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ABSTRACT: A series of N,O-coordinate iridium(III) complexes
with a half-sandwich motif bearing Schiff base ligands for catalytic
hydrogenation of nitro and carbonyl substrates have been
synthesized. All iridium complexes showed efficient catalytic activity
for the hydrogenation of ketones, aldehydes, and nitro-containing
compounds using clean H2 as reducing reagent. The iridium catalyst
displayed the highest TON values of 960 and 950 in the
hydrogenation of carbonyl and nitro substrates, respectively. Various
types of substrates with different substituted groups afforded corresponding products in excellent yields. All N,O-coordinate
iridium(III) complexes 1−4 were well characterized by IR, NMR, HRMS, and elemental analysis. The molecular structure of
complex 1 was further characterized by single-crystal X-ray determination.

■ INTRODUCTION
Catalytic hydrogenation of nitro-containing substrates and
ketones using transition metal catalysts attracted considerable
interest in coordination and organometallic chemistry. A
number of excellent catalytic hydrogenation systems for the
reduction of unsaturated compounds (such as olefins, ketones,
and imines) have been exploited and extensively used in
pharmaceuticals, organic synthesis, and materials science.1

Thus, the development of efficient catalysts plays an important
role for obtaining high yields and selectivity of the
corresponding products. Among different types of reported
catalysts, Group 8 and 9 transition metal complexes have been
paid much attention because of their activity and stability.
Moreover, the good solubility and stability in water of half-
sandwich transition metal complexes give the opportunity of
their catalytic application in aqueous media.2 The physical and
chemical properties of these complexes are facilely altered
through changing the substituted groups in the ligands.
Therefore, a number of transition metal complexes containing
a half-sandwich motif coordinated with various types of ligands
have been prepared and used as hydrogenation precata-
lysts.3−10

Transition metal complexes based on a half-sandwich
structure ([Cp#MCl2]2, Cp

# = Cp*, p-cymene; M = Ir, Rh,
Ru) exhibit particular features such as good stability, solubility,
and easy functionalization:11−15 (i) the half-sandwich tran-
sition metal precursors can be prepared smoothly by metal
chlorides through facile routes; (ii) Cp* or cymene ligands
shield the hemisphere of the metal center, so the subsequent
reactions of these precursors would be easily controlled; (iii)
substituted groups bonded to compounds can be readily
changed to tune the physical and chemical properties
conveniently. The advantages mentioned above made the

half-sandwich motif often used in the synthesis of organo-
metallic complexes.
Amines and alcohols are useful intermediates in fine

chemicals, the flavor industry, drug synthesis, agricultural
sciences, and so on.16−19 Reduction of ketones and nitroarenes
using stochiometric NaBH4 or LiAlH4 is an efficient method to
prepare amines and alcohols; however, a tremendous amount
of waste would be afforded in the meantime. Thus, the
transition metal catalyzed hydrogenation process of such
substrates using clean H2 reduction reagent is a more
environmentally friendly method in this area. During the past
few years, we have concentrated on the synthesis and
application of half-sandwich transition metal complexes with
different ligands because of their prominent catalytic efficiency.
Herein, several N,O-chelated mode half-sandwich iridium
complexes based on Schiff base ligands were prepared.
Experimental results indicated that hydrogenation of both
ketones and nitroarenes occurred smoothly under the catalysis
of these iridium complexes. All iridium complexes were
characterized well, and the influence on the catalytic efficiency
of the iridium complexes was inverstigated.

■ RESULTS AND DISCUSSION

Preparation of Half-Sandwich Iridium(III) Complexes
1−4. Schiff base ligands L1−L4 were obtained through the
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modification processes according to the reported method.20 A
β-Diketone intermediate was given through the interaction of
1-tetralone and HCOOEt in the presence of the strong base
tBuOK in anhydrous Et2O. Then the β-enaminoketonato
ligands were obtained through the reactions between
corresponding amines and the β-diketones in MeOH catalyzed
by HOAc. Ligands L1−L4 were finally obtained by an
oxidation reaction of β-enaminoketonato using DDQ as
oxidant (Scheme 1). The broad peak at approximately 3415
cm−1 in the IR spectra of the ligands suggests the existence of
an -OH group. Four new half-sandwich iridium complexes 1−4
containing N,O-chelate mode ligands were obtained with
moderate yields by the interaction of the ligands and iridium
precursor [Cp*IrCl2]2 promoted by NaOAc in boiling
CH3OH for 6 h (Scheme 1). Pure iridium complexes 1−4
were obtained as dark red powders and exhibited good stability
in air for several weeks in the solid state. The iridium
complexes showed good solubility in most polar solvents,
whereas they are almost insoluble in hexane and Et2O.
Elemental analysis data of the iridium complexes confirmed
their expected molecular formula. Good thermal stability of
target complexes 1−4 was confirmed by the TGA analysis (see
Supporting Information); no decomposition was found at 200
°C.
The singlet at approximately 1.40 ppm was assigned to the

protons of the C5Me5 group. The characteristic band at 1410−
1430 cm−1 in the IR spectra of the iridium complexes 1−4 can
be assigned to the signals of the CN groups of the Schiff
base ligand. Compared with the CN bond vibrations at
approximately 1460−1485 cm−1 of the ligands, these signals
shifted to lower wavenumbers (1450−1480 cm−1) possibly
caused by the coordination between the Ir(III) center and the
N donor. The coordination interaction of the iridium
complexes could increase the back bonding ability of Ir(III)
to the imine bond, and consequently, the electron density on
the iridium atom was increased.21 All spectroscopy data of the
iridium complexes 1−4 indicate their structural similarity.
Molecular Structure of Half-Sandwich Iridium Com-

plex. To elaborate the exact structure of the obtained half-
sandwich iridium complex, single-crystal X-ray analysis has
been carried out. Qualified single crystals of complex 1 were
obtained by the liquid diffusion method between n-hexane and
a solution of complex 1 in CH2Cl2. The molecular structure of
complex 1 is shown in Figure 1. Selected geometric data are
given in Table 1, and detailed bond lengths and angles are
summarized in the caption of Figure 1. The iridium complex
exhibited an expected distorted-octahedral environment in
which the metal center was chelated by the N, O, and Cl

atoms. The excellent stability of the iridium complex may be
caused by the formation of the Ir(1)−O(1)−C(1)−C(10)−
C(11)−N(1) six-membered ring. The bond lengths of Ir(1)−
N(1) and Ir(1)−O(1) of 2.083(4) Å and 2.074(4) Å,
respectively, are both located in the normal range of known
values.22 The Ir(1)−Cl(1) distance of 2.4255(12) Å is similar
to that of the analogous complex.22 The crystal stacking
structure of complex 1 does not exhibit any hydrogen bond
between molecules.

Catalytic Hydrogenation of Carbonyl Substrates by
Iridium Complexes. The catalytic hydrogenation activity of
these iridium complexes in the carbonyl compounds’ reduction
with H2 as reductive reagent was investigated. Hydrogenation
of acetophenone was monitored as the sample to screen the
optimal condition. The reaction was carried out at 80 °C with
0.1 mol % catalyst loading in MeOH. The product yields
increased from 22% to 96% over 8 h along with the reaction
pressure (Table 2, entries 1−5). Six atmospheres is proper for
the hydrogenation process, and a further increase of the
pressure showed little influence on the hydrogenation process
(Table 2, entries 4 and 5). The corresponding alcohol was
afforded in good yields at 60 °C for 6 h; however, low
conversion was obtained when the catalytic reaction was
carried out at room temperature (Table 2, entries 6−10). The
reaction gave the best results in MeOH after screening
different solvents such as toluene, DMF, THF, and DMSO
(Table 2, entries 11−14). The hydrogenation process worked
sluggishly in water probably because of the poor solubility of
substrate in water (Table 2, entry 15). The product was
furnished in 68% yield when 0.05 mol % catalyst loading was

Scheme 1. Synthesis of N,O-Chelate Half-Sandwich Iridium Complexes 1−4

aReaction conditions: (i) 1-tetralone (1.0 equiv), HCOOEt (1.5 equiv), tBuOK (1.5 equiv), 0 °C, 30 min; (ii) aromatic amines (1.1 equiv), HOAc
(3 drops), 4 Å MS (0.1 g), MeOH, reflux, 12 h; (iii) DDQ (1.2 equiv), 1,4-dioxane, reflux, 1 h; (iv) [Cp*IrCl2]2 (0.5 equiv), NaOAc (2.0 equiv),
CH3OH, reflux, 6 h.

Figure 1. Molecular structure of 1 with thermal ellipsoids drawn at
the 30% level. All hydrogen atoms are omitted for clarity. Selected
bond lengths (Å) and angles (deg): Ir(1)−N(1), 2.083(4); Ir(1)−
O(1), 2.074(4); Ir(1)−Cl(1), 2.4255(12); C(11)−N(1), 1.294(6);
C(1)−O(1), 1.299(6); O(1)−Ir(1)−N(1), 87.82(14); O(1)−Ir(1)−
Cl(1), 86.89(11); Cl(1)−Ir(1)−N(1), 84.09(11); Ir(1)−O(1)−
C(1), 128.6(3); Ir(1)−N(1)−C(11), 126.2(3).
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used in the reaction (Table 2, entry 16). All the iridium
complexes were used in the hydrogenation reaction under the
optimal conditions and little differences of catalytic activity
were observed (Table 2, entries 17−19). Little product was
found when the reaction was carried out under the catalysis of
[Cp*IrCl2]2 or in the absence of the catalyst (Table 2, entries
20 and 21).
We subsequently investigated the generality of the reaction

after the optimal conditions were obtained. A survey of various
types of ketones and aldehydes was investigated in the
hydrogenation process. Generally, all aromatic substrates
reacted well in such conditions, and the corresponding
aromatic alcohols were furnished in excellent yields (Table 3,
5a−5p). A stereoselectivity study was carried out by employing
ortho-, meta-, and para-methylacetophenone in the reaction
aiming to elaborate the influence of the substituent position on
the catalysis; to our delight, all reactions occurred smoothly
under such conditions (Table 3, 5e−g). High yields of the
alcohols were also observed when bulky substituent bonded
substrates were used in the reaction (Table 3, 5l and 5m).
Additionally, heteroaromatic aldehydes with pyridine and furan
moieties were reduced efficiently under catalysis of iridium
complex 1 (Table 3, 5q and 5r). In comparison with the
aromatic substrates, aliphatic aldehydes and ketones were less
reactive and their hydrogenation process required harsh
conditions such as higher temperature and longer reaction
time to get good results (Table 3, 5s−5u). The catalytic
system showed high efficiency on the hydrogenation of the
carbonyl group, whereas the ester group was intact in the
reaction (Table 3, 5u).
The interaction between the iridium catalyst and H2 was

monitored to explore the plausible mechanism of this reaction.

Table 1. Crystallographic Data and Structure Refinement
Parameters for 1a

1

Chemical Formula C27H27ClIrNO
FW 609.14
T/K 173(2)
λ/Å 0.71073
Crystal system Monoclinic
Space group P2(1)/n
a/Å 8.1257(3)
b/Å 12.3595(6)
c/Å 23.0291(11)
α/deg 90
β/deg 92.595(2)
γ/deg 90
V/Å3 2310.43(18)
Z 4
ρ/Mg m−3 1.751
μ/mm−1 5.914
F(000) 1192
θ range/deg 2.419−26.817
Reflections collected 66015
Data/restraints/param 4930/0/285
Goodness-of-fit on F2 1.069
Final R indices [I > 2σ(I)a] R1 = 0.0340

wR2 = 0.0963
Largest diff.peak/hole (e Å−3) 1.314/−1.807

aR1 =∑||Fo| − |Fc||/∑|Fo| (based on reflections with Fo
2 > 2σF2). wR2

= [∑[w(Fo
2 − Fc

2)2]/∑[w(F0
2)2]]1/2; w = 1/[σ2(Fo

2) + (0.095P)2];
P = [max(Fo

2, 0) + 2Fc
2]/3 (also with Fo

2 > 2σF2).

Table 2. Catalytic Hydrogenation of Acetophenone under Catalysis of Iridium Complexes 1−4a

entry Cat.(mol %) T/°C H2/atm Time/h Solvent Yield/%b TON TOF

1 1 (0.1) 80 1 8 MeOH 22 220 27.5
2 1 (0.1) 80 2 8 MeOH 39 390 48.8
3 1 (0.1) 80 4 8 MeOH 72 720 90.0
4 1 (0.1) 80 6 8 MeOH 96 960 120.0
5 1 (0.1) 80 8 8 MeOH 96 960 120.0
6 1 (0.1) 60 6 8 MeOH 96 960 120.0
7 1 (0.1) 40 6 8 MeOH 61 610 76.3
8 1 (0.1) rt 6 8 MeOH 15 150 18.8
9 1 (0.1) 60 6 6 MeOH 95 950 158.3
10 1 (0.1) 60 6 3 MeOH 69 690 230.0
11 1(0.1) 60 6 6 toluene 53 530 88.3
12 1 (0.1) 60 6 6 DMF 77 770 128.3
13 1 (0.1) 60 6 6 THF 38 380 63.3
14 1 (0.1) 60 6 6 DMSO 71 710 118.3
15 1 (0.1) 60 6 6 H2O 42 420 70.0
16 1 (0.05) 60 6 6 MeOH 68 1360 226.7
17 2 (0.1) 60 6 6 MeOH 95 950 158.3
18 3 (0.1) 60 6 6 MeOH 93 930 155.0
19 4 (0.1) 60 6 6 MeOH 93 930 155.0
20 60 6 6 MeOH
21 [Cp*IrCl2]2 60 6 6 MeOH trace

aReaction conditions: an autoclave was charged with the catalyst and solvent (2.0 mL), followed by acetophenone (1.0 mmol) under Ar. The
autoclave was then charged with H2 and heated in an oil bath. bYield was determined by GC analysis.
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The NMR tube containing a dry C6D6 solution of complex 1
was charged with H2 (6 atm). Then the mixture was reacted at
60 °C and a singlet was observed at very high field, which
suggests the generation of metal hydride intermediates.23 We
speculate that the loss of chloride ligand occurred under high
H2 pressure atmosphere at elevated temperature. A similar
phenomenon was observed in the ruthenium complex
catalyzed hydrogenation process.24 It was concluded from
the condition screening stage that the catalytic hydrogenation
process benefits from higher reaction pressure. Figure 2

indicates a linear correlation between reaction pressure and
conversions, suggesting H2 heterolytic cleavage and the
formation of the metal hydrides are possibly involved in the
rate-determining step of this catalytic reaction.
The plausible catalytic mechanism was proposed based on

the results mentioned above. The heterolytic cleavage of H2
induced by iridium catalyst occurred to give the iridium
hydride intermediate under high pressure and elevated reaction
temperature. The catalytic hydrogenation cycle is composed of
the following steps: (i) reversible coordination of H2 to the
iridium complex; (ii) turnover-limiting heterolytic cleavage of
H2 to give the Ir−H intermediate and the addition of the
proton to the carbonyl group; (iii) transfer of the hydride to
the carbon atom of the oxonium cation (Figure 3).25,26

Catalytic Hydrogenation of Nitro-Containing Com-
pounds. Reduction of nitroarenes represents a direct and
efficient route to synthesize amines in various types of
synthetic methodologies.27 The catalytic efficiency of complex
1 in nitroarenes’ hydrogenation was also investigated.
Fortunately, hydrogenation of nitroarenes occurred smoothly
in the presence of iridium catalyst 1 under the optimal
conditions mentioned above. The electronic effects of the
substituents do not exhibit an obvious influence on the
catalytic efficiency; corresponding amines were all given in
moderate to good yields (Table 4, 6a−6l). However, reduction
of substrates with steric hindrance groups such as 2,6-
diisopropylnitrobenzene was not good and 2,6-diisopropylani-
line was furnished with lower yield (Table 4, 6m). Unsaturated
groups such as -CN, -COOR, and COOH were intact under
such conditions, which indicated the high selectivity of this
reaction (Table 4, 6e, 6k, and 6l). A lower yield of 4-
aminobenzoic acid was probably caused by the instability of

Table 3. Catalytic Hydrogenation of Carbonyl Substratesa

aReaction conditions: an autoclave was charged with complex 1 (0.1 mol %) and MeOH (2.0 mL), followed by ketone (1 mmol). The autoclave
was then charged with H2 (6 atm). Six hours at 60 °C in an oil bath. Yield was determined by GC analysis. Isolated yields (%) are provided in
parentheses. bReaction conditions: 80 °C, 12 h.

Figure 2. Influence of H2 pressure on the catalytic hydrogenation
process. Reaction conditions: 1.0 mmol of acetonphenone, 0.1 mol %
of iridium catalyst 1, H2, 60 °C for 1 h. The conversion was
determined by GC.
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the iridium catalyst in acidic conditions (Table 4, 6l). Aliphatic
substrate displayed slightly low reactivity in the catalytic
hydrogenation process (Table 4, 6n and 6o). Moreover,
reactions of polynitro compounds gave positive results (Table
4, 6p−6r).

■ CONCLUSIONS
In summary, a series of N,O-chelate half-sandwich iridium
complexes based on Schiff-containing Schiff base ligands have
been prepared and characterized. Such air-stable complexes
exhibit good and diverse catalytic hydrogenation activity for
carbonyl and nitro-containing compounds by using clean H2 as
the reduce reagent. Various types of substrates with different
substituted groups afforded corresponding products in
excellent yields under optimal conditions. Experimental results
indicate that metal hydride formation is the rate-determining
step in the catalytic hydrogenation process. Further study of

the effect of the catalytic system on other hydrogenation
processes is currently underway.

■ EXPERIMENTAL SECTION
General Data. All manipulations were performed under an

atmosphere of nitrogen using standard Schlenk techniques. Chemicals
were used as commercial products without further purification. 1H
NMR (500 MHz) spectra were measured with a Bruker DMX-500
spectrometer. Elemental analysis was performed on an Elementar
vario EL III analyzer. IR (KBr) spectra were measured with the
Nicolet FT-IR spectrophotometer. Electrospray ionization mass
spectrometry was carried out on a Waters API Quattro Micro triple
quadrupole mass spectrometer in the positive ion mode.

Synthesis of Schiff Base Ligands L1−L4. tBuOK (6.5 g, 1.5 equiv),
1-tetralone (8.8 g, 40.0 mmol), and ethyl formate (5.8 g, 2.0 equiv)
were stirred at 0 °C in ethyl ether (100 mL) for 30 min. Then the
reaction mixture was warmed to room temperature and stirred for
another 10 h. The precipitate was filtered and washed by Et2O (20
mL); then the crude product was dried under vacuum. HCOOH was
added to the product until pH < 7. Then aromatic amine (1.0 equiv)
was added to the acidic solution, and the mixture was stirred for 24 h
to generate the corresponding β-enaminoketonato as a yellow solid.
The obtained β-enaminoketonato was mixed with DDQ (1.1 equiv),
and the mixture was refluxing in dioxane for 1 h. The reaction was
then monitored by TLC. Column chromatography of the crude
products (PE: EA = 6:1) gave L1−L4 in good yields.

L1. White solid, 63% isolated yield. 1H NMR (500 MHz, CDCl3):
δ 14.89 (s, 1H), 8.47 (d, J = 8.1 Hz, 1H), 8.40 (d, J = 5.4 Hz, 1H),
7.65 (d, J = 7.9 Hz, 1H), 7.59 (t, J = 7.3 Hz, 1H), 7.50−7.42 (m, 3H),
7.34 (d, J = 7.8 Hz, 2H), 7.28 (s, 1H), 7.14 (d, J = 8.7 Hz, 1H), 7.01
(d, J = 8.7 Hz, 1H) ppm. IR (KBr, disk): υ 3423, 1668, 1545, 1530,
1472, 1356, 752 cm−1. Elemental analysis calcd (%) for C17H13NO: C
82.57, H 5.30, N 5.66, found: C 82.65, H 5.38, N 5.60.

L2. White solid, 67% isolated yield. 1H NMR (500 MHz, CDCl3):
δ 8.49−8.35 (m, 2H), 7.68 (d, J = 8.0 Hz, 1H), 7.59 (t, J = 7.0 Hz,
1H), 7.49 (t, J = 7.2 Hz, 1H), 7.39 (d, J = 8.7 Hz, 2H), 7.29−7.26 (m,
1H), 7.25 (s, 1H), 7.18 (d, J = 8.7 Hz, 1H), 7.10 (d, J = 8.7 Hz, 1H)
ppm. IR (KBr, disk): υ 3450, 1625, 1575, 1533, 1485, 1302, 755
cm−1. Elemental analysis calcd (%) for C18H15NO: C 82.73, H 5.79,
N 5.36, found: C 82.68, H 5.72, N 5.41.

Figure 3. Possible mechanism of the catalytic hydrogenation process.

Table 4. Catalytic Hydrogenation of Nitro Substratesa

aReaction conditions: an autoclave was charged with complex 1 (0.1 mol %) and MeOH (2.0 mL), followed by nitroarenes (1 mmol). The
autoclave was then charged with H2 (6 atm). Six hours at 60 °C in an oil bath. Yield was determined by GC analysis. Isolated yields (%) are
provided in parentheses.
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L3. White solid, 65% isolated yield. 1H NMR (500 MHz, CDCl3):
δ 8.45 (d, J = 8.1 Hz, 2H), 7.69 (d, J = 7.9 Hz, 1H), 7.62−7.54 (m,
3H), 7.50 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 8.7 Hz, 3H), 7.11 (d, J = 8.7
Hz, 1H) ppm. IR (KBr, disk): υ 3425, 1606, 1561, 1513, 1460, 1363,
1271, 759 cm−1. Elemental analysis calcd (%) for C17H12ClNO: C
72.47, H 4.29, N 4.97, found: C 72.55, H 4.32, N 5.03.
L4. White solid, 59% isolated yield. 1H NMR (500 MHz, CDCl3):

δ 8.47 (d, J = 8.1 Hz, 1H), 8.39 (s, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.58
(t, J = 7.5 Hz, 1H), 7.47 (t, J = 7.5 Hz, 1H), 7.24 (s, 4H), 7.14 (d, J =
8.7 Hz, 1H), 7.01 (d, J = 8.7 Hz, 1H), 2.38 (s, 3H) ppm. IR (KBr,
disk): υ 3439, 1630, 1556, 1470, 1308, 1263, 1125, 765 cm−1.
Elemental analysis calcd (%) for C17H12BrNO: C 62.60, H 3.71, N
4.29, found: C 62.65, H 3.73, N 4.25.
Synthesis of Half-Sandwich Iridium Complexes 1−4. A mixture

of [Cp*IrCl2]2 (0.1 mmol), NaOAc (0.4 mmol), and Schiff base
ligands L1−L4 (0.2 mmol) was stirred at 65 °C in 10 mL of methanol
for 6 h. The mixture was filtered and evaporated to give the crude
products which were further purified by silica gel column
chromatography (PE:EA = 4:1) to afford the half-sandwich iridium
complexes.
1. Red solid, 57% isolated yield. 1H NMR (500 MHz, CDCl3): δ

8.64 (d, J = 8.2 Hz, 1H), 8.05 (s, 1H), 7.68 (d, J = 7.7 Hz, 2H), 7.54
(dd, J = 13.4, 6.4 Hz, 2H), 7.42−7.33 (m, 4H), 7.04 (d, J = 8.6 Hz,
1H), 6.82 (d, J = 8.7 Hz, 1H), 1.38 (s, 15H) ppm. 13C NMR (125
MHz, CDCl3): δ 162.5, 159.6, 155.9, 137.8, 130.3, 129.7, 128.8,
128.4, 127.3, 126.9, 125.9, 125.2, 124.7, 114.5, 113.1, 86.0, 8.6 ppm.
IR (KBr, disk): υ 1755, 1636, 1574, 1506, 1422, 1359, 769 cm−1.
Elemental analysis calcd (%) for C27H27NOClIr: C 52.23, H 4.47, N
2.30, found: C 52.28, H 4.49, N 2.23. HRMS calcd for [M−Cl]+: m/z
574.1722; found: 574.1729.
2. Red solid, 60% isolated yield. 1H NMR (500 MHz, CDCl3): δ

8.63 (d, J = 8.3 Hzs, 1H), 7.99 (s, 1H), 7.66 (d, J = 8.6 Hz, 2H), 7.55
(d, J = 6.9 Hz, 2H), 7.37 (t, J = 7.3 Hz, 3H), 7.02 (d, J = 8.7 Hz, 1H),
6.82 (d, J = 8.7 Hz, 1H), 1.40 (s, 15H) ppm. 13C NMR (125 MHz,
CDCl3): δ 162.7, 159.6, 154.4, 137.9, 132.4, 130.2, 129.6, 128.9,
128.4, 127.3, 126.6, 125.9, 124.8, 114.8, 113.1, 86.1, 8.7 ppm. IR
(KBr, disk): υ 1715, 1652, 1563, 1485, 1410, 1358, 856, 763 cm−1.
Elemental analysis calcd (%) for C28H29NOClIr: C 53.96, H 4.69, N
2.25, found: C 54.03, H 4.65, N 2.29. HRMS calcd for [M−Cl]+: m/z
588.1878; found: 588.1870.
3. Red solids, 61% isolated yield. 1H NMR (500 MHz, CDCl3): δ

8.62 (d, J = 8.2 Hz, 1H), 7.99 (s, 1H), 7.59 (t, J = 7.0 Hz, 3H), 7.53
(dd, J = 10.8, 5.7 Hz, 3H), 7.39 (d, J = 6.3 Hz, 1H), 7.02 (d, J = 8.7
Hz, 1H), 6.82 (d, J = 8.7 Hz, 1H), 1.40 (s, 15H) ppm. 13C NMR (125
MHz, CDCl3): δ 162.8, 159.5, 154.8, 137.9, 131.4, 130.2, 129.6,
128.9, 127.3, 126.9, 125.9, 124.8, 120.3, 114.8, 113.1, 86.0, 8.7 ppm.
IR (KBr, disk): υ 1745, 1634, 1555, 1502, 1419, 1354, 863, 755 cm−1.
Elemental analysis calcd (%) for C27H26Cl2NOIr: C 50.39, H 4.07, N
2.18, found: C 50.33, H 4.11, N 2.25. HRMS calcd for [M−Cl]+: m/z
608.1332; found: 608.1341.
4. Red solids, 66% isolated yield. 1H NMR (500 MHz, CDCl3): δ

8.64 (d, J = 8.2 Hz, 1H), 8.02 (s, 1H), 7.57−7.53 (m, 4H), 7.37 (t, J =
7.1 Hz, 1H), 7.17 (d, J = 8.0 Hz, 2H), 7.04 (d, J = 8.6 Hz, 1H), 6.82
(d, J = 8.6 Hz, 1H), 2.40 (s, 3H), 1.38 (s, 15H) ppm. 13C NMR (125
MHz, CDCl3): δ 162.3, 159.4, 153.7, 137.8, 136.6, 130.4, 129.6,
128.9, 128.7, 127.3, 125.9, 124.9, 124.6, 114.4, 113.1, 86.0, 21.0, 8.6
ppm. IR (KBr, disk): υ 1723, 1600, 1574, 1504, 1430, 1356, 871, 765
cm−1. Elemental analysis calcd (%) for C27H26BrNOClIr: C 47.13, H
3.81, N 2.04, found: C 47.18, H 3.87, N 1.96. HRMS calcd for [M−
Cl]+: m/z 652.0827; found: 652.0833.
General Procedure for Catalytic Hydrogenation of Carbonyl

Substrates. In a typical run, the substrate (1.0 mmol), iridium
complex 1 (0.1 mol %), and MeOH (2 mL) were charged in a 5 mL
vial with a magnetic bar. The vial was then transferred to an autoclave.
The autoclave was purged with H2 (6 atm) via three cycles. The
autoclave was heated to 60 °C. After stirring for 6 h, the autoclave was
cooled and the pressure was slowly released. The resultant mixture
was extracted with diethyl ether (2 × 5 mL) and dried over anhydrous
Na2SO4. Solvent was evaporated under vacuum. The residue was
dissolved in hexane and analyzed by GC-MS.

General Procedure for Catalytic Hydrogenation of Nitro-
arenes. In a typical run, the substrate (1.0 mmol), iridium complex 1
(0.1 mol %), and MeOH (2 mL) were charged in a 5 mL vial with a
magnetic bar. The vial was then transferred to an autoclave. The
autoclave was purged with H2 (6 atm) via three cycles. The autoclave
was heated to 60 °C. After stirring for 6 h, the autoclave was cooled
and the pressure was slowly released. The resultant mixture was
extracted with diethyl ether (2 × 5 mL) and dried over anhydrous
Na2SO4. Solvent was evaporated under vacuum. The residue was
dissolved in hexane and analyzed by GC-MS.

X-ray Crystallography. Diffraction data of 1 were collected on a
Bruker Smart APEX CCD diffractometer with graphite-monochro-
mated Mo Ka radiation (λ = 0.71073 Å). All the data were collected
at room temperature, and the structures were solved by direct
methods and subsequently refined on F2 by using full-matrix least-
squares techniques (SHELXL).28 SADABS29 absorption corrections
were applied to the data, all non-hydrogen atoms were refined
anisotropically, and hydrogen atoms were located at calculated
positions. All calculations were performed using the Bruker program
Smart.
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