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Abstract A novel and efficient one-pot synthesis of trismetallated
olefins is described by using the diisopropyloxy(h2-propene)titani-
um derivative. 
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The  synthesis of polysubstituted olefins in a single-pot
operation from common starting material is still the object
of continuing vigorous research1. Among several strate-
gies, the synthesis and reactivity of 1,1-dimetalloalkenes
with a large variety of metals (dilithium2, aluminum and
titanium3, aluminum and zirconium3, zinc and zirconium4,
zinc and boron5, copper and boron5, copper and
zirconium4, lithium and boron6, zinc and zinc7 and finally
boron and zirconium8) were used as a source of tri- and
tetra-substituted olefins. In this context, we have already
reported the allylmetallation of alkynyl metals9 leading to
sp2 1,1-bismetallic derivatives in good overall yield10.
These geminate bis-anions react selectively with two dif-
ferent electrophiles10 and can be a source of chiral a,a’-
disubstituted alkynes10c. However, in the course of our
studies on the synthesis and reactivity of polymetallated
alkenes, we needed a more general preparation of these re-
agents allowing the access to a variety of carbon skele-
tons. Our attention was drawn by the pioneering work of
Sato et al who demonstrated that various disubstituted
alkynes react with diisopropyloxy(h2-propene)titanium
111, readily generated by the reaction of Ti(OiPr)4 with 2
equiv. of iPrMgX, to give the corresponding titanacyclo-
propene derivatives. Although terminal alkynes failed to
participate  in  the  present reaction, the use of this low-
valent titanium alkoxide reagent was successfully applied
to several systems12. The same type of intermediate as 1
had previously been used for the synthesis of
cyclopropanols13,14  and  cyclopropylamines15.  Inspired
by  this  work,  we  were  pleased to find that the ligand
exchange  of  the  low-valent  titanium alkoxide can be
performed with a metallated alkyne16 to give the corre-
sponding metallated titanacyclopropene. Our initial at-
tempts consisted in adding alkynyl metal derivatives to
the preformed TiII complex 1 (Scheme 1). 

However, this new strategy was only moderately success-
ful since the overall chemical yield of the polymetallated
olefin was strongly dependent on the nature of the alkynyl

metal and on the experimental conditions. Indeed, starting
from alkynyllithium (M = Li) or alkynylmagnesium bro-
mide (M = MgBr), the desired product was not obtained
in the former case and only in 20% yield in the latter one.
The best cases were the alkynyltitanium triisopropoxide
(M = Ti(OiPr)3, 41% yield) and either the alkynylzinc
bromide (M = ZnBr, 65% yield) or alkynyl-alkylzinc
(M = ZnBu, 68% yield). Unfortunately, even in these last
three cases, it was very difficult in our hands to get repro-
ducible results (i.e. for the alkynylzinc bromide the yield
was varying from 25% to 70%). These fluctuations were
attributed to the possible instability of the preformed low-
valent titanium alkoxide 1 under these Grignard-type ex-
perimental conditions17, and also to the rearrangement of
1 into the corresponding cyclic product 218. These results
strongly suggest that we have a competing reaction of 1;
formation of the desired product or formation of 2. In-
deed, bromination of the reaction mixture instead of hy-
drolysis gave (D,L)-1,4-dibromo-2,3-dimethylbutane
selectively in variable chemical yields (the balance being
the product of the reaction of the metallated titanacyclo-
propene with Br2).
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In order to overcome these chemical yield variations as
well as to avoid the formation of 2 it was necessary to find
new experimental conditions in which the diisopropy-
loxy(h2-propene)titanium 1 would be generated in the
presence  of  the   electrophile   (Barbier  Conditions)17.
For  this purpose, we found after several experiments19

that treatment of chloroalkyne 3 (Scheme 2, R = alkyl,
X = Cl) with 2.5 equivalents of the combination
Ti(OiPr)4/iPrMgBr  (in a 1:2.5 ratio) gives, in a single-pot
operation  at –50 °C in 2 hours, the desired titano-titana-
cyclopropene 6 in high chemical yield (Scheme 2).

Scheme 2

A plausible mechanism for this reaction is shown in
Scheme 2. The in situ formed diisopropyloxy(h2-pro-
pene) titanium 1 (generated as described in Scheme 1) re-
acts with chloroalkyne 3, via a ligand exchange11, to give
as an unstable intermediate20 the chloro-titanacyclopro-
pene 4 (R = alkyl, X = Cl). Then, 4 undergoes a very fast
b-elimination21 at low temperature to give the alkynyltita-
nium derivative 522. Quenching the reaction with MeOD
at –78 °C proved the presence of the metallated alkyne 5
since the deuteroalkyne (Scheme 2, path A) was quantita-
tively obtained. When the reaction mixture is warmed to
–50 °C and stirred for 2 hours, the second equiv. of 1 can
react with 5 to give quantitatively the titano-titanacyclo-
propene 6 (Scheme 2, path B). After hydrolysis, 7 is iso-
lated in high yield. The presence of 3 carbon-metal bonds
was proven by reaction with MeOD to give 8 (>95%D in
87% yield). Results for a variety of alkynes are shown in
the Table. In all cases, only the polymetallated species
was obtained, whatever the nature of the R group.

Indeed, several chloroalkynes with an alkyl, phenyl or ho-
mopropargylic ether group lead to the products in good to
high yields (entries 1, 5 and 6). Interestingly, according to
the nature of the leaving group, minor variations in the
chemical yields are observed (compare entries 1, 2 and 3).
Whereas the first step is still quantitative (formation of the
metallated alkyne 5), the second one is dependent on the
nature of the halogen X on alkynyltitanium 5. Even in the

case of the alkynyl thiophenyl ether (entry 4), a good
chemical yield was obtained. 

On the other hand, further investigations revealed interest-
ing reactivities of zirconocene-(1-butene) 16 and ti-
tanocene-(1-butene) 17 derivatives with a chloroalkyne.
Indeed, whereas the reaction of 1623 with ptolylchloro-
acetylene (see Scheme 3) afforded the corresponding tris-
metallated olefin 18 in high yield (91% after hydrolysis),
the same reaction with Cp2Ti-(1-butene) 1724 lead only to
15% of 1925. When the same strategy is applied to 3
(R = alkyl) either with 16 or 17 only low conversions to
trimetallated olefins are obtained26.

Scheme 3

In conclusion, the use of diisopropyloxy(h2-propene)tita-
nium 1 provides an efficient one-pot method for synthe-
sizing trimetallated olefins from common starting
materials27. It should be noted that whereas terminal
alkynes failed in the present reaction11, it occurs very
nicely with a metallated alkyne and then the alkynyl orga-
nometallic behaves like a carbon center. Synthetic appli-
cations of the present methodology and investigations to
confirm the mechanistic rationale of the reaction28 are
now in progress in our laboratory.
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