SYNTHESIS

Reformatsky Reaction on Aroylketene S,N-Acetals: A Facile Route to 4-Amino-6-aryl-2H-pyran-2-ones1

A. Datta, H. Ila,* H. Junjappa*

Department of Chemistry, North-Eastern Hill University, Bijni Complex, Bhagyakul, Shillong 793003, India

The aroylketene S, N-acetals 1a-j are shown to undergo regioselective conjugate 1,4-addition with Reformatsky reagent derived from ethyl bromoacetate, followed by cyclization to give novel 4-amino-6-aryl-2Hpyran-2-ones 3a-j in good yields.

Although Reformatsky reaction has been extensively used in new C-C bond formation reactions on carbonyl compounds involving 1,2-additon,2-5 the examples of 1,4-conjugate additions to α,β -unsaturated carbonyl compounds are very few. Only the reagents derived from \alpha-bromopropionate and \alphabromobutyrate/isobutyrate are known to undergo either partial or exclusive 1,4-additions, 6-7 while there is no record of conjugate addition with Reformatsky reagent from ethyl bromoacetate. We have recently reported8 that aroylketene dithioacetals undergo Reformatsky reaction with ethyl bromoacetate to yield novel 3-substituted-1,1-bis(methylthio)-4-ethoxycarbonyl-1,3-butadienes by exclusive 1,2-addition. However, when the corresponding aroylketene *S,N*-acetals 1 were reacted with the same reagent 2 under identical conditions, the title pyrones 3 were obtained in good yields by initial 1,4-addition of 2 to 1. The results of these studies are reported in this communication.

When 1a was reacted with 2 in refluxing ether/benzene, the reaction mixture after work-up yielded a colorless solid, which was characterized as 4-morpholino-6-phenyl-2*H*-pyran-2-one (3a) on the basis of its spectral and analytical data (Table). The acidic hydrolysis of 3a gave the corresponding α-benzoylacetone in 72% yield, thus ruling out the possible 6-morpholino-4-phenyl-2*H*-pyran-2-one as an alternate structural isomer, which would be formed by 1,2-addition of 2 on 1a. The reaction was found to be general with other substituted *S*,*N*-acetals 1b-j, which yielded the corresponding 4-aminopyrones 3b-j in 60-72% overall yields. However, attempted reaction of cyclic *S*,*N*-acetals 1k and 1l with 2 under identical conditions yielded only complex mixture of products (Scheme A). Similarly the reaction of Reformatsky reagent from ethyl α-bromopropionate with 1a did not afford any identifiable product.

The probable mechanism for the formation of 3 from 1 and 2 is depicted in Scheme B. The Reformatsky reagent 2 undergoes 1,4-addition to 1 followed by elimination of methylthio group to give the intermediate adduct 6 which on subsequent cyclization assisted by lone pair of nitrogen gives the products 3. The α -oxoketene S,N-acetals behave in this reaction like enaminones, which are known to undergo conjugate 1,4-ad-

1, 3	Ar	\mathbb{R}^1	R ²	
a	C ₆ H ₅	-(CH ₂) ₂ 0	O(CH ₂) ₂ –	
b	4-ClC ₆ H ₄	$-(CH_2)_2O(CH_2)_2-$		
c	$4-CH_3C_6H_4$	$-(CH_2)_2O(CH_2)_2-$		
d	4-CH3OC6H4	-(CH ₂) ₄ -		
e	4-ClC ₆ H ₄	$-(CH_2)_4$		
f	4-CH3C6H4	$-(CH_2)_4-$		
g	4-ClC ₆ H ₄	$-(CH_2)_5-$		
h	C_6H_5	CH ₃	CH ₃	
i	4-ClC ₆ H ₄	CH_3	CH ₃	
j	4-CH ₃ OC ₆ H ₄	CH ₃	CH_3	

Scheme A

Table. 4-Amino-6-aryl-2H-pyran-2-ones 3a-j Prepared

Prod- uct	Yield ^a (%)	mp (°C)	Molecular Formula ^b	IR (KBr) ^c v (cm ⁻¹)	1 H-NMR (CDCl ₃) d δ , J (Hz)	MS (70 eV) ^e m/z (%)
3a	65	238	C ₁₅ H ₁₅ NO ₃ (257.3)	1680, 1630	3.41 ((t, 4H, NCH ₂); 3.83 (t, 4H, OCH ₂); 5.30 (d, $J = 2$, 1H, H-3); 6.51 (d, $J = 2$, 1H, H-5); 7.45–7.90 (m, 5H _{arom})	257 (M ⁺ , 55); 229 (44)
3b	68	249-250	C ₁₅ H ₁₄ ClNO ₃ (291.7)	1689, 1629	3.25 (t, 4H, NCH ₂); 3.70 (t. 4H, OCH ₂); 5.22 (d, $J = 2$, 1H, H-3); 6.35 (d, $J = 2$, 1H, H-5); 7.22–7.55 (dd, A_2B_2 , 4H _{arom})	293, 291 (M ⁺ , 35, 100); 247 (68)
3c	60	224–225	C ₁₆ H ₁₇ NO ₃ (271.3)	1690, 1622	2.40 (s, 3H, CH ₃); 3.40 (t, 4H, NCH ₂); 3.81 (t, 4H, OCH ₂); 5.33 (d, <i>J</i> = 2, 1H, H-3); 6.45 (d, <i>J</i> = 2, 1H, H-5); 7.20–7.82 (dd, A ₂ B ₂ , 4H _{arom})	271 (M ⁺ , 100); 243 (46)
3d	72	205–206	C ₁₆ H ₁₇ NO ₃ (271.3)	1677, 1630	1.81 (m, 4 H, CH ₂); 3.20 (m, 4 H, NCH ₂); 3.74 (s, 3 H, OCH ₃); 4.67 (d, <i>J</i> = 2, 1 H, H-3); 6.01 (d, <i>J</i> = 2, 1 H, H-5); 6.72–7.70 (dd, A ₂ B ₂ , 4 H _{arom})	271 (M ⁺ , 100); 243 (76)
3e	72	227	C ₁₅ H ₁₄ ClNO ₂ (275.8)	1678, 1632	2.11 (m, 4H, CH ₂); 3.4 (m, 4H, NCH ₂); 4.95 (d, J = 2, 1H, H-3); 6.35 (d, J = 2, 1H, H-5); 7.30–7.85 (dd, A_2B_2 , 4H _{arom}) ^f	277, 275 (M ⁺ , 18, 53); 247 (54)
3f	66	207-208	C ₁₆ H ₁₇ NO ₂ (255.3)	1679, 1632	1.91 (m, 4H, CH ₂); 2.34 (s, 3H, CH ₃); 3.30 (m, 4H, NCH ₂); 4.82 (d, $J = 2$, 1H, H-3); 6.22 (d, $J = 2$, 1H, H-5); 7.0-7.70 (dd, A_2B_2 , 4H _{arom})	255 (M ⁺ , 100); 227 (81)
3 g	69	202-203	C ₁₆ H ₁₆ CINO ₂ (289.8)	1692, 1629	1.72 (br s, 6 H, CH ₂); 3.41 (m, 4 H, NCH ₂); 5.15 (d, $J = 2$, 1 H, H-3); 6.50 (d, $J = 2$, 1 H, H-5); 7.32–7.82 (dd, A_2B_2 , 4 H _{arom})	291, 289 (M +, 27, 85); 261 (78)
3h	62	178179	$C_{13}H_{13}NO_2$ (215.3)	1680, 1635	3.11 (s, 6H, NCH ₃); 5.13 (d, $J = 2$, 1H, H-3); 6.40 (d, $J = 2$, 1H, H-5); 7.40–7.91 (m, 5H _{arom})	215 (M ⁺ , 100); 187 (73)
3i	65	200	C ₁₃ H ₁₂ ClNO ₂ (249.7)	1680, 1639	3.12 (s, 6H, NCH ₃); 5.24 (d, $J = 2$, 1H, H-3); 6.52 (d, $J = 2$, 1H, H-5); 7.41–7.90 (dd, A_2B_2 , 4H _{arom})	251, 249 (M ⁺ , 31, 64); 221 (84)
3ј	60	188–189	C ₁₄ H ₁₅ NO ₃ (245.3)	1675, 1623	3.10 (s, 6H, NCH ₃); 5.03 (d, $J = 2$, 1H, H-3); 6.33 (d, $J = 2$, 1H, H-5); 6.85~7.81 (dd, A_2B_2 , 4H _{arom})	245 (M ⁺ , 32); 217 (23)

^a Yield of pure isolated product.

^b Satisfactory microanalyses obtained: $C \pm 0.13$, $H \pm 0.22$, $N \pm 0.31$.

^c Recorded on Perkin-Elmer 297 spectrophotometer.

d Recorded on Varian EM-390 spectrometer.

e Recorded on Jeol JMS D-300 spectrometer.

^f ¹³C-NMR (CDCl₃): δ = 24.86 (CCH₂); 47.56 (NCH₂); 82.35 (C-3); 95.47 (C-5); 126.39, 129.10 (CH, aryl); 130.58, 136.30 (C-1', C-4', aryl); 155.55 (C-4); 158.09 (C-6); 163.38 (C=O).

250 Communications Synthesis

dition with organometallic reagents. The difference in the behavior of aroylketene S, S-acetals and I towards I to give 1,2-and 1,4-addition products respectively could be attributed to the reduced electrophilic character of carbonyl group in I due to delocalization of lone pair of nitrogen (structure IB) with concomitant relative increase in electrophilic character of β -carbon. However, it has been pointed out that such a delocalization of sulphur lone pair in ketene dithioacetals is not significant, since it requires a relatively unfavorable overlap of sulphur 3p orbitals with carbon 2p orbitals.

Scheme B

The reaction provides a facile entry to hitherto unreported 4-amino-6-aryl-2*H*-pyran-2-ones. A few of the 4-amino-6-methyl-2*H*-pyran-2-ones have been reported in the literature which are obtained either through the reaction of ketene O,N-or N,N-acetals with excess of ketene¹¹ or by condensation of 4-dimethylamino-3-penten-2-one with trichloroacetyl chloride followed by cyclization in presence of piperidine.¹² Also, the condensation of β -diethylaminocrotonate and benzoyl chloride is reported to yield the corresponding 3-benzoyl-4-diethyl-amino-6-phenyl-2*H*-pyran-2-one.¹³

The desired aroylketene S,N-acetals were prepared according to the earlier reported procedure. 14

4-Dimethylamino- 4-Morpholino- 4-Piperidino- and 4-(1-Pyrrolidinyl)-6-aryl-2*H*-pyran-2-ones 3a-j: General Procedure:

A suspension of activated zinc (heated at 100–110 °C for 1 h) (2.6 g, 0.04 g atom), ethyl bromoacetate (3.18 g, 0.02 mol) and a few crystals of iodine in dry ether (30 mL) is refluxed for 45 min with stirring. A solution of the respective aroylketene S,N-acetal 1 (0.01 mol) in dry benzene (50 mL) is added dropwise with stirring and the mixture is further refluxed for 3–4 h. The mixture is then poured over ice-cold dilute 3% H₂SO₄ (100 mL), the organic layer separated and the aqueous layer extracted with EtOAc (50 mL). The combined extract is washed with water (100 mL), dried (Na₂SO₄) and the solvent evaporated to give crude pyrones 3, which are further purified by passing through neutral alumina column. Elution with EtOAc/hexane (1:4) yields the pure pyrones 3a-j which are crystallized from EtOAc/hexane (Table).

Hydrolysis of 3a; Typical Procedure:

A suspension of pyrone 3a (0.25 g, 0.001 mol) in dilute 10 % HCl (10 mL) is heated with stirring at $70-80^{\circ}$ for 1 h. The mixture is then diluted with water (25 mL) and extracted with ether (2 × 50 mL) and the combined extract is washed successively with dilute 20 % NaHCO₃ solution (100 mL) and water (100 mL), dried (Na₂SO₄) and evaporated to give a viscous liquid, which is chromatographed on silica gel column. Elution with hexane gives benzoylacetone; yield: 0.1 g (72 %); mp $58-59^{\circ}$ C (Lit. ¹⁵ mp 61 °C) (superimposable IR and ¹H-NMR spectra).

We thank U.G.C. New Delhi for financial assistance under COSSIST programme and C.S.I.R. New Delhi for Senior Research Fellowship to

Received: 27 Juli 1987; revised: 19 October 1987

- (1) Part 61 of the series on Polarized Ketene S,S- and S,N-Acetals; Part 60: Singh, L.W., Ila, H., Junjappa, H. Synthesis 1988, 89.
- (2) Rathke, M.W. Org. React. 1975, 22, 423.
- (3) Dekker, J., Boersma, J., van der Kerk, G.J.M. J. Chem. Soc. Chem. Commun. 1983, 553, and references cited therein.
- (4) Harada, T., Mukaiyama, T. Chem. Lett. 1982, 161.
- (5) Orsini, F., Pelizzoni, F., Ricca, G. Tetrahedron Lett. 1982, 23, 3945.
- (6) Nützel, K., in: Houben-Weyl, Vol XIII/2a, Georg Thieme Verlag, Stuttgart, 1973, pp. 826–827.
- (7) Gandolfi, C., Doria, G., Amendola, M., Dradi, E. Tetrahedron Lett. 1970, 3923.
- (8) Apparao, S., Datta, A., Ila, H., Junjappa, H. Synthesis 1985, 169.
- (9) Greenhill, J. V. Chem. Soc. Rev. 1977, 6, 277.
- (10) Carey, F.A., Neergaard, J.R. J. Org. Chem. 1971, 36, 2731; and references cited therein.
- (11) Hasek, R.H., Gott, P.G., Martin, J.C. J. Org. Chem. 1964, 29, 2513.
 Opitz, G., Zimmermann, F. Chem. Ber. 1964, 97, 1266.
- (12) Bohme, H., Tränka, M. Liebigs Ann. Chem. 1985, 149.
- (13) Lauer, W. M., Cromwell, N. H. J. Am. Chem. Soc. 1942, 64, 612.
- (14) Vishwakarma, J.N., Apparao, S., Ila, H., Junjappa, H. *Indian J. Chem. Sect. B* **1985**, *24*, 466.
- (15) Dictionary of Organic Compounds, 5th ed. Buckingham, J. (ed.), Chapman and Hall, New York, 1982. p. 4605.