THE REACTION OF BORON TRIHALIDES WITH SILANES

A. J. Vanderwielen and M. A. Ring

Department of Chemistry, San Diego State College, San Diego, California (Received 1 December 1971)

Boron trichloride is reduced by $\text{Si}_{2H_6}^{1,2}$ and $\text{Si}_{3H_6}^{2}$ but not by $\text{Si}_{H_4}^{1}$ or $\text{ClSi}_{H_3}^{1,1}$. Similarly, BBr₃ is reduced by both $\text{Si}_{H_4}^{3}$ and $\text{Si}_{2H_6}^{3}^{3}$ while BF₃ is not reduced by either $\text{Si}_{H_4}^{2}$ or $\text{Si}_{2H_6}^{1,1}$.

Our results, obtained under the same conditions as the above reactions, show that BCl_3 is reduced by CH_3SiH_3 while BBr_3 is reduced by $ClSiH_3$. We have also found that BF_3 is not reduced by CH_3SiH_2 , $1,2-(CH_3)_2Si_2H_4$ or Si_3H_6 .

It is obvious from the above data that the relative rate of BX_3 (X = Cl,Br) reduction is: $CH_3SiH_3 > SiH_4$ or $ClSiH_3$ and $Si_2H_6 > SiH_4$. These orders are similar to those found for the reduction of AgCl where the relative rates were:⁴

Si₂H₂ > CH₃SiH₃ > SiH₄ > ClSiH₃.

• •

For both BX_3 and AgCl the rates increase with an increase in hydride character of the silane along with the increase due to catenation. The relative rate of BX_3 reduction increases with the increase of Lewis acidity² ($BBr_3 > BCl_3 > BF_3$).

The activated complexes suggested for the AgCl 4 and BCl_c 1 reductions are identical. In this activated complex,

 $-\operatorname{Si-H}_{I} + \operatorname{E-X}_{I} \rightarrow -\operatorname{Si}_{I} + \operatorname{He}_{I} (E = \operatorname{Ag}, B)$

the E···H interaction is stabilized by an increase in the hydridic character of H and an increase in the acidity of EX₃. The Si····X interaction should be destabilized by a decrease in acidity at Si (CH₃SiH₃ < SiH₄ < ClSiH₃) and possibly destabilized by a decrease in base character of the halogen (F < Cl < Br). For the monosilanes, the increase in hydridic character (CH₃SiH₃ > SiH₄ > ClSiH₃, based on

BORON TRIHALIDES WITH SILANES

a decrease in the weighted average of the Si-H stretching frequencies)⁵ appears to be the dominant factor over the change in acidity at Si. The increased rate with $\text{Si}_{2}\text{H}_{g}$ compared to SiH_{4} can be explained by an increase in the Lewis acidity of Si in $\text{Si}_{2}\text{H}_{g}$ (based on a more stable complex with N(CH₃)₃ for $\text{Si}_{2}\text{H}_{g}$ compared to SiH_{4}).⁶

Reaction of CH3SiH3 with BCl3

In a typical experiment, 2.3 mmoles of CH_3SiH_3 and 1.1 mmoles of BCl_3 were condensed into a 32 ml Pyrex reaction vessel fitted with a Teflon valve. The reaction vessel was allowed to warm up to 0°C and held at this temperature for 17 hours. The product mixture was then removed from the reaction vessel and analyzed in a standard high vacuum system. The products were B_2H_6 (0.6 mmoles), CH_3SiH_2Cl (1.3 mmol), CH_3SiHCl_2 (0.9 mmol) and small quantities of SiH₄ and a hydrocarbon.

Reaction of ClSiH3 with BBr3

In the same reaction vessel, $ClSiH_3$ (0.5 mmoles) and BBr_3 (0.2 mmoles) were allowed to react at 0° for 8 hours. The BBr_3 was quantitatively reduced to yield 0.1 mmoles of B_2H_6 . Chlorobromsilane (0.4 mmol) was isolated and a white solid product was observed.

Other Reactions

In the same reaction vessel, no reactions were observed after 17 hours at 0° between CH_3SiH_3 (1.5 mmol) and BF_3 (1.3 mmol) or after 8 hours at 0° between BF_3 (0.9 mmol) and $1,2-(CH_3)_2Si_2H_4$ (1.6 mmol) or between BF_3 (0.4 mmol) and Si_3H_8 (1.1 mmol).

References 1. C. H. Van Dyke and A. G. MacDiarmid, J. Inorg. Nucl. Chem., <u>25</u>, 1503 (1963).

 J. E. Drake and N. Goddard, Inorg. Nucl. Chem. Lett., <u>4</u>, 385 (1968).
J. E. Drake and J. Simpson, ibid, <u>2</u>, 219 (1966).
A. J. Vanderwielen and M. A. Ring, Inorg. Chem., <u>11</u>, 0000 (1972).
R. P. Hollandsworth and M. A. Ring, ibid., <u>7</u>, 1635 (1968).
J. J. Watkins and M. A. Ring, submitted to Inorg. Chem. <u>Acknowledgment</u> - The authors are indebted to the Army Research Office (Durham) for financial support.

422