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ABSTRACT: The direct asymmetric copper hydride (CuH)-
catalyzed coupling of α,β-unsaturated carboxylic acids to aryl 
alkenes is reported to access chiral α-aryl dialkyl ketones. A 
variety of substrate substitution patterns, sensitive functional 
groups and heterocycles are tolerated in this reaction, which 
significantly expands the range of accessible products com-
pared to existing hydroacylation methodology. Although 
mechanistic studies are ongoing, we propose that CuH-
catalyzed silylation of unsaturated acids occurs to access a 
uniquely effective acyl electrophilic coupling partner. 

Chiral α-aryl ketones represent an important functional 
group due to their synthetic utility and common occurrence 
in molecules of broad interest.1 While a number of catalytic 
methods exist for preparing enantioenriched quaternary α-
aryl ketones2, catalytic assembly of acyclic tertiary variants 
via C–C bond formation is made challenging by the acidic 
nature of the stereocenter.3,4 This has recently been ad-
dressed via transition metal-catalyzed asymmetric coupling 
reactions of α-bromo ketones to aryl organometallic rea-
gents5a,b, benzylic bromides to acyl chlorides5c, and benzylic 
zinc reagents to thioesters5d; additionally, chiral Lewis acid-
catalyzed insertion of aryldiazoalkanes into aldehyde C–H 
bonds has also been described.5e Despite this progress, com-
plementary catalytic methods for preparing chiral tertiary α-
aryl dialkyl ketones from abundant and stable functional 
groups remain in high demand. 

Hydroacylation, typically achieved by the addition of an 
aldehyde C–H bond across an alkene π-bond, is a stream-
lined approach for the construction of ketones from readily 
available functional groups.6 While numerous enantioselec-
tive intramolecular hydroacylation processes have been re-
ported, intermolecular variants remain less developed.7 The 
primary challenge associated with this transformation is sup-
pressing aldehyde decarbonylation, which often occurs 
readily for substrates without a coordinating substituent.8 
Nonetheless, impressive examples of enantioselective inter-

molecular hydroacylation have been reported using sub-
strates of broad value that feature a coordinating substituent 
(e.g. salicylaldehydes, 2-(methylthio)benzaldehydes and α-
substituted acrylamides).9 Meanwhile, the branch-selective 
addition of simple aliphatic aldehydes to styrenes provides 
direct access to dialkyl ketones bearing an α-aryl stereocen-
ter, although only racemic methods for this transformation 
have been reported (Scheme 1a).10 To avoid the problems 
associated with aldehyde decarbonylation and stereocenter 
epimerization, we reasoned that a complementary approach 
toward hydroacylation could potentially provide rapid access 
to enantioenriched tertiary α-aryl dialkyl ketones. 
Scheme 1. Previous work in hydroacylation using (a) alde-
hydes, (b) aryl anhydrides, and (c, this work) α,β-
unsaturated carboxylic acids  to access chiral α-aryl ketones. 

 
As part of a broader program using chiral copper hydride 

(CuH) species as catalysts for enantioselective hydrofunc-
tionalization reactions11, we sought to utilize acyl electro-
philes as surrogates for aldehydes in order to address limita-
tions of existing hydroacylation methodology. Inspired by 
prior work by Miura12a and Krische12b, we recently reported a 
CuH-catalyzed method for coupling styrenes to symmetrical 
aryl anhydrides to afford chiral α-aryl ketones or, after con-
comitant 1,2-reduction, chiral alcohols (Scheme 1b).13 In 
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order to expand the synthetic utility of this hydroacylation 
strategy, we recognized the need to develop an improved 
method that avoids use of symmetrical anhydrides and, im-
portantly, employs aliphatic aldehyde surrogates. We herein 
report the use of α,β-unsaturated carboxylic acids as direct 
coupling partners in a CuH-catalyzed dual hydroacylation 
and reduction process that provides access to highly enanti-
oenriched tertiary α-aryl dialkyl ketones (Scheme 1c). 

In CuH-catalyzed hydrofunctionalization reactions, 
chemoselective hydrocupration of an olefin in the presence 
of an electrophilic coupling partner is required in order to 
obtain high product yields.14 This requisite is realized when 
using aryl anhydride coupling partners (Scheme 1b); howev-
er, no hydroacylation of 4-fluorostyrene was seen when bu-
tyric anhydride, an aliphatic anhydride (1a), was subjected 
to the previously reported reaction conditions (Scheme 2a). 
Instead, only direct reduction of butyric anhydride to n-
butanol was observed. We hypothesized that reactions of α,β-
unsaturated anhydrides may display similar chemoselectivity 
as with aryl anhydrides to allow for styrenyl hydroacylation, 
and with concomitant 1,4-reduction of the unsaturated car-
bonyl, would produce chiral α-aryl dialkyl ketones. This hy-
pothesis was validated when crotonic anhydride (1b) was 
subjected to the reaction conditions, which provided chiral 
ketone 3a in 70% yield and 94% ee after treatment with 
NH4F. In the course of searching for acyl electrophile alter-
natives to anhydrides, we discovered that α,β-unsaturated 
carboxylic acids directly engage in this hydroacylation pro-
cess. Thus, the use of crotonic acid (1c) and 8 equiv of silane 
provided ketone 3a in 85% yield and 88% ee. 
Scheme 2. (a) Discovery and (b) SAR of CuH-catalyzed 
tandem hydroacylation and 1,4-reduction with unsaturated 
acyl electrophiles.a 

 

a yields determined by 1H NMR analysis of crude reaction 
mixture, (S,S)-Ph-BPE = 1,2-Bis((2S,5S)-2,5-
diphenylphospholano)ethane. 

This finding prompted a structure-activity relationship 
(SAR) study of the electrophilic acyl species (Scheme 2b). 
First, no coupling was observed when butanoic acid (1d) or 
its silyl ester 1e were used, clearly indicating the requirement 
for α,β-unsaturation in this process. Crotonaldehyde (1f) 
also provided no product, which suggests reduction of the 
acid to an aldehyde does not occur prior to hydroacylation. 
Additionally, other crotonoyl-based electrophiles, such as 
crotonoyl chloride (1g) or alkyl crotonates (1h and 1i), pro-
vided no hydroacylation product. On the other hand, the use 
of methyl(dimethoxy)silyl crotonate (1j) led to 20% yield of 
ketone 3a in 80% ee, suggesting silylated crotonic acid may 
be an active intermediate in the direct coupling of acids. 

Based on the above observations and previous studies on 
CuH chemistry, we are currently able to propose the reaction 
pathway outlined in Scheme 3.15 First, carboxylic acid depro-
tonation and silylation is catalyzed by CuH in the presence 
of a hydrosilane, generating activated acyl electrophile 4 
(Step A).16 Additionally, enantioselective hydrocupration of 
a styrene generates a chiral copper(I) benzylic intermediate 
(5, Step B), which represents the active nucleophilic partner. 
The reaction ultimately produces silyl enol ether 6, which is 
observed in high yield as judged by 1H NMR spectroscopy of 
the crude reaction mixture and allows access to chiral ketone 
3 upon treatment with NH4F.17 At this time, the mechanism 
by which chiral benzyl copper 5 and the silylated acid 4 cou-
ple (Step C), and if other reaction intermediates are in-
volved, is unknown and is the subject of ongoing investiga-
tions.18,19   
Scheme 3. Currently proposed pathway for hydroacylation. 

 
The current scope of accessible chiral α-aryl ketones 

through the CuH-catalyzed coupling of α,β-unsaturated ac-
ids to aryl alkenes is shown in Table 1.20a First, the vinyl 
arene scope was explored using simple unsaturated carbox-
ylic acid coupling partners (Table 1a). Electron deficient and 
electron rich, as well as ortho-substituted styrenes, provide 
chiral ketones in excellent yield and enantioselectivity (3a-
c). A variety of alkenes containing coordinating atoms or 
consisting of heterocycles, such as a piperizine, pyrimidine, 
pyrazole, pyridine, benzofuran and carbazole, engage in this 
hydroacylation process delivering ketones in high enantiopu-
rity (3d-i). In contrast to our previous hydroacylation meth-
od utilizing aryl anhydride reagents, we found that β-
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substituted styrenes couple to unsaturated acids in both high 
yield and enantioselectivity (Table 1b).20b β-substituted sty-
renes containing functional groups that could potentially be 
reduced by reactive CuH intermediates, such as a t-butyl 
ester (3j) and methyl ester (3k), are well tolerated, as is a 
PMB-protected alcohol (3l). Carboxylic acid substrates con-
taining ethers (3m and 3n), a thioether (3o) and potentially-
reducible functional groups, such as a nitro group (3p) and a 
cis-alkene (3q), couple to styrenes in excellent yield and ste-
reoselectivity (Table 1c). 
Table 1. Ketone substrate scope for the direct coupling of aryl 
alkenes to α,β-unsaturated carboxylic acids.a 

 

a All yields represent average isolated yields of two runs, per-
formed with 1 mmol of alkene.  

The substrates shown in Table 1 demonstrate that β-alkyl- 
and symmetrical β,β-dialkyl-substituted unsaturated carbox-
ylic acids are competent hydroacylation coupling partners 
for a variety of styrene types.20c α-Alkyl substituted unsatu-
rated acids, such as tiglic or angelic acid, do not engage in 
hydroacylation under the current reaction conditions. Simi-
larly, acrylic acid, an unsubstituted unsaturated carboxylic 
acid that would provide access to ethyl ketones, does not 
participate in this transformation (Scheme 4a). To address 
this limitation, we found that β-ethoxyacrylic acid (9) acts as 
an acrylic acid surrogate to deliver chiral ethyl ketones in 
good yield and enantiopurity (Scheme 4b). This approach, 
which we propose proceeds via a 1,4-reduction/β-ethoxy 
elimination pathway, is general as shown for ortho-
substituted substrate 10a and β-substituted styrene-derived 
ketone 10b. 
Scheme 4. The use of (a) acrylic acid and (b) β-
ethoxyacrylic acid to access chiral ethyl ketones.a 

 
a Yields represent average isolated yields of two runs, per-

formed with 1 mmol of alkene.  

To demonstrate the scalability of this methodology, a 10 
mmol scale reaction using just 1 mol% catalyst loading is 
shown in Eq 1 to provide 1.5 g of chiral ketone 3a with 92% 
ee. Given the ready accessibility of α,β-unsaturated acids and 
aryl alkenes, this method represents a highly practical ap-
proach to chiral α-aryl dialkyl ketones containing a range of 
functional groups and substitution patterns.21 Furthermore, 
by utilizing in situ activated acyl electrophiles as surrogates 
for aldehydes, this work addresses current substrate limita-
tions of existing hydroacylation methodogy. The mechanism 
of this unprecedented coupling reaction is currently under 
investigation, as are additional CuH-catalyzed transfor-
mations involving unsaturated carboxylic acid substrates. 
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O

Me Me

F

Cu(OAc)2 (1 mol%)
(S,S)-Ph-BPE (1.1 mol%)
Me(OMe)2SiH (8 equiv)

THF, 30 °C, 48 h
(NH4F workup)

1.5 g
76% yield
92% ee

OH

O

Me

+

F
2, 10 mmol

(1)
3a

(1.5 equiv)
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Disubstituted styrenes do not engage in hydroacylation under the current 
reaction conditions. (c) β-Aryl unsaturated acids (e.g. cinnamic acid) do 
not engage in hydroacylation under the current reaction conditions. 

(21) (a) Hayama, N.; Azuma, T.; Kobayashi, Y.; Takemoto, Y. Chem. 
Pharm. Bull. 2016, 64, 704. (b) Gooßen, L. J.; Rodríguez, N.; Gooßen, K. 
Angew. Chem., Int. Ed. 2008, 47, 3100. 
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OH

O
+

Ar R3SiH
L*CuH (cat)

O

Ar(NH4F workup)
carboxylic acid aryl alkene chiral ketone

i-Pr
O

OPMB
O

Me

N N

NR2

63% yield
92% ee

BnO
i-Pr

O
Me

58% yield
91% ee N N

Ar
80% yield
97% ee
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