
This article was downloaded by: [Carnegie Mellon University] On: 13 January 2015, At: 19:23 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/gpss20

ESTERIFICATION OF PHOSPHONIC AND PHOSPHINIC ACID ANALOGUES OF GLUTAMIC AND ASPARTIC ACIDS WITH ETHYL ORTHOFORMATE-SCOPE AND LIMITATIONS OF THE METHOD

Ewa Żymańczyk-Duda^a, Barbara Lejczak^a & Paweł Kafarski^a ^a Institute of Organic Chemistry, Biochemistry and Biotechnology, Technical University of Wroctaw, Wybrzezłe Wyspiańskiego 27, 50-370, Wroctaw, Poland Published online: 04 Oct 2006.

To cite this article: Ewa Żymańczyk-Duda , Barbara Lejczak & Paweł Kafarski (1996) ESTERIFICATION OF PHOSPHONIC AND PHOSPHINIC ACID ANALOGUES OF GLUTAMIC AND ASPARTIC ACIDS WITH ETHYL ORTHOFORMATE-SCOPE AND LIMITATIONS OF THE METHOD, Phosphorus, Sulfur, and Silicon and the Related Elements, 112:1-4, 47-55, DOI: <u>10.1080/10426509608046348</u>

To link to this article: http://dx.doi.org/10.1080/10426509608046348

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

Conditions of access and use can be found at <u>http://www.tandfonline.com/page/terms-and-conditions</u>

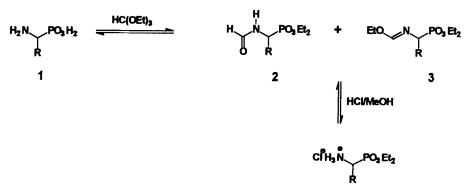
Phosphorus, Sulfur, and Silicon, 1996, Vol. 112, pp. 47-55 Reprints available directly from the publisher Photocopying permitted by license only

ESTERIFICATION OF PHOSPHONIC AND PHOSPHINIC ACID ANALOGUES OF GLUTAMIC AND ASPARTIC ACIDS WITH ETHYL ORTHOFORMATE—SCOPE AND LIMITATIONS OF THE METHOD

EWA ŻYMAŃCZYK-DUDA,* BARBARA LEJCZAK and PAWEŁ KAFARSKI

Institute of Organic Chemistry, Biochemistry and Biotechnology, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

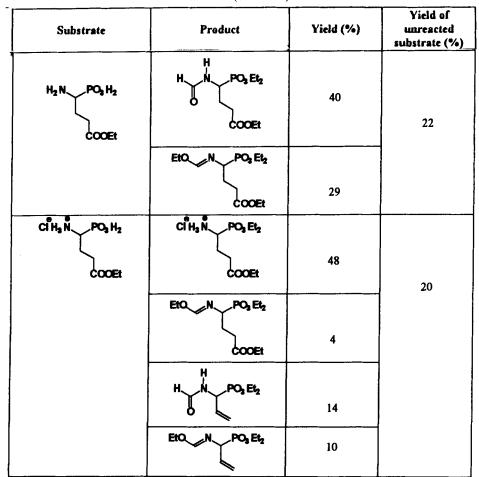
(Received July 27, 1995; in final form October 3, 1995)

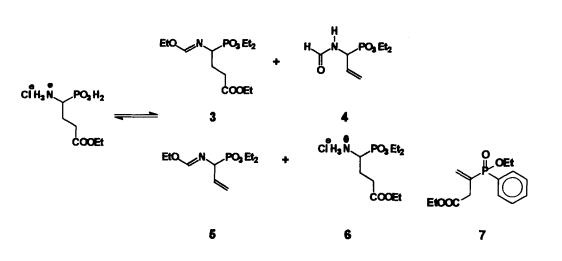

Reaction of C-ethyl esters of phosphonic- and phosphinic acid analogues of glutamic and aspartic acids with ethyl orthoformate provides the mixtures of N-formylamino- and N-ethoxymethyleneimino-derivatives with nearly quantitative yields. Scope and limitations of this procedure were studied by means of GC/MS technique.

Key words: Amino acid analogues, esterification, phosphonopeptides.

INTRODUCTION

Aminoalkylphosphonic acids (1) are widely recognized as antimetabolites of amino acids which display interesting and useful biological properties.^{1,2} Their negligible mammalian toxicity, and the fact that they bear a very close chemical resemblance to their aminocarboxylic counterparts, makes them remarkably important structural units of phosphonopeptides and peptidomimetics. These peptides appeared to be promising enzyme inhibitors, antibacterials and anticancer drugs.³⁻⁵


During the last twenty years a considerable progress in the synthesis of phosphonopeptides has been achieved.^{3,6-10} However, the preparation of the peptides from aminoalkylphosphonic acids containing additional functional group in the side-chain is still a challenge.¹¹ This is mainly due to the lack of simple methods for the preparation of the properly blocked substrates from underivatized aminoalkylphos-



Substrate	Product	Yield (%)	Yield of unreacted substrate (%)
H ₂ N COOH PO ₃ H ₂	H ₂ N COOEt PO ₃ Et ₂	10	80
	Et ₂ O ₃ P ^{O3} Et ₂	4	
H ₂ N_COOEt PO ₃ H ₂		76	9
		7	
CÎH ₃ N, COOEt PO ₃ H ₂		71.5	10
		7	
CÎ H ₃ N, COOMe PO ₃ H ₂		63.5	15
		10	

TABLE I Reaction of phosphonic acid analogues of glutamic acid with ethyl orthoformate

phonic acids. One of the simplest procedures seems to be the reaction of aminoalkylphosphonic acids with orthoformates which yields the mixtures of 1-(N-formylamino)alkylphosphonate (2) and 1-(N-ethoxymethyleneimino)alkylphosphonate (3).¹²⁻¹⁴ This mixture upon reaction with the solution of hydrogen chloride in meth-

Reaction of phosphon	ic acid analogues of aspartic a	acid with ethyl orth	oformate
Substrate	Product	Yield (%)	Yield of unreacted substrate (%)
H ₂ N COOEt PO ₃ H ₂		90	0
	Eto_N_COOEt	5	
H ₂ N PO ₃ H ₂ COOEt		56	5
		36	
		46	11
		32	
		22	0
		64	
		7	

 TABLE II

 Reaction of phosphonic acid analogues of aspartic acid with ethyl orthoformate

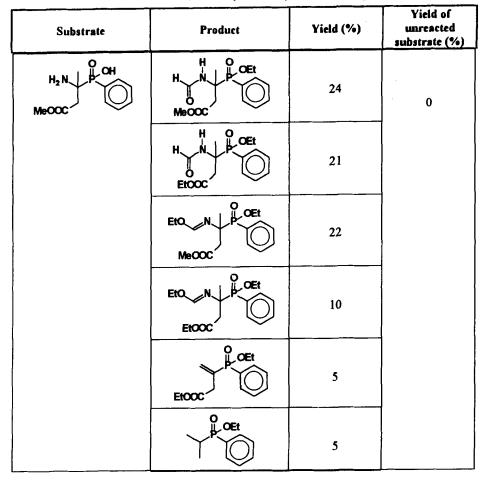


TABLE II (Continued)

anol yields the desired hydrochloride of diethyl 1-aminoalkylphosphonate with a good yield.

In this paper we report the usefulness of this procedure for the derivatization of phosphonic acid analogues of glutamic and aspartic acids.

RESULTS AND DISCUSSION

Reactions were carried out as described previously¹² and the composition of the product mixtures was studied by means of GC/MS technique. Results of the studies are summarized in Tables I (reaction of glutamic acid analogues) and II (reaction of aspartic acid analogues). As seen from Table I, underivatized phosphonic acid analogues of acidic amino acids are poor substrates and the esterification of their carboxylic acid groups should be performed prior the reaction with ethyl orthoformate. The C-ethyl esters readily reacted with ethyl orthoformate yielding the expected products 2 and 3 in good yields. The use of C-methyl esters is not recommended

	HC(O)— NH	$ \begin{array}{c} $
Ion	m/z (intensity, %)	Comments
[MH] ⁺	296 (1.4)	protonated molecular ion
[AH ⁺]	252 (6.2)	•
B	222 (30.6)	•
-	194 (99.3)	ion B minus CH2=CH2
-	165 (11.1)	CH2CH2-PO3Et2 fragment
-	152 (16.7)	CH3-PO3Et2 fragment
-	125 (15.9)	CH ₃ -P(OH) ₂ OEt fragment
-	109 (10.4), 81 (8.3), 65 (6.2)	products of -PO3Et2 group fragmentation
•	56 (100)	[HC(0)-N=CH] ⁺

 TABLE III

 Mode of fragmentation and principal ions in the mass spectrum of triethyl 2-(N-formylamino)-4-phosphonobutyrate

because the transesterification of carboxylate moiety by orthoformate resulted in the production of the mixed esters.

The acid catalysis in the reaction of aminoalkylphosphonic acids with ethyl orthoformate was reported to increase the yield of N-formyl derivative.^{13,14} The use of C-ethyl 2-amino-4-phosphonobutyrate hydrochloride, however, did not result in any change of the reaction course. Quite surprisingly the reaction of C-ethyl 4-amino-4phosphonobutyrate hydrochloride with ethyl orthoformate provided additionally the products of decarboxylation (compounds 4 and 5). Also the removal of N-formyl group from 2 by hydrogen chloride providing compound 6 was observed in this case.

Another unexpected finding was the removal of the amino moiety which resulted in the formation of compound 7 observed when C-methyl and C-ethyl 3-amino-3-(P-phenyl)phosphino-butyrates were used as substrates. The mechanism of this interesting reaction remains to be determined.

EXPERIMENTAL

Materials. All the reagents were of analytical purity. Ethyl orthoformate was purchased from Aldrich (Milwaukee, Illinois, USA). Aminophosphonic and -phosphinic acids, as well as their C-alkyl esters, were prepared according to the previously described procedure.¹²

Reaction of Aminophosphonates with Ethyl Orthoformate. A suspension of C-ethyl ester of aminoal-

	$C_{H_{3}} C_{H_{2}} C_{H_{2}} C_{H_{2}} C_{H_{3}} C_{H_{2}} C_{H_{3}} C_{H$		
Ion	m/z (intensity, %)	Comments	
[MH] ⁺	324 (1.4)	protonated molecular ion	
Α	294 (25.2)	•	
В	278 (4.2)	-	
-	249 (18.9)	ion B minus ethyl group from phosphonate moiety	
[CH] ⁺	252 (10)	-	
D	250 (49.6)	-	
-	221 (55.2)	ion D minus ethyl group	
-	192 (39.9)	ion D minus two ethyl group	
E	172 (94.4)	-	
-	148 (44.8)	[C=CH-CH ₂ -P(O)(OEt)(OH)] ⁺	
-	136 (29.4)	[CH2=CH-PO3HEt] ⁺	
-	121 (36.6)	[CH ₂ CH ₂ -P(O)(OEt)] ⁺	
-	81 (25.9) 65 (10.5)	products of -PO3Et2 group fragmentation	
-	56 (100)	{H-C(O)-N=CH]+	

TABLE IV

Mode of fragmentation and principal ions in the mass spectrum of triethyl 2-(N-ethoxymethyleneimino)-4-phosphonobutyrate

kylphosphonic acid (0.02 mol) in ethyl orthoformate (70 ml) was refluxed carefully in an apparatus for simple distillation for 3 h with removal of the formed ethanol. Then the unreacted substrate was filtered off and the filtrate evaporated *in vacuo* to give oily product which was analysed by means of GC/MS spectrometry.

Gas Chromatography and Mass Spectrometry. A Hewlett-Packard 5890 series II gas chromatograph with an electron impact (electron energy of 70 eV) mass spectrum detector was used. The 25 m \times 0.25 mm HP1 110/8/300 capillary column was used. The column temperature was set up to 110°C for 3 minutes and then increased at a rate of 8°C min⁻¹ to 300°C. The modes of fragmentation were determined using the literature data.¹³⁻¹⁵ Similarly as described in the literature the molecular ions of these derivatives were observed in low abundance. The representative modes of fragmentations alongside with the principal ions in the mass spectra of the expected products 2 and 3 obtained starting from 2-amino-4phosphonobutyric acid are given in Tables III and IV. The fragmentation pathways and principal ions of decarboxylation products 4 and 5 are given in Table V, whereas the data for compound 7 are collected in Table VI.

		A		D	-
нс(о)—	B [▲] NH — CI	$ \begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	CH3CH2	О-СН = М	$\begin{array}{c} 0 \\ CH \\ CH \\ C \\ C \\ H \\ P \\ O \\ CH_2CH_3 \\ CH_3 \\ C$
	- I			4	CH B
	C	н			1
	11				CH₂
,	C	H ₂			
Ion	m/z	Comments	Ion	m/z	Comments
	intensi			intensit	
	у			у	
[MH] ⁺	222	protonated molecular	[MH] ⁺	250	protonated molecular
	(1.9)	ion		(1.0)	ion
[M] ⁺	221	isotopic peak	[M] ⁺	249	isotopic peak
	(19.0)			(8.1)	
[AH] ⁺	193	-	[AH] ⁺	221	-
	(7.6)			(3.8)	
-	166	[NHCH2PO3Et2] ⁺	B	193	EtOCH=N-CH-PO3H2
	(2.5)		ł	(7.5)	CH=CH ₂
-	149	[H2C=CH-CHPO3EtH]	[C-1] ⁺	176	-
	(1.9)	_		(3.8)	
-	138	HPO3Et2	-	165	[HN=CHPO3Et2] ⁺
	(18.4)			(28.8)	
-	111	H ₃ PO ₃ Et	-	138	HPO3Et2
	(29.7)			(74.4)	
В	84	-	-	111	H ₃ PO ₃ Et
	(100)			(58.1)	
-	65	product of -PO3Et2	[DH] ⁺	84	-
	(3.2)	group fragmentation		(100)	
-	56	[H-C(0)-N=CH] ⁺	-	65	product of -PO3Et2
	(5.1)			(2.1)	group fragmentation
	<u> </u>	· · · · · · · · · · · · · · · · · · ·			THE CALL AND
-	-	-	-	56	[H-C(O)-N=CH] ⁺
		l		(4.0)	

TABLE V

Mode of fragmentation and principal ions in the mass spectrum of compounds 5 and 6

ACKNOWLEDGEMENT

This work was supported by Komitet Badań Naukowych. The authors would like to thank Dr. Andrzej Nosal for technical assistance during GC/MS studies.

REFERENCES

- 1. P. Kafarski and P. Mastalerz, "Beitrage zur Wirkstofforschung," Institute of Wirkstofforschung, Berlin, Vol. 21, 1984.
- 2. P. Kafarski and B. Lejczak, Phosphorus, Sulfur, and Silicon, 63, 193 (1991).
- P. Kafarski, B. Lejczak and P. Mastalerz, "Beitrage zur Wirkstofforschung," Institute of Wirkstofforschung, Berlin, Vol. 25, 1985.
- 4. J. E. Hanson, A. P. Kaplan and P. A. Bartlett, Biochemistry, 28, 6294 (1982).
- 5. N. Camp, P. C. D. Hawkins and P. B. Hitchock, Bioorg. Med. Chem. Lett., 2, 1047 (1992).
- 6. D. Maffre-Lafon, R. E. Scale, P. Dumy, J.-P. Vidal and J.-P. Girard, Tetrahedron Lett., 3, 4097 (1994).
- 7. H.-J. Musiol, F. Grams, S. Rudolph-Bohner and L. Moroder, J. Org. Chem., 5, 6144 (1994).

		O ∥ ∕ C ₆ H₅				
	$CH_2 = C$	~ P ~				
	1	OCH ₂ CH ₃				
	C	H ₂ A				
	BX	1				
	C	0 ₂ CH ₂ CH ₃				
Ion						
100	(intensity, %)					
[MH] ⁺	283	protonated molecular ion				
	(2.0)					
[M] ⁺	282	isotopic peak				
	(12.6)					
-	253	isotopic peak minus ethyl group				
	(3.5)					
A	237	-				
	(23.8)					
В	209	-				
	(100) 185	CH ₃ -P(OH)(OEt)C ₆ H ₅				
-	(12.6)					
	157	CH ₃ -P(OH) ₂ C ₆ H ₅				
-	(11.2)					
	141	$[HPO_2(C_6H_5)]^+$ fragment				
	(83.2)					
	125	[HPO(C ₆ H ₅)] ⁺ fragment				
	(7.7)					
-	105	[CP(OH)(OEt)] ⁺				
	(3.5)					
-	77	-C6H5				
	(42.6)					
-	67	H ₄ PO ₂				
	(8.4)					

 TABLE VI

 Mode of fragmentation and principal ions in the mass spectrum of compound 7

- 8. J.-H. Bateson, B. C. Gasson, T. Khushi, J. E. Neale, D. J. Payne, D. A. Tolson and G. Walker, Bioorg. Med. Chem. Lett., 4, 1667 (1994).
- 9. P. Kafarski and B. Lejczak, Tetrahedron, 45, 7387 (1989).
- 10. P. Kafarski and B. Lejczak, Tetrahedron, 45, 7387-7396 (1989).
- Y. Song, D. Niederer, P. M. Lane-Bell, L. K. P. Lam, S. Crawley, M. M. Palcic, M. A. Pckard, D. L. Pruess and J. C. Nvederas, J. Org. Chem., 59, 5784 (1994).
- 12. P. Kafarski and B. Lejczak, Synthesis, 307 (1988).
- 13. Z. H. Kudzin, M. Sochacki and W. Kopycki, J. Chromatogr. A, 655, 346 (1993).
- 14. Z. H. Kudzin, M. Sochacki and J. Drabowicz, J. Chromatogr. A, 678, 299 (1994).
- 15. P. Hermann, I. Lukes, B. Maca and M. Budesinsky, Phosphorus, Sulfur, and Silicon, 79, 43 (1993).