This article was downloaded by: [Monash University Library] On: 19 August 2013, At: 18:43 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lsyc20

Reductive Ring-Opening Reaction of 2,3-Epoxy-1,4-butanediones with SbCl₃-Bu₄NI in the Presence of Na₂S₂O₃· 5H₂O

Shinsei Sayama^a

^a Department of Chemistry, Fukushima Medical University, Hikariga-oka, Fukushima, Japan Published online: 18 Aug 2006.

To cite this article: Shinsei Sayama (2005) Reductive Ring-Opening Reaction of 2,3-Epoxy-1,4-butanediones with SbCI₃-Bu₄NI in the Presence of Na₂S₂O₃· 5H₂O, Synthetic Communications: An International Journal for Rapid Communication of Synthetic Organic Chemistry, 35:16, 2115-2124

To link to this article: <u>http://dx.doi.org/10.1080/00397910500180121</u>

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and

are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

Reductive Ring-Opening Reaction of 2,3-Epoxy-1,4-butanediones with SbCl₃-Bu₄NI in the Presence of Na₂S₂O₃ · 5H₂O

Shinsei Sayama

Department of Chemistry, Fukushima Medical University, Hikariga-oka, Fukushima, Japan

Abstract: 1,4-Disubstituted 2,3-epoxy-1,4-butanediones were converted to 1,4disubstituted 2-hydroxy-1,4-butanediones with SbCl₃-Bu₄NI in the presence of Na₂S₂O₃ · 5H₂O. The ring opening of terminal epoxides can also be accomplished to afford the corresponding haloalcohol with SbCl₃ and tetrabutylammonium halides, Bu₄NX (X = Cl, Br, I) under the same reaction conditions.

Keywords: Antimony(III) chloride, 2,3-epoxy-1,4-butanedione, haloalcohol, tetrabutylammonium halide

Epoxides have been recognized as important intermediates in organic synthesis. In particular, the ring-opening of epoxides is a key reaction for the synthesis of marine natural products containing haloalcohol and polyalcohol moieties.^[1] Therefore, regio- and stereoselective ring-opening reactions of epoxides were accomplished with various reagents and are still considered an intriguing study area.^[1-4]

A variety of reductive reagents, such as LiAlH₄, NaBH₄, LiBH₄, BH₃, H₂/Raney Ni, and Li/NH₃, have been known to be useful for the reductive ring-opening of epoxides to alcohols.^[2] Furthermore various metal halides, such as SmI₂, InCl₃, InBr₃, CeCl₃, MgBr₂, and SmCl₃, were used in the regio- and stereoselective ring-opening reaction of epoxides.^[2,3]

Received in Japan February 13, 2005

Address correspondence to Shinsei Sayama, Department of Chemistry, Fukushima Medical University, Hikariga-oka, Fukushima 960-1295, Japan. E-mail: ssayama@fmu.ac.jp

Selective azidolysis and conversion into haloalcohols of epoxides both were accomplished in the presence of quaternary ammonium halides Bu_4NX (X = F, Cl, Br, I).^[4]

On the other hand, combinations of complex metal hydrides (LiAlH₄, NaBH₄) and antimony halides (SbCl₃, SbBr₃) were reported to be more effective for the conjugate reduction of 2-butene-1,4-diones and the reductive debromination of aromatic α -bromo ketones in comparison with those of complex metal hydrides and other metal halides (AlCl₃, CuCl₂, FeCl₃) in previous papers.^[5] Antimony halides are more effective for organic synthesis and are easier to handle than other metal halides, such as AlCl₃ and TiCl₄. Moreover, the epoxidation of 2-butene-1,4-diones was also reported in a previous paper to be in the presence of a catalytic amount of BuN₄I.^[6] Therefore, there has been much interest in the effect of the use of antimony(III) halide in the presence of quaternary ammonium halides for the reductive ring-opening reaction of 2,3-epoxy-1,4-butanediones.^[7] In this article, we report the results of our studies concerning the ring-opening reaction of various epoxides with SbCl₃-Bu₄NX (X = Cl, Br, I).

The ring-opening reaction of cis-1,4-diphenyl-2,3-epoxy-1,4-butanedione (1), chosen as a representative 2,3-epoxy-1,4-butanedione for this study, with SbCl₃-Bu₄NI in various stoichiometric ratios was carried out in the presence of Na₂S₂O₃ · 5H₂O. The results are summarized in Table 1. Epoxybutanedione 1 was mostly recovered unchanged at the molar ratio of 1, Bu_4NI , $Na_2S_2O_3 \cdot 5H_2O$, and $SbCl_3$ (1:1:1.8:0.2, run 1). A mixture of hydroxydiketone 2 and hydroxyenedione 3 was obtained even in the presence of 2.0 molar equivalents of Bu_4NI over 1 (run 2). Because the yields of hydroxydiketones 2 and 3 were not satisfactory in the presence of a catalytic amount of $SbCl_3$, the reaction of epoxydiketone 1 was carried out with 1.0-2.0 molar equivalents of SbCl₃ over 1. At less than 2.0 molar equivalents of SbCl₃ and Bu₄NI over 1, hydroxydiketone 2 was not obtained in high yields (runs 3-5). At the 2.0 molar equivalents of $SbCl_3$ and Bu_4NI over 1, epoxydiketone 1 was converted to hydroxydiketone 2 in good yield (run 6), whereas at less than equimolar of Bu₄NI over SbCl₃, hydroxydiketone 2 was not afforded in good yields (runs 7 and 8). Therefore, the reaction of epoxydiketone 1 with 3.0 molar equivalents of SbCl₃ and Bu₄NI over **1** was expected to give hydroxydiketone 2 in satisfactory yield. At 3.0 molar equivalents of SbCl₃ and Bu₄NI over 1, hydroxydiketone 2 was obtained in the expected 90% yield (run 9). Furthermore, the yield of 2 was also satisfactory at excess molar equivalents of Bu₄NI over SbCl₃ (run 10). Subsequent experiments were carried out to clarify the effect of SbCl₃, Bu_4NI , and $Na_2S_2O_3 \cdot 5H_2O$. Epoxydiketone 1 was recovered unchanged only with 4.0 molar equivalents of $SbCl_3$ over 1 in the presence of $Na_2S_2O_3 \cdot 5H_2O$ (run 11). Epoxydiketone 1 was also recovered unchanged only with 4.0 molar equivalents of Bu_4NI over 1 in the presence of $Na_2S_2O_3 \cdot 5H_2O$ (run 12). In the absence of $Na_2S_2O_3 \cdot 5H_2O$, the yield of 2 with SbCl₃ and Bu₄NI was not fully satisfactory, accompanied by *cis*-enedione 5 (2: 43%, 5: 49%). The reaction of epoxydiketone 1 even

Reductive Ring-Opening of Epoxides

Table 1. Reductive ring-opening reaction of *cis*-1,4-diphenyl-2,3-epoxy-1,4-butanedione 1 with SbCl₃-Bu₄NI in THF at $0-23^{\circ}C^{a}$

	Molar ratio/1				Yield (%)	$b)^b$	
Run	SbCl ₃	Bu ₄ NI	2	3	4	5	1
1	0.2	1.0	8	8	_		83
2	0.2	2.0	28	54			
3	1.0	2.0	46	_	2	8	33
4	1.5	0.5	52	3	5	3	18
5	1.5	1.0	59	5	10		22
6	2.0	2.0	83	12	3	_	_
7	3.0	1.0	37	6	2	_	45
8	3.0	2.0	63	7	5	4	7
9	3.0	3.0	90		3	3	
10	3.0	4.0	90				
11	4.0						99
12	—	4.0		_	—		98

^{*a*}**1**: 0.4 mmol; THF: 15 mL; in the presence of $Na_2S_2O_3 \cdot 5H_2O$ (0.72 mmol); time: 65 h.

^bIsolated products were purified by column chromatography on silica gel. Yields were also determined by ¹H NMR analysis of crude products.

with SbBr₃-Bu₄NI instead of SbCl₃-Bu₄NI in the absence of Na₂S₂O₃ · 5H₂O did not afford hydroxydiketone **2** for 65 h at room temperature (recovered **1**: 60%, **5**: 30%). Hydroxydiketone **2** was predominantly obtained in the reductive ring opening of epoxydiketone **1** with SbCl₃-Bu₄NI in the presence of Na₂S₂O₃ · 5H₂O for 19 h at room temperature, but with a less satisfactory yield of **2** (64%) along with recovered **1** (31%). Accordingly, the optimum conditions for the reductive ring-opening of 2,3-epoxy-1,4-butanedione are as follows. The combination of SbCl₃ and Bu₄NI was found to be essential for reductive ring-opening of 2,3-epoxy-1,4-butanedione in the presence of Na₂S₂O₃ · 5H₂O.^[7] It needs about three molar equivalents of SbCl₃ and Bu₄NI over 2,3-epoxy-1,4-butanedione to give hydroxy-1,4-butanedione in high yield. Prolonged reaction time of more than 48–60 h is needed to obtain **2** in nearly quantitative yield at room temperature.

To clarify the effect of the combination of SbCl₃ and Bu₄NI in the presence of $Na_2S_2O_3 \cdot 5H_2O$ for the reductive ring opening of **1** to **2**, the reaction of epoxydiketone **1** was carried out with other metal halides and iodo compounds. Epoxydiketone **1** was recovered unchanged in greater than over 50% yields with other metal halides (AlCl₃, CuCl₂, FeCl₃)-Bu₄NI in the presence of $Na_2S_2O_3 \cdot 5H_2O$. Moreover, hydroxydiketone **2** was not afforded in good yields with the combination of SbCl₃ and I₂ or KI instead of Bu₄NI. Thus, the combination of SbCl₃ and Bu₄NI was found to be more effective for the reductive ring-opening reaction of epoxydiketone **1** to hydro-xydiketone **2** than those of other metal halides—Bu₄NI or SbCl₃—other iodo reagents.

The reductive ring-opening reaction of various aromatic and aliphatic 2,3epoxy-1,4-diones was carried out to elucidate the application of the combination SbCl₃ and Bu₄NI system. The results are shown in Table 2. The reaction of *trans*-1,4-diphenyl-2,3-epoxy-1,4-butanedione (**6**) and ethyl 3-benzoyl-2,3-epoxypropionate (**7**) also took place to give the corresponding 2-hydroxy-1,4-diones (**2**, **8**) in good yields under the same reaction conditions (runs 1 and 2). *trans*-2,3-Epoxy-1-phenyl-1,4-pentanedione (**9**) was similarly converted to a mixture of 3-hydroxy- and 2-hydroxy-1-phenyl-1,4-pentanediones (**10**, **11**, run 3). *trans*-3,4-Epoxy-2,5-decanedione (**12**) was also converted to a 1:1 mixture of 3-hydroxy- and 4-hydroxy-2,5-decanediones (**13**, **14**) in good yields (run 4). Thus, the combination of SbCl₃ and Bu₄NI was ascertained to be useful for the reductive ring opening of 2,3-epoxy-1,4-diones to hydroxy-1,4-diones.

To examine the limitations and chemoselectivity for the reductive ring opening of epoxides with the combination of SbCl₃ and quaternary ammonium halides (Bu₄NX: X = I, Br, Cl) system, the reaction of various epoxides was carried out under the same reaction conditions. The results are shown in Table 3. At first, the reaction of epoxydiketone $\mathbf{6}$ was carried out SbCl₃-Bu₄NX (X = Br, Cl). Epoxydiketone **6** was recovered with unchanged, respectively. Bu₄NI also turned out to be the most useful for reductive ring opening of **6** in quaternary ammonium halides Bu_4NX (X = I, Br, Cl, runs 1 and 2). On the other hand, unexpectedly, carvone oxide (15) was converted to the respective haloalcohols 16-18 with SbCl₃-Bu₄NX (X = I, Br, Cl, runs 3-5). These results suggested that the reductive ringopening reaction did not occur in terminal epoxides such as carvone oxide even with SbCl₃-Bu₄NI. To show the transformation of terminal epoxides to haloalcohols with this method, the reaction of 10, 11-epoxy-1-undecanol (19) was examined under the same reaction conditions. Terminal epoxide 19 was converted to the corresponding haloalcohols 20-22 as expected (runs 6–8). Consequently, the SbCl₃-Bu₄NX (X = I, Br, Cl) systems were found to be useful and regioselective methods for converting terminal epoxides into respective haloalcohols. The reaction of aliphatic cyclic epoxides (23, **25**) was also carried out to examine the limitations and chemoselectivity of this system. α -Ionone oxide 23 was not converted to iodoalcohol 24 in high

Reductive Ring-Opening of Epoxides

Table 2.	Reductive	ring-opening	reaction	of trans-2,3-	-epoxy-1,4-butanedion	e with
SbCl ₃ -Bu ₄	NI in THF	at $0-23^{\circ}C^{a}$				

$R^{1} \xrightarrow{O}_{O} R^{2} \xrightarrow{SbCl_{3} / Bu_{4}NI}_{THF} R^{1} \xrightarrow{O}_{O} H^{2} R^{2}$							
	Substrates		Products				
Run	R^1	R^2	(S)	R^1	\mathbb{R}^2	(a)	Yield/% ^b
1	Ph	Ph	6	Ph	Ph	2	90
2	Ph	OEt	7	Ph	OEt	8	96
3	Ph	Me	9	Ph	Me	10	55
				Me	Ph	11*	27
4	$C_{5}H_{12}$	Me	12	$C_{5}H_{12}$	Me	13	41
	- 12			Me	C_5H_{12}	14*	39

4

^aS: 0.4 mmol; molar ratio: 1:3:3 (S/SbCl₃/Bu₄NI); THF: 15 mL; in the presence of $Na_2S_2O_3 \cdot 5H_2O$ (0.72 mmol); time: 65 h.

^bIsolated products were purified by column chromatography on silica gel. Yields were also determined by ¹H NMR analysis of crude products.

*2-Hydroxy-1-phenyl-1,4-pentanedione (11): $R_f = 0.41$ (CH₃CO₂Et/CHCl₃, 1:3). IR (neat, cm⁻¹) 3420, 1717, 1686, 1599, 1580, 1450, 1404, 1361, 1261, 1216, 1181, 1100, 1038, 1004, 988, 936, 758. ¹H NMR (CDCl₃) δ 2.25 (3H, s), 2.76 (1H, dd, J = 17.5, 7.4 Hz), 2.88 (1H, dd, J = 17.5, 3.5 Hz), 5.45 (1H, dd, J = 7.4, 3.5 Hz), 7.45-7.64 (3H, m), 7.91-7.97 (2H, m). ¹³C NMR (CDCl₃) δ 30.99, 48.12, 69.99, 128.69, 128.87, 133.35, 133.94, 200.35, 205.80.

4-Hydroxy-2,5-decanedione (14): $R_f = 0.48$ (CH₃CO₂Et/CHCl₃, 1:3). IR (neat, cm⁻¹) 3414, 2960, 2934, 2874, 1717, 1460, 1406, 1365, 1247, 1172, 1112, 1073, 1038, 959. ¹H NMR (CDCl₃) δ 0.88 (3H, t, J = 7.2 Hz), 2.22 (3H, s), 2.85 (1H, dd, J = 13.5, 5.9 Hz, 2.95 (1H, dd, J = 13.5, 4.1 Hz), 4.35 (1H, dd, J = 5.9, 4.1 Hz).

yield (run 9), whereas the reaction of isophorone oxide 25 with SbCl₃-Bu₄NI took place to give isophorone 26 unexpectedly (run 10). These results sufficiently accounted for the regioselective ring opening of terminal epoxides to haloalcohols with $SbCl_3$ -Bu₄NX (X = I, Br, Cl).

In conclusion, the SbCl₃-Bu₄NI system in the presence of $Na_2S_2O_3 \cdot 5H_2O$ provided an alternative procedure for reductive ring opening of 2,3-epoxy-1,4-butanediones to hydroxy-1,4-butanediones chemoselectively. The SbCl₃-Bu₄NX (X = I, Br, Cl) systems were also useful and [regioselective for the ring opening of terminal epoxides to the respective haloalcohols under the same reaction conditions].

Run	Substrates	(S)	Bu_4NX^b	Products	Yields/% ^c
1	Ph O Ph	6	В	Recovered	6/85
2		6	С	Recovered	6/88
3	or Fi	15	А	ОН	16 /66
4		15	В	OH OH	17 /78
5		15	С	о СІ	18 /90
6	О (СН ₂)90н	19	А	OH I (CH ₂)9OH	20 /65
7		19	В	OH Br (CH ₂) ₉ OH	21 /82
8		19	С	OH CI↓↓(CH ₂)9OH	22 /84
9		23	Α		24 */40 ^d
10		25	А		26 /77 ^e

Table 3. Ring-opening reaction of epoxides with $SbCl_3$ -Bu₄NX in THF at $0-23^{\circ}C^{a}$

^{*a*}S: 0.4 mmol; molar ratio: 1:3:3 (S/SbCl₃/Bu₄NX); THF: 15 mL; in the presence of $Na_2S_2O_3 \cdot 5H_2O$ (0.72 mmol); time: 65 h.

 ${}^{b}A = Bu_4NI$, $B = Bu_4NBr$, $C = Bu_4NCl$.

^cIsolated products were purified by column chromatography on silica gel. Yields were also determined by ¹H NMR analysis of crude products.

^dRecovered **23**: 39%.

^eRecovered 25: 20%.

*Iodoalcohol (**24**): $R_f = 0.33$ (CHCl₃/EtOAc, 5:1). IR (neat, cm⁻¹) 3474, 2950, 2334, 1659, 1458, 1365, 1309, 1265, 1220, 1176, 1106, 1058, 990, 938, 853. ¹H NMR (CDCl₃) δ 0.89 (3H, s), 1.07 (3H, s), 1.38 (3H, s), 2.29 (3H, s), 1.41–1.43 (1H, m), 1.75–1.90 (2H, m), 2.24–2.38 (1H, m), 2.40 (1H, d, J = 10.5 Hz), 4.43 (1H, t, J = 2.0 Hz), 6.12 (1H, d, J = 16.0), 6.94 (1H, dd, J = 16.0, 10.5 Hz). ¹³C NMR (CDCl₃) δ 23.14, 27.15, 28.77, 32.11, 33.64, 34.35, 36.94, 44.27, 52.95, 73.40, 134.75, 145.96, 198.36.

EXPERIMENTAL

IR spectra were recorded on a Perkin Elmer Spectrum One FT-IR spectrophotometer. ¹H and ¹³C NMR spectra were recorded on a JEOL JNM-EX270 spectrometer, and the chemical shifts are given relative to the internal SiMe₄ standard. MS spectra were run on a Bruker Daltonics–APEX III and a JEOL-HX110.

General Procedure for the Synthesis of 2,3-Epoxy-1,4-butanedione^[6]

To a solution of 2-butene-1,4-dione (1 mmol) and Bu_4NI (0.1 mmol) in THF (10 mL) at 0°C was added dropwise 30% aq. H_2O_2 (5–10 mmol) dissolved in THF (3 mL). After stirring for 20–36 h at 0–23°C, the reaction mixture was poured into 0.5 M of aq. KI. The resulting mixture was treated with 0.5 M of aq. $Na_2S_2O_3$ and extracted with ethyl acetate. The organic layer was washed with 0.5 M of aq. $Na_2S_2O_3$ and successively saturated aq. NaCl and dried by MgSO₄. After removal of solvent in vacuo, the residue was purified by recrystallization or column chromatography on silica gel (Wakogel C-200) with CCl₄ and CHCl₃ (1:1, v/v). Epoxydiketones were obtained in 56–91% yields.

Typical Procedure for the Ring Opening of Epoxide

To a solution of SbCl₃ (273 mg, 1.2 mmol), Bu₄NI (442 mg, 1.2 mmol) and Na₂S₂O₃ · 5H₂O (178 mg, 0.72 mmol) in THF (12 mL) at 0°C, 1,4-diphenyl-2,3-epoxy-1,4-butanedione **1** (100 mg, 0.4 mmol) in THF (3 mL) was added. The reaction mixture was treated with 1.0 M of aq. NaHCO₃ after stirring for 64 h at temperatures between 0°C and rt and extracted with ethyl acetate. The organic layer was washed with 0.5 M of aq. Na₂S₂O₃ and successively saturated aq. NaCl and dried over MgSO₄. After removal of the solvent in vacuo, the residue was purified by column chromatography on silica gel (Wakogel C-200) with CCl₄ and CHCl₃ (1:1, v/v). Hydroxydiketone **2** (91 mg, 0.36 mmol) was obtained in 90% yield.

2-Hydroxy-1,4-diphenyl-1,4-butanedione (**2**). Mp 92–93°C. $R_f = 0.25$ (CHCl₃). IR (KBr, cm⁻¹) 3406, 1682, 1599, 1448, 1325, 1305, 1203, 1108, 1048, 1009, 754. ¹H NMR (CDCl₃) δ 3.36 (1H, dd, J = 16.2, 5.4 Hz), 3.44 (1H, dd, J = 16.2, 6.0 Hz), 5.67 (1H, dd, J = 6.0, 5.4 Hz), 7.26–7.63 (6H, m), 7.91–8.01 (4H, m). ¹³C NMR (CDCl₃) δ 43.50, 70.06, 128.26, 128.62, 128.67, 128.87, 133.51, 133.60, 133.87, 136.62, 197.14, 200.68. Anal. calcd. for C₁₆H₁₄O₃ C, 75.57; H, 5.55. Found: C, 75.48; H, 5.60.

Ethyl 2-hydoxy-4-oxo-4-phenylbutanoate (8). $R_f = 0.17$ (CHCl₃). IR (neat, cm⁻¹) 3446, 3066, 2984, 2914, 1742, 1686, 1599, 1580, 1450, 1369, 1274, 1214, 1102, 1042, 1002, 936, 864, 758. ¹H NMR (CDCl₃) δ 1.29 (3H, t, J = 7.2 Hz), 3.45 (1H, dd, J = 17.0, 5.9 Hz), 3.54 (1H, dd, J = 17.0,

4.0 Hz), 4.26 (2H, q, J = 7.2 Hz), 4.66 (1H, dd, J = 5.9, 4.0 Hz), 7.43–7.62 (3H, m), 7.93–7.97 (2H, m). ¹³C NMR (CDCl₃) δ 14.03, 42.12, 61.76, 67.15, 128.10, 128.62, 133.51, 136.38, 173.71, 197.44. HR-ESI-MS [M + Na]⁺ m/z 245.0789 (calcd. for C₁₂H₁₄O₄Na: 245.0784).

3-Hydroxy-1-phenyl-1,4-pentanedione (**10**). $R_f = 0.41$ (CH₃CO₂Et/ CHCl₃, 1:3). IR (neat, cm⁻¹) 3420, 1717, 1686, 1599, 1580, 1450, 1404, 1361, 1261, 1216, 1181, 1100, 1038, 1004, 988, 936, 758. ¹H NMR (CDCl₃) δ 2.33 (3H, s), 3.39 (1H, dd, J = 17.5, 5.9 Hz), 3.56 (1H, dd, J = 17.5, 3.5 Hz), 4.52 (1H, dd, J = 5.9, 3.5 Hz), 7.45–7.64 (3H, m), 7.91– 7.97 (2H, m). ¹³C NMR (CDCl₃) δ 25.55, 41.58, 73.85, 128.23, 128.60, 133.74, 136.28, 198.29, 209.57. Anal. calcd. for C₁₁H₁₂O₃; C, 68.73; H, 6.29. Found: C, 68.65; H, 6.40.

3-Hydroxy-2,5-decanedione (**13**). $R_f = 0.48$ (CH₃CO₂Et/CHCl₃, 1:3). IR (neat, cm⁻¹) 3414, 2960, 2934, 2874, 1717, 1460, 1406, 1365, 1247, 1172, 1112, 1073, 1038, 959. ¹H NMR (CDCl₃) δ 0.88 (3H, t, J = 7.2 Hz), 2.26 (3H,s), 2.45 (1H, dd, J = 13.5, 5.9 Hz), 2.55 (1H, dd, J = 13.5, 4.1 Hz), 4.00 (1H, dd, J = 5.9, 4.1 Hz). Anal. calcd. for C₁₀H₁₈O₃: 64.49; H, 9.74. Found: C, 64.33; H, 9.95.

Iodoalcohol (**16**). $R_f = 0.11$ (CHCl₃). IR (neat, cm⁻¹) 3438, 2976, 2924, 2898, 1663, 1452, 1435, 1417, 1373, 1305, 1259, 1189, 1104, 1058, 1009, 957, 907, 845, 803, 754, 714. ¹H NMR (CDCl₃) δ 1.34 (3H, s), 1.78 (3H, s), 2.24–2.75 (5H, m), 3.36 (1H, dd, J = 10.8, 2.7 Hz), 3.42 (1H, dd, J = 10.8, 3.5 Hz), 6.80 (1H, m). ¹³C NMR (CDCl₃) δ 15.52, 20.52, 23.70, 26.50, 39.57, 42.91, 71.21, 135.41, 144.07, 199.15. HR-ESI-MS m/z 317.0012 [M + Na]⁺ (calcd. for C₁₀H₁₅O₂I Na: 317.0009).

Bromoalcohol (17). $R_f = 0.50$ (CH₃CO₂Et/CHCl₃, 1 : 2). IR (neat, cm⁻¹) 3422, 2978, 2926, 1663, 1452, 1435, 1373, 1305, 1259, 1183, 1108, 1079, 1056, 1013, 961, 926, 907, 824, 801, 754. ¹H NMR (CDCl₃) δ 1.31 (3H, s), 1.78 (3H, s), 2.21–2.70 (5H, m), 3.45–3.57 (2H, m), 6.77 (1H, m). ¹³C NMR (CDCl₃) δ 15.51, 21.37, 27.24, 38.43, 41.99, 43.02, 71.96, 135.36, 145.03, 199.24. HR-ESI-MS m/z 269.0148 [M + Na]⁺, 271.0129 [(M + 2) + Na]⁺ (calcd. for C₁₀H₁₅O₂Br Na: 269.0148).

Chloroalcohol (**18**). $R_f = 0.50$ (CH₃CO₂Et/CHCl₃, 1 : 2). IR (neat, cm⁻¹) 3442, 2978, 2928, 1663, 1452, 1435, 1373, 1307, 1259, 1183, 1154, 1108, 1058, 1013, 961, 930, 907, 828, 748, 714. ¹H NMR (CDCl₃) δ 1.27 (3H, s), 1.77 (3H,s), 2.18–2.67 (5H, m), 3.52–3.67 (2H, m), 6.77 (1H, m). ¹³C NMR (CDCl₃) δ 15.47, 21.87, 27.11, 39.19, 41.51, 52.29, 72.66, 135.14, 145.04, 199.63. HR-ESI-MS m/z 225.0654 [M + Na]⁺, 227.0626 [(M + 2) + Na]⁺ (calcd. for C₁₀H₁₅O₂Cl Na: 225.0653).

Iodoalcohol (**20**). $R_f = 0.33$ (CH₃CO₂Et/CHCl₃, 1:3). IR (neat, cm⁻¹) 3332, 2928, 2858, 1460, 1417, 1185, 1056, 721.¹H NMR (CDCl₃) δ 1.13– 1.55 (16H, m), 3.22 (1H, dd, J = 10.8, 6.4 Hz), 3.38 (1H, dd, J = 10.8, 5.4 Hz), 3.51 (1H, m), 3.62 (2H, t, J = 6.7 Hz). ¹³C NMR (CDCl₃) δ 16.49, 25.55, 25.62, 29.20, 29.27, 29.32, 32.65, 36.49, 62.89, 70.87. HR-ESI-MS m/z 337.0638 [M + Na]⁺ (calcd. for C₁₁H₂₃O₂I Na: 337.0636).

Reductive Ring-Opening of Epoxides

Bromoalcohol (**21**). $R_f = 0.32$ (CH₃CO₂Et/CHCl₃, 1 : 3). IR (neat, cm⁻¹) 3256, 2926, 2858, 1460, 1425, 1375, 1340, 1224, 1054, 721. ¹H NMR (CDCl₃) δ 1.30–1.57 (16H, m), 3.34–3.77 (5H, m). ¹³C NMR (CDCl₃) δ 25.53, 25.68, 29.32, 29.40, 32.74, 35.07, 40.54, 62.98, 71.03. HR-ESI-MS m/z 289.0776 [M + Na]⁺, 291.0756 [(M + 2) + Na]⁺ (calcd. for C₁₁H₂₃O₂Br Na: 289.0774).

Chloroalcohol (**22**). $R_f = 0.25$ (CH₃CO₂Et/CHCl₃, 1 : 3). IR (neat, cm⁻¹) 3302, 2930, 2858, 1464, 1056, 721. ¹H NMR (CDCl₃) δ 1.25–1.56 (16H, m), 3.44–3.79 (5H, m). ¹³C NMR (CDCl₃) δ 25.46, 25.68, 29.27, 29.34, 29.38, 29.43, 32.74, 34.19, 50.53, 63.02, 71.43. HR-ESI-MS m/z 245.1281 [M + Na]⁺, 247.1251 [(M + 2) + Na]⁺ (calcd. for C₁₁H₂₃O₂Cl Na 245.1279).

REFERENCES

- Erickson, K. L. Marine Natural Products; Scheuer, P. J., Ed.; Academic Press: New York, 1983; Vol. 5, Chap 4, pp. 132–257.
- (a) Larock, R. C. Comprehensive Organic Transformations, 2nd ed.; Wiley-VCH: New York, 1999; 1019; (b) Ho, T-L. Fiesers' Reagents for Organic Synthesis; Wiley: New York, 1967–2004; Vol. 1–22; (c) Hasegawa, E.; Chiba, N.; Nakajima, A.; Suzuki, K.; Yoneoka, A.; Iwaya, K. Synthesis 2001, 1248.
- (a) Kwon, D. W.; Kim, Y. H. J. Org. Chem. 2002, 67, 9488; (b) Concellon, J. M.; Bardales, E.; Gomez, C. Tetrahedron Lett. 2003, 44, 5323; (c) Li, J.; Li, C-J. Tetrahedron Lett. 2001, 42, 793; (d) Ranu, B. C.; Banerjee, S.; Das, A. Tetrahedron Lett. 2004, 45, 8579; (e) Rodriguez, J. R.; Navarro, A. Tetrahedron Lett. 2004, 45, 7495; (f) Tomota, Y.; Sasaki, M.; Tanino, K.; Miyashita, M. Tetrahedron Lett. 2003, 44, 8975; (g) Sabitha, G.; Babu, R. S.; Rajkumar, M.; Reddy, C. S.; Yadav, J. S. Tetrahedron Lett. 2001, 42, 3955; (h) Reddy, L. R.; Reddy, M. A.; Bhanumathi, N.; Rao, K. R. Synthesis 2001, 831; (i) Ha, J. D.; Kim, S. Y.; Lee, S. J.; Kang, S. K.; Ahn, J. H.; Kim, S. S.; Choi, J.-K. Tetrahedron Lett. 2004, 45, 5969; (j) Bhaumik, K.; Mali, U. W.; Akamanchi, K. G. Synth. Commun. 2003, 33, 1603; (k) Borah, J. C.; Gogoi, S.; Boruwa, J.; Barua, N. C. Synth. Commun. 2005, 35, 873.
- (a) Schneider, C. Synlett 2000, 1840; (b) Fringuelli, F.; Pizzo, F.; Vaccaro, L. Tetrahedron Lett. 2001, 42, 1131; (c) Amantini, D.; Fringuelli, F.; Pizzo, F.; Vaccaro, L. J. Org. Chem. 2001, 66, 4463; (d) Iranpoor, N.; Firouzabadi, H.; Aghapour, G.; Nahid, A. Bull. Chem. Soc. Jpn. 2004, 77, 1885; (e) Akiyama, Y.; Fukuhara, T.; Hara, S. Synlett 2003, 1530; (f) Gohain, M.; Prajapati, D. Chem. Lett. 2005, 34, 90.
- (a) Sayama, S.; Inamura, Y. Bull. Chem Soc. Jpn 1991, 64, 306; (b) Sayama, S.; Inamura, Y. Chem. Lett. 1996, 633.
- 6. Sayama, S.; Inamura, Y. Bull. Chem. Soc. Jpn. 1991, 64, 1993.
- (a) Huang, Y.-Z.; Zhou, Z.-L. Comprehensive Organometallic Chemistry II; McKillop, A., Ed.; Pergamon, Oxford, 1995; Vol. 11, 487; (b) Ishihara, K. Lewis Acids in Organic Synthesis; Yamamoto, H., Ed.; Wiley-VCH: New York, 2000; Vol. 2, p. 523; (c) Peyronneau, M.; Boisdon, M.-T.; Roques, N.; Mazieres, S.; Roux, C. L. Eur. J. Org. Chem. 2004, 4636; (d) Wang, W.-B.; Shi, L.-L.; Huang, Y.-O. Tetrahedron. 1990, 46, 3315; (e) Cho, C. S.; Motofusa, S.;

Uemura, S. *Tetrahedron Lett.* 1994, *35*, 1739; (f) Cho, C. S.; Motofusa, S.; Ohe, K.;
Uemura, S. *J. Org. Chem.* 1995, *60*, 883; (g) McCarthy, J. R.; Matthews, D. P.;
Edwards, M. L.; Stemerick, D. M.; Jarvi, E. T. *Tetrahedron Lett.* 1990, *31*, 5449;
(h) Robins, M. J.; Wnuk, S. F. *Tetrahedron Lett.* 1988, 29, 5729.