**ORIGINAL PAPER** 



# The preparation of pentafluorophenyldihaloboranes from pentafluorophenylmercurials C<sub>6</sub>F<sub>5</sub>HgR and BX<sub>3</sub>: the dramatic dependence of the reaction direction on the ligand R

Vadim V. Bardin<sup>1,2</sup> · Nicolay Yu. Adonin<sup>2,3</sup>

Received: 21 March 2019 / Accepted: 24 June 2019 / Published online: 17 July 2019 © Springer-Verlag GmbH Austria, part of Springer Nature 2019

#### Abstract

In search of convenient preparations of  $C_6F_5BX_2$  (X = Cl, Br), reactions of  $C_6F_5HgR$  (R =  $C_6F_5$ ,  $C_6H_5$ ,  $C_2H_5$ , Br and Cl) with BX<sub>3</sub> were studied. Under the action of BCl<sub>3</sub> the order of the C–Hg bond cleavage is  $C_6F_5Hg-C_6H_5 > C_6F_5-HgC_2H_5 > C_6F_5-HgC_2H_5 > C_6F_5-HgC_6F_5 > C_6F_5-HgC_2H_5 > C_6F_5-HgC_2H_5 > C_6F_5-HgC_2H_5 > C_6F_5-HgC_6F_5 > C_6F_5-HgC_2H_5 > C_6F_5-HgC_2H_5$ 

#### **Graphic abstract**



Keywords Main group compounds · NMR spectroscopy · Transmetallation · Organometallic compounds

## Introduction

Recently, we reported the successful *C*-alkylation of some phenols with olefins catalyzed with fluoro-containing phenyldifluoroboranes [1]. This demonstrates the perspectives

Dedicated to Prof. Dr. H. C. H.-J. Frohn on the occasion of his 75th birthday.

⊠ Vadim V. Bardin bardin@nioch.nsc.ru

- <sup>1</sup> N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrent'ev Ave., 9, 630090 Novosibirsk, Russia
- <sup>2</sup> Novosibirsk State University, Pirogova Str., 2, 630090 Novosibirsk, Russia
- <sup>3</sup> G. K. Boreskov Institute of Catalysis, SB RAS, Acad. Lavrent'ev Ave., 5, 630090 Novosibirsk, Russia

of this class of organoboron compounds in Lewis acidcatalyzed processes. The obtained results prompted us to search the convenient preparations of polyfluorinated aryldichloroboranes and aryldibromoboranes, the stronger Lewis acids than their non-fluorinated analogues. Syntheses of the latter boranes are known for a long time, but majority of them cannot be applied for the preparation of polyfluorinated analogues because of the specific influence of many fluorine atoms in aromatic ring (see reviews [2, 3]). The first polyfluorinated arylboranes  $C_6F_5BX_2$  (X = F, Cl, Br) and  $(C_6F_5)_3B$  were synthesized in the sixties [4–7]. They remained the chemical exotic until the mid-eighties when outstanding properties of tris(pentafluorophenyl)borane as co-catalyst of the olefin polymerization was discovered. Now the number of publications about its applications in homogeneous catalysis of many processes exceeds two thousand.

The catalytic properties of polyfluorinated aryldihaloboranes were not studied.

There are two practically available routes to Ar<sub>F</sub>BX<sub>2</sub>  $(Ar_{\rm F} \text{ is polyfluoroaryl moiety})$ . The first is a reaction of  $C_6F_5HgAlk$  (Alk = CH<sub>3</sub>,  $C_2H_5$ ) with BCl<sub>3</sub> without solvent [6, 7] or with BBr<sub>3</sub> in  $CH_2Cl_2$  [8]. The preparation of C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> by long refluxing of C<sub>6</sub>F<sub>5</sub>HgBr and BBr<sub>3</sub> in toluene was claimed without description [9]. The second route is presented by the formation of C<sub>6</sub>F<sub>5</sub>BCl<sub>2</sub> from of  $C_6F_5SnMe_3$  or  $(C_6F_5)_2SnMe_2$  and boron trichloride (yields 96 and 74%, respectively) [4, 6], and C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> from BBr<sub>3</sub> and  $(C_6F_5)_2$ SnBu<sub>2</sub> (yield 22%) [5]. The main disadvantage of the "tin" method is the difficult isolation aryldihaloboranes due to the close boiling points and the solubility of the reaction by-product, alkyltin halide. This is complicated by the high sensibility of both  $C_6F_5BX_2$  and  $Alk_nSnX_{4-n}$  to moisture. The "mercury" method is devoid of these disadvantages. Mercurials XHgAlk are solid which are poorly soluble in non-polar organic solvents. They can be easily separated from the solutions of formed polyfluoroaryldihaloborane and reused in the synthesis of C<sub>6</sub>F<sub>5</sub>HgAlk without the environment pollution.

Being interested in pentafluorophenyldihaloboranes as perspective homogeneous catalysts, we studied reactions of easily available pentafluorophenylmercurials  $C_6F_5HgR$ ( $R = C_6F_5$ ,  $C_6H_5$ ,  $C_2H_5$ , Br, and Cl) with boron trichloride and boron tribromide to develop a convenient way to produce pentafluorophenyldichloroborane and pentafluorophenyldibromoborane in solution. To get an objective picture, these reactions were performed in weakly polar solvents ( $CH_2Cl_2$ ,  $CH_2ClCH_2Cl$ ) where arylmercurials (both substrates and products) are soluble. However, organomercury halides and mercury dihalides are low soluble in non-polar solvents, and at the end of reaction they can be removed from of the desired solution of aryldihaloboranes by dilution with hexane or benzene and the subsequent centrifugation.

#### **Results and discussion**

#### **Reactions with boron trichloride**

Pentafluorophenylmercury chloride (1) does not react with BCl<sub>3</sub> being heated in sealed tube at 60–70 °C (Scheme 1). No reaction between bis(pentafluorophenyl)mercury (2) and BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> was observed at 22 °C over a period of 24 h. At higher temperature (60–70 °C) pentafluorophenyl-dichloroborane (3) and pentafluorophenylmercury chloride are formed (Scheme 2).

There are two possibilities of C–Hg bond cleavage for pentafluorophenyl(phenyl)mercury (4). Mixing 4 with excess  $BCl_3$  in  $CH_2Cl_2$  at 2–4 °C and subsequent warming the reaction mixture to room temperature showed unambiguously



the formation of **1** and phenyldichloroborane. The same result was obtained at -60 °C (Scheme 3).

The reaction of pentafluorophenyl(ethyl)mercury (**5**) with boron trichloride (twofold excess) in  $CH_2Cl_2$  at -60 °C for 6 h and subsequent warming to room temperature gives aryldichloroborane **3** and EtHgCl in quantitative yields. An addition of BCl<sub>3</sub> in  $CH_2Cl_2$  to **5** at 2–4 °C and stirring at 22 °C also results in **3** and EtHgCl. Attempt to obtain bis(pentafluorophenyl)chloroborane (**6**) using excess of **5** (22 °C, 72 h) led to the incomplete conversion of  $C_6F_5HgEt$ to  $C_6F_5BCl_2$  and  $(C_6F_5)_2BCl$ . The complete conversion of **5** to **6** was achieved after 1 week, although target compound was contaminated with the hydrolysis products such as  $C_6F_5H$ ,  $[(C_6F_5)_2B]_2O$ , and  $(C_6F_5)_2BOH$  (<sup>11</sup>B, <sup>19</sup>F NMR) (Scheme 4).

#### **Reactions with boron tribromide**

Pentafluorophenylmercury bromide (**7**) reacts with BBr<sub>3</sub> (1 equivalent) in DCE at 22 °C very slowly and after 24 h its conversion does not exceed 10–15%. Reflux of the reaction solution within 7 h leads to the precipitation of HgBr<sub>2</sub>, but the complete conversion of **7–8** requires a longer period. The use of C<sub>6</sub>F<sub>5</sub>HgCl instead of C<sub>6</sub>F<sub>5</sub>HgBr and heating in sealed tube at the higher temperature results in a mixture of C<sub>6</sub>F<sub>5</sub>BCl<sub>n</sub>Br<sub>2-n</sub> (n=0–2) (<sup>11</sup>B, <sup>19</sup>F NMR) that was confirmed by hydrolysis of these boranes to pentafluorophenylboronic acid (Scheme **5**).

Taking into account the low reactivity of **7** towards BBr<sub>3</sub> the stepwise substitution of  $C_6F_5$  groups in  $(C_6F_5)_2Hg$  with bromine was expected. Actually, the treatment of **2** with BBr<sub>3</sub> leads to the slow disappearance of the substrate and formation of  $C_6F_5BBr_2$  and  $C_6F_5HgBr$ . The complete conversion of **2** was achieved within 24 h. Using a more concentrated solution of **2** and excess of BBr<sub>3</sub> has a small effect. The desired borane **8** was obtained by heating of **2** with tribromoborane in DCE within 3 h (Scheme 6).

When  $(C_6F_5)_2Hg$  is combined with one equivalent of BBr<sub>3</sub>, the formation of bis(pentafluorophenyl)bromoborane (9) from intermediate 8 and 7 becomes possible. Unfortunately, this reaction proceeds slowly even at 120 °C in ampoule that points out the lower reactivity of  $C_6F_5BBr_2$  with respect to reactivity of BBr<sub>3</sub> (Scheme 7).

Scheme 2



Scheme 3



Scheme 4



In contrast to 2, reaction of arylmercurial 4 with BBr<sub>3</sub> proceeds quickly giving 7 and phenyldibromoborane (Scheme 8).

The result of interaction of pentafluorophenyl(ethyl) mercury with BBr<sub>3</sub> strongly depends on the reaction conditions. If  $C_6F_5BCl_2$  can be obtained from 5 and neat BCl<sub>3</sub> at 22 °C [6, 7], the contact of neat BBr<sub>3</sub> with 5 at 22 °C caused vigorous reaction and formation of complex mixture. In addition, the fast and quantitative cleavage of Hg–Et bond and formation of 7 occurred when 5 was added to BBr<sub>3</sub> in

toluene. Mixing of reagents in dichloromethane solution at 2–4 °C results in precipitate and colorless mother liquor that contained **8**, **7**, EtBBr<sub>2</sub>, and residual BBr<sub>3</sub>, but no further reaction was observed for the next 72 h at 22 °C (<sup>11</sup>B, <sup>19</sup>F NMR). Reverse the order of mixing, an addition of BBr<sub>3</sub> to **5**, reduces the amount of **7**, but not significantly. The closely related result was obtained when BBr<sub>3</sub> was added to **5** at -55 °C. Desired product **8** was prepared by addition of **5** to BBr<sub>3</sub> (1:1) in CH<sub>2</sub>Cl<sub>2</sub> at -55 °C, e.g. by reproduction of reported procedure [8] (Scheme 9).

Scheme 5



n = 0-2

Scheme 6



Scheme 7



The obtained picture reveals the significant difference of reactivity of  $C_6F_5HgR$  from that for the non-fluorinated analogues towards trihaloboranes. This is well-illustrated by comparison of our results (Schemes 1 and 2) and the reported reaction conditions for the related phenylmercury derivatives [10, 11] (Scheme 10). It is clear that the removal of aryl groups from the mercury surround occurs under

Scheme 8

milder conditions than the removal of the corresponding polyfluoroaryl groups.

Based on our results shown above we could do some considerations about the reaction pathways. Likely, the driving force of reaction is the affinity of mercury to halide anion that increases in the order: F < Cl < Br < I, and this coincides with the relative reactivity of trihaloboranes:  $BCl_3 < BBr_3$ . It seems that the C–Hg bond cleavage is the



#### Scheme 11



Scheme 12

DCE  $C_2H_5HgBr + BBr_3 \longrightarrow C_2H_5BBr_2 + HgBr_2$   $22 \ ^{\circ}C, 3 \ h$ 

result of concerted reaction with  $BX_3$  with the coordination of halide atom X to mercury. There are two possible modes of such cleavage in the case of asymmetric diorganylmercury, RHgR'. It is logical to assume that the preferred site for coordinating the electron-deficient boron atom is a more electron-rich carbon atom (Scheme 11).

In the reactions with BCl<sub>3</sub> the carbon-mercury bonds cleave selectively in the order:  $C_6F_5Hg-C_6H_5 > C_6F_5-HgC_2H_5 > C_6F_5-HgC_6F_5$ . In the case of BBr<sub>3</sub> bond Hg-C<sub>6</sub>H<sub>5</sub> cleaves faster than bond Hg-C<sub>6</sub>F<sub>5</sub>, but the interaction of  $C_6F_5HgC_2H_5$  with tribromoborane proceeds on both channels (Scheme 9). For example, the carbon atom of CH<sub>2</sub> moiety is the more kinetically attractive reaction center than carbon C-1 of the pentafluorophenyl group (at least, at room temperature). Evidently, this is consistent with the lower reactivity of  $C_6F_5HgBr$  (Scheme 5) compared with that of  $C_2H_5HgBr$  which reacts with BBr<sub>3</sub> at room temperature (Scheme 12).

We tried to find other examples of the preparation of alkylboranes from alkylmercurials AlkHgR' (R'=halogen or any organyl group) and BX<sub>3</sub>. To our surprise, there is only one communication that describes syntheses of cyclopropylboranes C<sub>3</sub>H<sub>5</sub>BX<sub>2</sub> by unfreezing bis(cyclopropyl)mercury and Me<sub>2</sub>BCl, BCl<sub>3</sub> or BF<sub>3</sub> from -196 °C [12]. Thus, the above preparation of EtBBr<sub>2</sub> is the second example of such process.

Finally, two publications on acidolysis of  $R_2Hg$ (R=CH<sub>2</sub>=CH, C<sub>6</sub>H<sub>5</sub>, C<sub>n</sub>H<sub>2n+1</sub>) by anhydrous HCl, HBr, or H<sub>2</sub>SO<sub>4</sub> in DMSO-dioxane should be mentioned. Based on the kinetic measurements, Dessy et al. [13, 14] outlined the following sequences of the reactivity: R=CH<sub>2</sub>=CH>C<sub>6</sub>H<sub>5</sub>>>C<sub>2</sub>H<sub>5</sub> and HBr>HCl. They also suggested that reactions proceed via the concerted mechanism rather than simple attack by H<sup>+</sup>. In the other words, scheme of acidolysis with Brønsted acids, HCl and HBr, has the close similarity with assumed route of the C–Hg bond cleavage with Lewis acids, BX<sub>3</sub> (Scheme 11).

#### Conclusion

- 1.  $C_6F_5HgC_2H_5$  is the most convenient arylmercurial reagent among the tested ones for the preparation of  $C_6F_5BCl_2$ . Its reaction with BBr<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> at low temperature can be also employed for the synthesis of  $C_6F_5BBr_2$ , but the desired product can be contaminated with  $C_6F_5HgBr$ .
- 2. Preferential route to  $C_6F_5BBr_2$  is heating  $C_6F_5HgBr$  with  $BBr_3$  (excess) in an appropriate solvent. Another arylmercurials 1, 2, 4, and 5 are not convenient substrates.
- 3. Reaction of all tested  $C_6F_5HgR$  with  $BX_3$  (X = Cl, Br) is not suitable for the preparation of  $(C_6F_5)_2BX$  due to the low reactivity of  $C_6F_5HgX$  towards  $C_6F_5BX_2$ .
- The observed alkyl-mercury bond cleavage in C<sub>6</sub>F<sub>5</sub>HgEt and EtHgBr by BBr<sub>3</sub>, together with early communication [12], proves the possibility of preparation of alkyldibromoborane from alkylmercurials.

### Experimental

The NMR spectra were recorded on a Bruker Avance 300 (<sup>1</sup>H at 300.13 MHz and <sup>19</sup>F at 282.40 MHz) and Avance 600 (<sup>11</sup>B at 192.60 MHz and <sup>199</sup>Hg at 107.51 MHz) spectrometers. The chemical shifts are referenced to TMS (<sup>1</sup>H), 15% BF<sub>3</sub> OEt<sub>2</sub> (v/v) in CDCl<sub>3</sub> (<sup>11</sup>B), CCl<sub>3</sub>F (<sup>19</sup>F, with C<sub>6</sub>F<sub>6</sub> as secondary reference (-162.9 ppm)), and (CH<sub>3</sub>)<sub>2</sub>Hg (neat) (<sup>199</sup>Hg), respectively.

Ether and THF were distilled over sodium and stored over it. Dichloromethane and 1,2-dichloroethane (DCE) were distilled over  $P_2O_5$  and stored over zeolites. Organomercurials  $C_6F_5HgCl(1), C_6F_5HgBr(7), C_6F_5HgEt(5)$  [15],  $(C_6F_5)_2Hg$ (2) [16] were prepared as described.  $C_6F_5HgPh(4)$  [16] and  $C_6H_5HgBr$  [17, 18] were prepared on the modified procedures. BCl<sub>3</sub> and BBr<sub>3</sub> were used as supplied. Quantitative analysis of reaction mixtures was performed by the <sup>19</sup>F NMR spectroscopy with quantitative internal reference  $C_6H_5F$ . The known aryl(halo)boranes **3**, **6**, **8**, **9** [3],  $C_2H_5BBr_2$ ,  $C_6H_5BCl_2$ , and  $C_6H_5BBr_2$  [19] were identified on the <sup>11</sup>B and <sup>19</sup>F NMR spectra. **Phenylmercury bromide** Mercury dibromide (27.1 g, 10 mmol) was suspended in 100 cm<sup>3</sup> ether and a solution of C<sub>6</sub>H<sub>5</sub>MgBr [from 12.0 g C<sub>6</sub>H<sub>5</sub>Br (76 mmol) and 1.88 g Mg (77 mmol)] in 50 cm<sup>3</sup> ether was added gradually to keep gentle boiling. White suspension was refluxed for 4 h, cooled and colorless ethereal phase was decanted. Residue was washed with hot diluted HCl, with water, with 30 cm<sup>3</sup> ethanol and with 30 cm<sup>3</sup> ether. Then white powder was dried on air and at 100–105 °C (oil bath) to yield C<sub>6</sub>H<sub>5</sub>HgBr (24 g). <sup>1</sup>H NMR (acetone-*d*<sub>6</sub>):  $\delta$ =7.33 [d, <sup>3</sup>*J*(H<sup>2</sup>, H<sup>3</sup>)=6.8 Hz, 2H, H<sup>2.6</sup>], 7.17 [t, <sup>3</sup>*J*(H<sup>4</sup>, H<sup>3.5</sup>)=7.1 Hz, 1H, H<sup>4</sup>], 7.10 (m, 2H, H<sup>3.5</sup>) ppm; <sup>199</sup>Hg{H} NMR (acetone-*d*<sub>6</sub>):  $\delta$ =-1305 ppm.

Pentafluorophenyl(phenyl)mercury (4) Phenylmercury bromide (2.89 g, 8 mmol) was suspended in 10 cm<sup>3</sup> THF and a solution of C<sub>6</sub>F<sub>5</sub>MgBr [from 2.53 g C<sub>6</sub>F<sub>5</sub>Br (10 mmol) and 0.343 g Mg (14 mmol)] in 27 cm<sup>3</sup> ether was added gradually. White suspension was refluxed for 3 h, cooled and treated with water. Organic phase was decanted and aqueous one was extracted with ether. Combined extract was washed with brine acidified with HCl, and dried with MgSO<sub>4</sub>. Solvent was evaporated to yield brownish powder. Crystallization from CCl<sub>4</sub> gave needles (2.4 g). <sup>1</sup>H NMR (acetone $d_6$ ):  $\delta = 7.34$  (d,  ${}^{3}J(\mathrm{H}^{2}, \mathrm{H}^{3}) = 6.8$  Hz, 2H, H<sup>2,6</sup>), 7.20 (dd, 2H,  $H^{3,5}$ ), 7.05 [t,  ${}^{3}J(H^{4}, H^{3,5}) = 7.4$  Hz, 1H, H<sup>4</sup>] ppm;  ${}^{19}F$ NMR (acetone- $d_6$ ):  $\delta = -118.0 \text{ [md, } {}^{3}J(\text{F}^{2,6}, \text{Hg}) = 358 \text{ Hz},$ 2F,  $F^{2,6}$ ], -155.0 [t,  ${}^{3}J(F^{4}, F^{3,5}) = 19.3$  Hz, 1F,  $F^{4}$ ], -160.6  $[md, {}^{4}J(F^{3,5}, Hg) = 64 Hz, 2F, F^{3,5}] ppm; {}^{199}Hg\{H\} NMR$ (acetone- $d_6$ ):  $\delta = -884$  [tt,  ${}^{3}J(\text{Hg}, \text{F}^{2,6}) = 360$  Hz,  ${}^{4}J(\text{Hg}, \text{Hg})$  $F^{3,5}$ ) = 64 Hz] ppm.

Attempted reaction of  $C_6F_5HgCl$  with BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> Solution of 516 mg  $C_6F_5HgCl$  (1.28 mmol) and BCl<sub>3</sub> (1.9 mmol) in 5.5 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> was kept into sealed tube at 60–80 °C (bath) for 8 h. No reaction occurred (<sup>19</sup>F NMR).

**Reaction of**  $(C_6F_5)_2$ **Hg with BCl<sub>3</sub>** Solution of 290 mg  $(C_6F_5)_2$ Hg (**2**, 0.54 mmol) and BCl<sub>3</sub> (0.95 mmol) in 7 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> was kept at 22 °C for 24 h, but no reaction occurred (<sup>19</sup>F NMR). It was heated into sealed tube at 60–70 °C (bath) for 12 h. The solution contained C<sub>6</sub>F<sub>5</sub>HgCl (**1**), C<sub>6</sub>F<sub>5</sub>BCl<sub>2</sub> (**3**) (1:1), and residual BCl<sub>3</sub> (<sup>11</sup>B, <sup>19</sup>F NMR).

**Reactions of C<sub>6</sub>F<sub>5</sub>HgPh with BCl<sub>3</sub>** Cold (2–4 °C) 0.95 M solution of BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (2.0 cm<sup>3</sup>, 1.9 mmol) was added into cold (2–4 °C) (bath) stirred solution of 372 mg C<sub>6</sub>F<sub>5</sub>HgPh (**4**, 0.83 mmol) in 5 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. After 24 h at 22 °C, solution contained C<sub>6</sub>F<sub>5</sub>HgCl (**1**, 0.81 mmol), C<sub>6</sub>H<sub>5</sub>BCl<sub>2</sub>, and BCl<sub>3</sub> (<sup>11</sup>B, <sup>19</sup>F NMR).

Cold (-60 °C) 0.95 M BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (1.0 cm<sup>3</sup>, 0.95 mmol) was added into cold (-60 °C) (bath) stirred solution of 506 mg C<sub>6</sub>F<sub>5</sub>HgPh (**4**, 0.50 mmol) in 3 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> and kept at -(60–55) °C for 5 h. Then the reaction

mixture was thawed to room temperature overnight. It contained  $C_6F_5HgCl$  (1, 0.46 mmol),  $C_6H_5BCl_2$ , and  $BCl_3$  (<sup>11</sup>B, <sup>19</sup>F NMR).

**Reactions of C<sub>6</sub>F<sub>5</sub>HgEt with BCl<sub>3</sub>** Solution of 405 mg C<sub>6</sub>F<sub>5</sub>HgEt (**5**, 1.0 mmol) in 1 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> was added into cold (-60 °C) (bath) stirred 2.1 cm<sup>3</sup> 0.95 M solution of BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (2.0 mmol) diluted with 2 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. After 1 h, white suspension was formed. It was stirred at -(45-55) °C for 6 h, and allowed to warm to 22 °C overnight. The mother liquor over precipitate contained C<sub>6</sub>F<sub>5</sub>BCl<sub>2</sub> (**3**, 0.80 mmol) (<sup>19</sup>F NMR) and EtHgCl (0.38 mmol) (<sup>1</sup>H NMR). After dilution with 6 cm<sup>3</sup> hexane, precipitated EtHgCl was separated by centrifugation.

Solution 0.95 M BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (1.2 cm<sup>3</sup>, 1.11 mmol) was added into cold (2–4 °C) (bath) stirred solution of 243 mg C<sub>6</sub>F<sub>5</sub>HgEt (**5**, 0.61 mmol) in 7 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. The colorless solution was stirred at 22 °C for 24 h. It contained C<sub>6</sub>F<sub>5</sub>BCl<sub>2</sub> (**3**, 0.59 mmol) and EtHgCl (<sup>1</sup>H, <sup>19</sup>F NMR). The latter was precipitated by cooling to – (40–50) °C and subsequent decantation of the mother liquor under an atmosphere of dry argon.

Solution 0.95 M BCl<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (1.6 cm<sup>3</sup>, 1.5 mmol) was added into cold (-60 °C) (bath) stirred solution of 1.18 g C<sub>6</sub>F<sub>5</sub>HgEt (**5**, 2.97 mmol) in 7 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. The reaction mixture was stirred at -(60-55) °C for 6 h, and allowed to warm to 22 °C overnight. The mother liquor contained C<sub>6</sub>F<sub>5</sub>HgEt (**5**), C<sub>6</sub>F<sub>5</sub>BCl<sub>2</sub> (**3**), and (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>BCl (**6**) (2:10:1). After 72 h it contained C<sub>6</sub>F<sub>5</sub>BCl<sub>2</sub>, (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>BCl, [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>B]<sub>2</sub>O, and C<sub>6</sub>F<sub>5</sub>H (10:6:6:6). After 1 week, (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>BCl, [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>BCl, [(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>BOH, and C<sub>6</sub>F<sub>5</sub>H were formed in ratio 2:3:1:3 (<sup>19</sup>F NMR).

 $[(C_6F_5)_2B]_2O \ ^{19}F \text{ NMR } (CD_2Cl_2): \delta = -132.3 \text{ (m, } 8F^{2.6}), \\ -146.2 \text{ [tt, }^{3}J(F^4, F^{3.5}) = 20.1 \text{ Hz}, \, ^{4}J(F^4, F^{2.6}) = 5.3 \text{ Hz}, \, 4F^4], \\ -161.2 \text{ (m, } 8F^{3.5}) \text{ ppm (lit. } [20]: \delta = -132.12, \, -145.99, \\ -161.14 \text{ ppm}); \, ^{11}B \text{ NMR } (CD_2Cl_2): \delta = 38.6 \text{ ppm.}$ 

 $(C_6F_5)_2$ BOH <sup>19</sup>F NMR (CD<sub>2</sub>Cl<sub>2</sub>): δ = −132.9 (m, 4F<sup>2.6</sup>), −148.7 [t, <sup>3</sup>*J*(F<sup>4</sup>, F<sup>3.5</sup>) = 18.6 Hz, 2F<sup>4</sup>], −161.2 (m, 4F<sup>3.5</sup>) ppm (lit. [20]: δ = −132.78, −148.28, −160.70 ppm); <sup>11</sup>B NMR (CD<sub>2</sub>Cl<sub>2</sub>): δ = 40.5 ppm (lit. [21]: δ = 40.2 ppm).

**Reaction of C<sub>6</sub>F<sub>5</sub>HgBr with BBr<sub>3</sub>** Solution of 695 mg C<sub>6</sub>F<sub>5</sub>HgBr 7 (1.55 mmol) and 409 mg BBr<sub>3</sub> (1.63 mmol) in 5 cm<sup>3</sup> DCE was refluxed 7 h to form suspension. The mother liquor showed signals of C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> (**8**, 1.22 mmol) and C<sub>6</sub>F<sub>5</sub>HgBr (**7**, 0.13 mmol, 90% conversion). After an additional reflux for 5 h, the mother liquor was decanted. The <sup>19</sup>F NMR spectrum showed signals of C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> (1.47 mmol, 95% yield).

**Reaction of C<sub>6</sub>F<sub>5</sub>HgCl with BBr<sub>3</sub>** C<sub>6</sub>F<sub>5</sub>HgCl (1, 197 mg, 0.48 mmol) and 120 mg BBr<sub>3</sub> (0.48 mmol) in 3 cm<sup>3</sup> DCE were heated in a sealed tube at 110–120 °C (bath) for 16 h. A probe of the mother liquor over precipitate showed signals at – (128.5–129.8) (four multiplets), – (145.0–146.4) (four triplets), and – 161 ppm (overlapped multiplets) in 2:1:2 ratio, which were attributed to C<sub>6</sub>F<sub>5</sub>BCl<sub>n</sub>Br<sub>2-n</sub> (n=0–2) (0.42 mmol) (<sup>19</sup>F NMR). In the <sup>11</sup>B NMR spectrum signals of C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> (**8**) at 53.5 ppm and C<sub>6</sub>F<sub>5</sub>BCl<sub>2</sub> (**3**) at 52.7 ppm were identified. In addition, traces of C<sub>6</sub>F<sub>5</sub>HgBr, C<sub>6</sub>F<sub>5</sub>H, BCl<sub>3</sub>, BCl<sub>2</sub>Br, and BClBr<sub>2</sub> were found (<sup>11</sup>B, <sup>19</sup>F NMR). Additional evidence of arylboranes formation was the production of C<sub>6</sub>F<sub>5</sub>B(OH)<sub>2</sub> (0.38 mmol) by hydrolysis of this solution.

**Reactions of**  $(C_6F_5)_2$ **Hg with BBr**<sub>3</sub> Solution of 137 mg  $(C_6F_5)_2$ Hg (2, 0.25 mmol) and 125 mg BBr<sub>3</sub> (0.50 mmol) in 3 cm<sup>3</sup> DCE was kept at 22 °C for 4 h. The colorless solution showed signals of  $(C_6F_5)_2$ Hg (0.05 mmol),  $C_6F_5$ HgBr (7, 0.19 mmol) and  $C_6F_5$ BBr<sub>2</sub> (8, 0.13 mmol). After 24 h, the solution contained  $C_6F_5$ HgBr (0.22 mmol) and  $C_6F_5$ BBr<sub>2</sub> (0.16 mmol) (<sup>19</sup>F NMR).

Solution of 282 mg  $(C_6F_5)_2$ Hg (**2**, 0.52 mmol) and 403 mg BBr<sub>3</sub> (1.61 mmol) in 1.6 cm<sup>3</sup> DCE was kept at 22 °C for 18 h. The colorless solution showed signals of  $C_6F_5$ HgBr (**7**, 0.37 mmol) and  $C_6F_5$ BBr<sub>2</sub> (**8**, 0.68 mmol). After 42 h, the solution contained  $C_6F_5$ HgBr (0.20 mmol) and  $C_6F_5$ BBr<sub>2</sub> (0.74 mmol) (<sup>19</sup>F NMR). Arylmercurial **7** was removed by dilution with 5 cm<sup>3</sup> benzene and subsequent centrifugation.

Solution of 282 mg ( $C_6F_5$ )<sub>2</sub>Hg (**2**, 0.52 mmol) and 403 mg BBr<sub>3</sub> (1.61 mmol) in 1.6 cm<sup>3</sup> DCE was kept at 80–85 °C for 3 h and left at 22 °C overnight. The mother liquor was decanted, diluted with 10 cm<sup>3</sup> DCE, and 8 cm<sup>3</sup> of a mixture of DCE (b.p.: 84 °C) and BBr<sub>3</sub> (b.p.: 89 °C) was distilled off under reduced pressure to give a solution of  $C_6F_5BBr_2$  (**8**, 1.00 mmol) free of BBr<sub>3</sub> (<sup>11</sup>B, <sup>19</sup>F NMR).

Solution 0.25 M BBr<sub>3</sub> in DCE (3 cm<sup>3</sup>, 0.75 mmol) was added into the solution of 400 mg ( $C_6F_5$ )<sub>2</sub>Hg (**2**, 0.75 mmol) in 2 cm<sup>3</sup> DCE and stirred at 75–80 °C for 9 h. A probe showed signals of  $C_6F_5$ HgBr (**7**, 0.70 mmol),  $C_6F_5BBr_2$  (**8**, 0.47 mmol), and ( $C_6F_5$ )<sub>2</sub>BBr (**9**, 0.08 mmol). Heating at 120 °C in a sealed tube for 17 h gave  $C_6F_5$ HgBr (0.22 mmol),  $C_6F_5BBr_2$  (0.14 mmol), and ( $C_6F_5$ )<sub>2</sub>BBr (0.31 mmol) (<sup>11</sup>B, <sup>19</sup>F NMR).

**Reaction of C<sub>6</sub>F<sub>5</sub>HgPh with BBr<sub>3</sub>** Solution 0.65 M BBr<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (1 cm<sup>3</sup>, 0.65 mmol) was added into cold (1–4 °C) (bath) solution of 240 mg C<sub>6</sub>F<sub>5</sub>HgPh (**4**, 0.54 mmol) in 2 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. The resulted solution was stirred in ice bath for 0.5 h, then at 22 °C for 3 h. The <sup>11</sup>B and <sup>19</sup>F NMR spectra showed signals of C<sub>6</sub>F<sub>5</sub>HgBr (**7**, 0.49 mmol) and PhBBr<sub>2</sub>.

**Reactions of C<sub>6</sub>F<sub>5</sub>HgEt with BBr<sub>3</sub>** BBr<sub>3</sub> (1.52 g, 6.1 mmol) was added dropwise to 1.00 g neat C<sub>6</sub>F<sub>5</sub>HgEt (**5**, 2.5 mmol). Vigorous reaction occurred. The products were dissolved in 4 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. According to the <sup>19</sup>F NMR spectrum, solution contained several pentafluorophenylboranes.

Solution of 757 mg C<sub>6</sub>F<sub>5</sub>HgEt (**5**, 1.9 mmol) in 3 cm<sup>3</sup> toluene was added into cold (1–4 °C) (bath) solution of 733 mg BBr<sub>3</sub> (2.9 mmol) in 13 cm<sup>3</sup> toluene. The solution was stirred in ice bath for 2 h. The <sup>19</sup>F NMR spectrum showed signals of C<sub>6</sub>F<sub>5</sub>HgBr (**7**) while C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> was not detected.

Solution of 1.36 g  $C_6F_5HgEt$  (5, 3.43 mmol) in 3 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> was added into cold (2–4 °C) (bath) solution of 1.22 g BBr<sub>3</sub> (4.84 mmol) in 13 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. Immediately white suspension was formed. It was stirred in ice bath for 2 h. Probe of the mother liquor contained  $C_6F_5HgBr$ ,  $C_6F_5BBr_2$  (2:1), EtBBr<sub>2</sub>, and BBr<sub>3</sub> (<sup>11</sup>B, <sup>19</sup>F NMR). No changes proceeded for the next 72 h.

Cold (2–4 °C) 0.65 M BBr<sub>3</sub> in CH<sub>2</sub>Cl<sub>2</sub> (1 cm<sup>3</sup>, 0.65 mmol) was added into cold (2–4 °C) (bath) solution of 514 mg C<sub>6</sub>F<sub>5</sub>HgEt (**5**, 0.52 mmol) in 2 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. The formed white suspension was stirred in ice bath for 2 h and left overnight. The mother liquor contained C<sub>6</sub>F<sub>5</sub>HgBr (**7**) and C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> (**8**) (1:1), a few (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>BBr (**9**), EtBBr<sub>2</sub>, and BBr<sub>3</sub>. Exposition on wet air for 2 h led to partial hydrolysis and formation of C<sub>6</sub>F<sub>5</sub>B(OH)<sub>2</sub> and EtB(OH)<sub>2</sub> (<sup>11</sup>B, <sup>19</sup>F NMR).

Solution 0.65 M BBr<sub>3</sub> in  $CH_2Cl_2$  (1 cm<sup>3</sup>, 0.65 mmol) was added into cold (- 55 °C) (bath) solution of 199 mg  $C_6F_5HgEt$  (5, 0.50 mmol) in 2.5 cm<sup>3</sup>  $CH_2Cl_2$ . The formed white suspension was allowed to warm to 22 °C within 3 h. The mother liquor contained  $C_6F_5HgBr$  and  $C_6F_5BBr_2$  (1:1), EtBBr<sub>2</sub>, and BBr<sub>3</sub> (<sup>11</sup>B, <sup>19</sup>F NMR).

Solution of 1.14 g C<sub>6</sub>F<sub>5</sub>HgEt (**5**, 2.87 mmol) in 1 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub> was added slowly into cold (-55 °C) (bath) solution of 756 mg BBr<sub>3</sub> (3.0 mmol) in 4 cm<sup>3</sup> CH<sub>2</sub>Cl<sub>2</sub>. Immediately white suspension was formed. It was stirred at -55 °C for 10 min, and allowed to warm to 22 °C within 2 h. The <sup>19</sup>F NMR spectrum of the mother liquor showed signals of C<sub>6</sub>F<sub>5</sub>BBr<sub>2</sub> and an admixture of C<sub>6</sub>F<sub>5</sub>HgBr and (C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>BBr.

**Reaction of C<sub>2</sub>H<sub>5</sub>HgBr with BBr<sub>3</sub>** Suspension of 304 mg  $C_2H_5HgBr$  (1.0 mmol) and 268 mg BBr<sub>3</sub> (1.0 mmol) in 2 cm<sup>3</sup> DCE was stirred at 22 °C for 3 h. The solution of the formed  $C_2H_5BBr_2$  (0.8 mmol) was decanted under an argon atmosphere (<sup>1</sup>H, <sup>11</sup>B, and <sup>19</sup>F NMR).

Acknowledgements The work was supported by Ministry of Science and Higher Education of the Russian Federation. Authors also would like to acknowledge the Multi-Access Chemical Research Center SB RAS (Novosibirsk) for spectral and analytical measurements.

## References

- Shmakov MM, Prikhod'ko SA, Bardin VV, Adonin NYu (2018) Mendeleev Commun 28:369
- 2. Bardin VV, Frohn H-J (2002) Main Group Metal Chem 25:589
- 3. Adonin NYu, Bardin VV (2010) Russ Chem Rev 79:757
- 4. Chambers RD, Chivers T (1963) Proc Chem Soc:208
- Pohlman JL, Brickman FE, Tesi G, Donadio RE (1965) Z Naturforsch B 20:1
- 6. Chambers RD, Chivers T (1965) J Chem Soc:3933
- 7. Chambers RD, Cunningham JA (1967) J Chem Soc C:2185
- Frohn H-J, Franke H, Fritzen P, Bardin VV (2000) J Organomet Chem 598:127
- 9. Duchteau R, Lancaster SJ, Thornton-Pett M, Bochmann M (1997) Organometallics 16:4995
- 10. Gilman H, Moore L (1958) J Am Chem Soc 80:3609
- 11. Gerrard W, Howarth M, Money EF, Pratt DE (1963) J Chem Soc:1582
- 12. Cowley AN, Furtsch TA (1969) J Am Chem Soc 91:39
- 13. Dessy RE, Reynolds GF, Kim J-Y (1959) J Am Chem Soc 81:2683

- 14. Dessy RE, Kim J-Y (1961) J Am Chem Soc 83:1167
- 15. Bardin VV (2018) Magn Res Chem 56:1124
- Chambers RD, Coates GE, Livingstone JG, Musgrave WKR (1962) J Chem Soc:4367
- Makarova LG, Nesmeyanov AN (1967) In: Nesmeyanov AN, Kocheshkov KA (eds) Methods of elemento-organic chemistry. North Holland, Amsterdam
- 18. Hilpert S, Grüttner G (1913) Chem Ber 46:1675
- 19. Nöth H, Wrackmeyer B (1978) Nuclear magnetic resonance spectroscopy of boron compounds. Springer-Verlag, Berlin
- Beringhelli T, D'Alfonso G, Donghi D, Maggioni D, Mercandelli P, Sironi A (2004) Organometallics 23:5493
- 21. Tian J, Wang S, Feng Y, Li J, Collins SJ (1999) Mol Catal A Chem 144:137

**Publisher's Note** Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.