INVESTIGATION OF THE ELECTRONIC SPECTRA
OF ALKOXY-SUBSTITUTED AMINO AND OXO
DERIVATIVES OF s-TRIAZINE

Ts. N. Roginskaya, V. F. Gerega, A. I. Finkel'shtein, and Yu. I. Dergunov

UDC 535.33

The literature contains very little data on the UV spectra of alkoxy-substituted amino and oxo derivatives of s-triazine, and there has been virtually no theoretical treatment of the data that do exist.

The UV spectra of 2,4,6-trimethoxy-s-triazine were obtained for the first time in [1, 2]. The spectra of this compound were studied in greater detail in [3]. The spectra of 2,4,6-trimethoxy-s-triazine in various solvents were presented. The spectra of other compounds of this case are not present in the literature available to us.

In this paper we present the spectra of the molecules and ions of methoxy-substituted amino and oxo derivatives of s-triazine. The molecular structures of these compounds were studied, and theoretical calculations of their electronic spectra ($\pi \to \pi^*$ and $\pi \to \pi^*$ transitions) were performed.

We obtained 2,4,6-trimethoxy-s-triazine from 2,4,6-trichloro-1,3,5-triazine and methanol; 2,4-dial-lyloxy-6-amino-s-triazine was obtained from 2,4-dichloro-6-amino-s-triazine (which was synthesized by bubbling gaseous ammonia through a solution of 2,4,6-trichloro-1,3,5-triazine in dry acetone at -10°) and allyl alcohol; 2-allyloxy-4,6-diamino-s-triazine was obtained from 2-chloro-4,6-diamino-s-triazine (which was synthesized by bubbling gaseous ammonia through a solution of 2,4,6-trichloro-s-triazine in benzene at 50°) and allyl alcohol; 2-methoxy-4,6-diamino-s-triazine was obtained from 2-chloro-4,6-diamino-s-triazine and methanol. The reactions were carried out in the presence of sodium hydroxide. All of the compounds obtained (and their intermediates) were identified from IR spectra.

The experimental data on the electronic spectra are presented in Table 1† along with the results of theoretical calculations for all of the possible compounds (including those that were not isolated).

The method of additive construction of the structures of the compounds under consideration was used for the calculations of the $\pi \to \pi^*$ and $n \to \pi^*$ transition by the methods in [5,6]. The multiplicities of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be and $C \hookrightarrow C \hookrightarrow C$ the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be and $C \hookrightarrow C \hookrightarrow C$ be and $C \hookrightarrow C \hookrightarrow C$ be and $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be a sum of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be a sum of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be a sum of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be a sum of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be a sum of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be a sum of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ be a sum of the $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C \hookrightarrow C$ and $C \hookrightarrow C$ and

To calculate the multiplicity of C:OR we used the data from the UV spectrum of 2,4,6-trimethoxy-s-triazine and calculated its structure by the method of [4]. We used the multiplicity of the C:OCH₃ bond found in this way in the calculations of the other compounds.

The multiplicity of the ring bonds and the effective charges were determined from the formula proposed in [5]:

$$q_{\mu} = \sum_{\nu} n_{\mu\nu} - Q_{\mu},$$

where q_{μ} is the effective charge of atom μ , $n_{\mu\nu}$ is the multiplicity of the $\mu-\nu$ bond, and Q_{μ} is the valence of the C, N, and O atoms (four, three, and two, respectively).

† The system proposed in [7] was used to depict the structural formulas.

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 13, No. 2, pp. 301-305, August, 1970. Original article submitted April 25, 1969; revision submitted December 25, 1969.

• 1973 Consultants Bureau, a division of Plenum Publishing Corporation, 227 West 17th Street, New York, N. Y. 10011. All rights reserved. This article cannot be reproduced for any purpose whatsoever without permission of the publisher. A copy of this article is available from the publisher for \$15.00.

TABLE 1. Electronic Spectra ($\pi \to \pi^*$ and $n \to \pi^*$ transitions) of Methoxy Derivatives of s-Triazine

		Energy, eV			Exci-	λππ*		λ	лπ*
No.	Structural formula	occupied level			ted -*	deter- calcu- mined lated			
		π	р	n	levels	I	lated	mined	lated
I	of Sections	-4,34	-3,26 -1,82 -1,36	-2,81	2,45		200		314 (N) 254 (O)
111	OCH,	-4.13	-3,05 -1,28 -0,71	-1.88	2.92		223	_	312 (N) 252 (O)
A CONTRACTOR OF THE CONTRACTOR	COVC NAC OCH3	-4,14	-2,57 -1,51 -0,67	-1,93	2,81	_	218		319 (N' 316 (N'' 258 (O)
IV	O→C OCH,	-4,84 -4,14 -3,67	-2,88 $-1,24$ $-0,71$	-1,88 -1,88 -2,81	1,90 3,15 4,12		222		317 (N) 264 (O)
V	OCH,	-3,84	2,32 0,69 0,60	-1,90	2,55		240		282 (N' 281 (N"
VI	CH ³ OCH ³	-4,89 -4,13 -4,04	$\begin{bmatrix} -3,32\\ -2,63\\ -1,25 \end{bmatrix}$	-1,88 -1,93 -2,81	2,90	_	205		319 (N' 316 (N'' 258 (O)
VII	OCH3	-5,09 -4,22 -4,05	-3,60 2-2,53 5-1,22	-1,88 -1,88 -2,81	3 1,91 3 3,05 4,15	_	208,5	<u> </u>	317 (N) 263 (O)
VIII	CH ² O. CH ³ O	-4,92 -4,00 3,75	2,56 2,18 0,67	$\begin{bmatrix} -1,88 \\ -1,95 \\ -1,95 \end{bmatrix}$	3 2,46 3 2,49 3 4,77	_	201		286 (N'
IX	CH ² 0	5,48 4,11 4,02	-2,90	0 -1,94	2,67	222	233	_	405 (N)
X	H ₁ N C N C OCH ²	-4,89 -4,13 -3,4	-1,29	-1.8	8 2,92	—	225		312 (N) 252 (O)
ΧI	H2N C C C C C C C C C C C C C C C C C C C	-4,84 -4,14 -3,67	4 -1,2	$\begin{bmatrix} -1,8\\ -1,8\\ 3\\ -2,8 \end{bmatrix}$	8 3,14		223	_	317 (N) 263 (O)
XII	H N C C N C C OCH3	-4,83 -4,14 -3,76		4 1,9	3 2,81	-	217	_	319 (N 316 (N 258 (O

Note. Table 1 continued overleaf.

TABLE 1. (Continued)

No.		Ene	rov e	• •	1			١,	•
,		Energy, eV			Exci-	λ _{ππ*}		λ _{nπ*}	
	Structural formula	п	upied 1	evel n	ted π* leveIs	deter- mined		deter- mined	calcu~ lated
XIII	H ₂ N ⁻¹ C NCH ₃	3 84	-2,33 -0,78 -0,63	L—1 88	2.55	_	238	_	282 (N') 280 (N")
XIV	NH2 NH2	-4.40	3,26 1,84 1,36	[-1,95]	2,45		205	. —	317 (N') 312 (N") 257 (O)
XV	H ₂ W C C OCH ₃	-5,03 -4,38 -4,14	-3,27 -1,84 -1,37	-1,88 -1,95 -2,81			200		314 (N') 308 (N") 254 (O)
XVI	CH30 CH3	_4 21	-3,43 -2,71 -1,29	1 93	2 72	218	205		319 (N') 316 (N") 314 (N"')
XVII	CH ₂ D CH ₃	-5,07 -4,29 -4,05	-3,61 -2,53 -1,25	—1,88 —1,88 —1,98	1,87 3,05 4,14	218	209		317 (N') 325 (N")
XVIII	CH ⁹ 0CH	-4,91 -4,01 -3,72	[-2, 18]	—1,88 3—1,93 —1,93	2,49	189	200		286 (N') 282 (N")
XIX	OCH ₃ ON CON PORT OF THE PROPERTY OF THE PROP	-4,75 -3,84 -2,73	2,34 -0,82 -0,72	—1,88 2—1,88 2—1,98	2,51 2,55 3 1,73	_	237		282 (N') 280 (N")
ХХ	H ₂ N C NH ₂	-4,15	3-3,08 5-1,30 0-0,85) 1,88	3 2,92	227	223	_	314 (N') 308 (N")
XXI		-4,88 -4,14 -3,72	-1,56	8 —1,88 6 —1,98 9 —1,98	2,79	227	217		319 (N') 316 (N") 314 (N"')
XXII	HN CONS	-4,88 -4,19 -3,69	-1,26		3,14	227	224		317 (N') 325 (N")
XXIII	OCH 3	-5,01 -4,46 -4,15	[-1,86]	0 —1,86 6 —1,9 8 —1,9	5 2,41		200	_	317 (N' 312 (N"
XXIV	© OCH3	-6,29 -4,33 -4,0	3 - 3, 2	0 —1,9 7 —1,9 5 —1,9	3 3,75	187	194	_	286 (N)

TABLE 2. Dissociation Constants of Alkoxy-Substituted Amino and Oxo Derivatives of s-Triazine

######################################	pK _a			pK _a		
<u> </u>	our data	litera- ture data	Compound	1 0+0	literature data	
2-Allyloxy-4, 6-diamino-s- triazine 2-Methoxy-4, 6-diamino-s- triazine	3,80	3,43[8]	2,4-Diallyloxy-6- amino-s-triazine 2,4,6-Trimethoxy-s- triazine	2,20 0,40	0,20[1]	

The proposed additive scheme was checked by calculation of the electronic spectra ($\pi \to \pi^*$ and n $\to \pi^*$ transitions) by the simple MO method with the system of parameters in [6, 7] and by comparison of the calculated values with the experimental results. The mean arithmetic values of the deviation was ~ 8 nm and is in agreement with the corresponding value obtained for amino and oxo derivatives of s-triazine. It can consequently by assumed that the deviations in the calculations of the spectra of other molecules and ions for which no experimental data are available do not exceed this value.

The calculations that we performed make it possible also to establish the nature of the absorption bands observed. In all cases, the calculated wavelength of the $\pi\to\pi^*$ electron transition coincides with the longest wave absorption maximum or with the distinctly expressed inflection on the absorption curve. The calculation of the $n\to\pi^*$ transitions gives considerably larger $(\lambda_{n\pi^*})_{cal}$ values and cannot be compared with the observed transitions. In the case of 2,4,6-trimethoxy-s-triazine, the inflection of the absorption curve at 222 nm detected in [3] cannot, as seen from Table 1, be ascribed to the $n\to\pi^*$ transition in view of the fact that the difference from $(\lambda_{n\pi^*})_{cal}$ is too great. A check of the wavelength of the absorption maximum of 2,4,6-trimethoxy-s-triazine confirms the results in [2]. The presence of a plateau on the absorption curve of this compound at 220-224 nm and pH 2-4 is explained by the appearance of a singly protonated ion with $\lambda_{max}=220$ nm rather than by the presence of oxidation product impurities, as proposed in [3]. This plateau coincides with the inflection on the absorption curve presented in [3] and possibly has the same nature. It should be noted that no trace was seen of the maxima or inflections on the absorption curve at 200 nm pointed out by Paoloni and Cignitti [3].

In the course of the study we determined the dissociation constants (Table 2) of 2-methoxy-4,6-di-amino-s-triazine, 2-allyloxy-4,6-diamino-5-triazine, 2,4-diallyloxy-6-amino-s-triazine, and 2,4,6-tri-methoxy-s-triazine by spectrophotometric titration.

LITERATURE CITED

- 1. E. N. Boitsov and A. I. Finkel'shtein, Opt. Spektrosk., 9, 51 (1960).
- 2. E. N. Boitsov, A. I. Finkel'shtein, and V. A. Petukhov, Opt. Spektrosk., 13, 274 (1962).
- 3. M. Cignitti and L. Paoloni, Spectr. Acta, 20, 211 (1964).
- 4. A. I. Finkel'shtein, Ts. N. Roginskaya, N. P. Shishkin, and E. M. Moncharzh, Zh. Strukt. Khim., 10, 64 (1969).
- 5. A. I. Finekl'shtein, Opt. Spektrosk., 20, 408 (1966).
- 6. A. I. Finkel'shtein, Teor. Eksperim. Khim., 1, 521 (1966).
- 7. A. I. Finkel'shtein, Zh. Fiz. Khim., 31, 1659 (1957).
- 8. J. R. Dudey, J. Am. Chem. Soc., 73, 3007 (1951).