 mL) and chilled. The solid is filtered and crystallized from MeOH to give 13; yield: 1.9 g (31%); mp 140-141°C.

C₂₀H₂₀N₂O calc. C 78.92 H 6.62 N 9.20 (304.4) found 79.13 6.59 8.99

IR (KBr): v = 2240 (C \equiv N), 1620 cm⁻¹ (C \equiv O).

¹H-NMR (CDCl₃): δ = 2.74–2.84 (m, 4 H, CH₂NCH₂), 3.36–3.73 (m, 4 H, CH₂OCH₂), 4.37, 4.65 (AB system, 2 H, J = 10.06 Hz, CHCH=C), 7.30 (br s, 5 H_{arom}), 7.40 (br s, 5 H_{arom}).

3-Benzoyl-2-phenylpropionitrile (14):

Obtained from 13 (0.3 g, 1 mmol) by acidic hydrolysis as described for ketoamino nitriles 6. Yield: 0.23 g (97%); mp 125–126°C (EtOH) (Lit. 19 mp 126–127°C).

C₁₆H₁₃NO calc. C 81.86 H 5.57 N 5.95 (235.3) found 81.57 5.47 5.85

IR (KBr): v = 2240 (C \equiv N), 1680 cm⁻¹ (C=O).

¹H-NMR (CDCl₃): δ = 3.50, 3.72 (part AB of ABX system, 2 H, J_{AB} = -17.91 Hz, J_{AX} = 6.17 Hz, J_{BX} = 7.77 Hz, CH₂CO), 4.57 (part X of ABX system, 1 H, CHCN), 7.30-7.60 (m, 6 H_{arom}), 7.88-8.00 (m, 4 H_{arom}).

This work was supported by Polish Academy of Sciences, Grant CPBP 01.13.

Received: 12 July 1989

- Reactions of Organic Anions, 168; for part 167 see: Jończyk, A.; Lipiak, D.; Zdrojewski, T. Tetrahedron, in press.
- (2) Beak, P.; Zajdel, W.J.; Reitz, D.B. Chem. Rev. 1984, 84, 471.
- (3) Gröbel, B.T.; Seebach, D. Synthesis 1977, 357.
- (4) Albright, J. D. A. Tetrahedron 1983, 39, 3207.
 Arsenyadis, S.; Kyler, K. S.; Watt, D. S. Org. React. 1984, 31,
 1.
- (5) Normant, J.F.; Alexakis, A. Synthesis 1981, 841.
- (6) Makosza, M.; Czyzewski, J.; Jawdosiuk, M. Org. Synth. 1976, 55, 99.
- (7) Preliminary communication: Jończyk, A.; Lipiak, D.; Stępniewski, P.; Zdrojewski, T. Bull. Soc. Chim. Belg. 1988, 97, 165; C.A. 1988, 109, 169969.
- (8) Grierson, D.S.; Harris, M.M.; Husson, H.P. J. Am. Chem. Soc. 1980, 102, 1064. Ahlbrecht, H.; Dollinger, H. Synthesis 1985, 743.

(9) Chauviere, G.; Tchoubar, M.B.; Welvart, Z. Bull. Soc. Chim.

- Fr. 1963, 1428.
 Taillades, J.; Commeyras, A. Tetrahedron 1974, 30, 129.
- (10) Houben-Weyl, 4th ed., Vol. XI/I, Georg Thieme Verlag, Stuttgart, 1957, p. 5.
 Streitweiser, A.Jr.; Heathcock, C.H. Introduction to Organic Chemistry, 2nd. ed., Macmillan Publishing Co., New York, 1981, p. 735.
- (11) Makosza, M.; Jawdosiuk, M. Bull. Acad. Pol. Sci., Ser. Sci. Chim. 1968, 16, 589; C.A. 1969, 71, 30193 y.
- (12) Taylor, H. M.,; Hauser, Ch. R. J. Am. Chem. Soc. 1960, 82, 1790.
- (13) Smith, A. J. Chem. Soc. 1980, 57, 643.
- (14) Brandsma, L. Preparative Acetylenic Chemistry, Elsevier Publishing Co., Amsterdam, 1971.

233 Papers March 1990

(15) Jończyk, A.; Ludwikow, M.; Makosza, M. Org. Prep. Proced. Int. 1979, 11, 275.

- (16) Makosza, M.; Jończyk, A.; Serafinowa, B.; Mroczek, Z. *Roczniki Chem.* **1973**, 47, 77; C. A. **1973**, 79, 18 305.
- (17) Hauser, C.R.; Taylor, H.M.; Ledford, T.G. J. Am. Chem. Soc. 1960, 82, 1786.
- (18) Claisen, L.; Claparéde, A. Ber. Disch. Ges. 1881, 14, 2460.
 (19) Hann, A.C.O.; Lapworth, A. J. Chem. Soc. 1904, 85, 1355.