COMMUNICATION

TETRAKIS(2,6-DI-t-BUTYLPHENOXY)URANIUM(IV): THE FIRST STRUCTURALLY CHARACTERIZED NEUTRAL HOMOLEPTIC ARYLOXIDE COMPLEX OF URANIUM(IV)

WILLIAM G. VAN DER SLUYS and ALFRED P. SATTELBERGER*

Inorganic and Structural Chemistry Group (INC-4), Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545, U.S.A.

and

WILLIAM E. STREIB and JOHN C. HUFFMAN

Molecular Structure Center, Indiana University, Bloomington, IN 47401, U.S.A.

(Received 8 January 1989; accepted 10 February 1989)

Abstract—The reaction of $[(Me_3Si)_2N]_2UN(SiMe_3)SiMe_2CH_2$ with 4 equivalents of HO-2,6-Bu'₂C₆H₃ in toluene at 100°C provides orange U(O-2,6-Bu'₂C₆H₃)₄ in high yield. U(O-2,6-Bu'_2C_6H_3)_4 has been characterized by NMR, magnetic susceptibility ($\mu_{eff} = 2.68$ BM), and X-ray crystallography. It is the first structurally characterized homoleptic uranium(IV) aryloxide complex. The UO₄ core is nearly tetrahedral with U(1)—O(2) = 2.135(4) Å, O(2)—U(1)—O(2') = 110.2(1)° and O(2)—U(1)—O(2'') = 108.0(2)°; the U(1)—O(2)—C_{ipso} angle is 154.0(6)°.

We recently reported the synthesis and characterization of two uranium(III) phenoxide complexes, {U(O-2,6-R₂C₆H₃)₃}_x (R = Prⁱ, x = 2; R = Buⁱ, x = 1).¹ The uranium(IV) analogues of these complexes have not been reported, although [Li(THF)₄][U(O-2,6-Prⁱ₂C₆H₃)₅] has been isolated from the reaction of UCl₄ and LiOAr in THF and structurally characterized.² Lappert and co-workers³ were unable to prepare U(O-2,6-Buⁱ₂C₆H₃)₄ from [U(NEt₂)₄]₂ and excess phenol. Instead, the U(NEt₂)(O-2,6-Buⁱ₂C₆H₃)₃ was isolated according to eq. (1):

$$0.5[U(NEt_{2})_{4}]_{2} + \ge 3HO-2,6-Bu_{2}^{t}C_{6}H_{3}$$
$$\xrightarrow{C_{3}H_{12}} U(NEt_{2})(O-2,6-Bu_{2}^{t}C_{6}H_{3})_{3}$$

 $+3HNEt_2$. (1)

We have repeated this reaction in our laboratory and find that, even in refluxing toluene, the fourth diethylamide ligand [eq. (1)] cannot be metathesized.

Several years ago, Dormond *et al.*⁴ described the reactions of the uranium(IV) metallacycle [(Me₃ Si)₂N]₂ $UN(SiMe_3)SiMe_2CH_2$,⁵ with both HOBu⁴ and HO-2,6-Me₂C₆H₃. They observed rapid protonation of the uranium–carbon bond and isolated two U(OR)[N(SiMe_3)₂]₃ complexes [eq. (2)]:

$$[(Me_3Si)_2N]_2UN(SiMe_3)SiMe_2CH_2 + HOR$$

$$\xrightarrow{C_6H_6} U(OR)[N(SiMe_3)_2]_3 \quad (2)$$

$$(R = Bu', 2,6-Me_2C_6H_3).$$

They also noted that cleavage of uranium-nitrogen bonds occurred but was not competitive with attack on the metal-carbon bond.

In agreement with Dormond *et al.*, we find that the reaction of one equivalent of HO-2,6-Bu'₂C₆H₃ with $[(Me_3Si)_2N]_2UN(SiMe_3)SiMe_2CH_2$ in hexane at room temperature for 1 h, provides orange

^{*} Author to whom correspondence should be addressed.

(3)

U(O-2,6-Bu₂'C₆H₃)[N(SiMe₃)₂]₃ in essentially quantitative yield. This hydrocarbon soluble, air-sensitive compound has been characterized by elemental analyses and ¹H NMR.* The room temperature ¹H NMR spectrum shows non-equivalent silyl amide ligands indicative of restricted rotation about the U—O bond and/or U—N bonds.

The reaction of $[(Me_3Si)_2N]_2UN(SiMe_3)$ SiMe₂CH₂ with slightly greater than 4 equivalents of HO-2,6-Bu¹₂C₆H₃ in toluene at 100°C for 6 h provides, after solvent removal and recrystallization from hexane, an orange, air-sensitive crystalline solid in 80% yield [eq. (3)]:

$$[(Me_{3}Si)_{2}N]_{2}UN(SiMe_{3})SiMe_{2}CH_{2}$$

+4HO-2,6-Bu'_{2}C_{6}H_{3} \xrightarrow{PhCH_{3},\Delta}
U(O-2,6-Bu'_{2}C_{6}H_{3})_{4}+3HN(SiMe_{3})_{2}.

The ¹H NMR spectrum shows one type of phenoxide ligand and elemental analyses were consistent with the formula U(O-2,6-Bu[']₂C₆H₃)₄.[†] The solid follows Curie–Weiss behaviour from 60 to 300 K with $\mu_{\text{eff}} = 2.68$ BM, consistent with the presence of two unpaired electrons (U⁴⁺ has a 5f² ground-state configuration).

X-ray quality crystals, in the form of orange cubes, were grown from a concentrated THF solution at -40° C, and the structure was determined from X-ray diffraction data collected at -145° C.[‡] The uranium lies on a crystallographic $\overline{4}$ site (i.e. the molecule has S_4 symmetry) and is coordinated by the oxygen atoms [U(1)—O(2) = 2.135(4) Å] of the

* Found: C, 41.6; H, 8.0; N, 4.4. Calc. for UC₃₂ H₇₅N₃OSi₆: C, 41.6; H, 8.2; N, 4.5%. ¹H NMR for U(O-2,6-Bu₂'C₆H₃)[N(SiMe₃)₂]₃ (22°C, benzene-d₆): δ 16.2 (br s, *meta*); δ 15.1 (vbr s, Bu'); δ 12.9 (br s, *para*); δ 3.4 (vbr s, TMS); δ -7.4 (vbr s, TMS); δ -20.9 (vbr s, TMS).

† Found: C, 63.5; H, 7.8; N, <0.05. Calc. for UO₄C₅₆H₈₄: C, 63.5; H, 8.0; N, 0.0%. ¹H NMR for U(O-2,6-Bu₂'C₆H₃)₄ (22°C, benzene-d₆): δ 10.5 (d, $J_{\text{HH}} = 7.3$ Hz, meta); δ 8.3 (t, $J_{\text{HH}} = 7.3$ Hz, para); δ -1.0 (br s, Bu').

[‡]X-ray analysis: U(O-2,6-Bu⁴₂C₆H₃)₄ crystallizes in the tetragonal space group I4 with cell constants (at -145°C): a = b = 14.066(2), c = 12.404(2) Å, V = 2652.1 Å³, $d_{calc} = 1.327$ g cm⁻³ and Z = 2. The structure was solved by a combination of Patterson and Fourier techniques and refined (positional and anisotropic thermal parameters for 16 non-hydrogen atoms; positional and isotropic thermal parameters for 21 hydrogen atoms; 229 variables) by full-matrix least-squares. Final discrepancy indices were $R_F = 0.029$ and $R_{wF} = 0.030$ for those 2020 reflections with $F_o \ge 2.33\sigma(F_o)$. The limits of data collection were $6^\circ \le 2\theta \le 60^\circ$ (Mo- K_z).

Fig. 1. ORTEP drawing of U(O-2,6-Bu'₂C₆H₃)₄. U(1)— O(2) = 2.135(4) Å; O(2)—C(3) = 1.344(14) Å; U(1)— O(2)—C(3) = 154.0(6)°; O(2)—U(1)—O(2') = 110.2(1)°; O(2)—U(1)—O(2'') = 108.0(2)°.

four phenoxide ligands in a nearly tetrahedral fashion: angles O(2)—U(1)—O(2') and O(2)—U(1)—O(2'') are 110.2(1) and 108.0(2)°, respectively (Fig. 1). The U(1)—O(2)—C(3) angle is 154.0(6)°. U(NEt₂)[O-2,6-Bu'₂C₆H₃]₃, which also adopts a tetrahedral geometry, has an average U—O distance of 2.143(4) Å.³ In the trigonal bipyramidal uranium(IV) anion, [U(O-2,6-Pr'₂C₆H₃)₅]⁻, the U—O distances range from 2.15(1) to 2.19(1) Å.²

The reason that U(NEt₂)(O-2,6-Bu'₂C₆H₃)₃ does not react with HO-2,6-Bu'₂C₆H₃ to form U(O-2,6-Bu'₂C₆H₃)₄ is most likely a consequence of the enhanced π -basicity of NEt₂⁻ relative to N(SiMe₃)₂⁻. For the latter, N \rightarrow Si $p\pi$ - $d\pi$ bonding is possible and this will compete with N \rightarrow U π -bonding. In this context, we note that the U—N bond length of 2.162(5) Å in U(NEt₂)(O-2,6-Bu'₂C₆H₃)₃ is significantly shorter than the terminal U—N bonds of [U(NEt₂)₄]₂, which range from 2.21(1) to 2.24(1) Å,⁶ and that the average U—N bond length in HU[N(SiMe₃)₂]₃ is 2.237(9) Å.⁷

Schrock and co-workers⁸ have structurally characterized the d^2 tungsten(IV) phenoxide complexes, W(O-2,6-R₂C₆H₃)₄ (R = Me and Prⁱ), and found the coordination geometries to be nearly squareplanar. The latter has been explained in terms of oxygen lone-pair \rightarrow tungsten π -donation, which stabilizes the square-planar geometry relative to the tetrahedral geometry.^{8,9} For U(O-2,6-Buⁱ₂C₆H₃)₄, it is unclear whether the tetrahedral geometry is the result of the increased steric requirements of the phenoxide ligands, reduced oxygen \rightarrow metal π -bonding, or a combination of the two. Efforts are underway in our laboratory to prepare and structurally characterize the related 2,6-diisopropyl- and 2,6-dimethylphenoxide complexes.

Acknowledgements—We wish to thank the Office of Energy Research, Division of Chemical Sciences, U.S. Department of Energy for financial support, and Dr D. L. Clark and Dr C. J. Burns for helpful discussions. We also thank Dr Clark for a preprint of ref. 9.

Supplementary Material Available. Tables of crystal data, fractional coordinates, anisotropic thermal parameters, and distances and angles have been deposited with the Cambridge Crystallographic Data Centre. A listing of observed and calculated structure factors has been deposited with the Editor at Indiana University and is also available from the Molecular Structure Center, Indiana University (Report no. 88901).

REFERENCES

- W. G. Van Der Sluys, C. J. Burns, J. C. Huffman and A. P. Sattelberger, J. Am. Chem. Soc. 1988, 110, 5924.
- 2. P. C. Blake, M. F. Lappert, R. G. Taylor, J. L. Atwood and H. Zhang, *Inorg. Chim. Acta* 1987, 139, 13.
- 3. P. B. Hitchcock, M. F. Lappert, A. Singh, R. G. Taylor and D. Brown, J. Chem. Soc., Chem. Commun. 1983, 561.
- 4. A. Dormond, A. A. El Bouadili and C. Moïse, J. Chem. Soc., Chem. Commun. 1985, 914.
- (a) S. J. Simpson, H. W. Turner and R. A. Andersen, *Inorg. Chem.* 1981, 20, 2991; (b) S. J. Simpson and R. A. Andersen, *J. Am. Chem. Soc.* 1981, 103, 4063.
- J. G. Reynolds, A. Zalkin, D. H. Templeton, N. M. Edelstein and L. K. Templeton, *Inorg. Chem.* 1976, 15, 2498.
- R. A. Andersen, A. Zalkin and D. H. Templeton, *Inorg. Chem.* 1981, 20, 622.
- M. L. Listemann, R. R. Schrock, J. C. Dewan and R. M. Kolodziej, *Inorg. Chem.* 1988, 27, 264.
- 9. R. H. Cayton, M. H. Chisholm, D. L. Clark and C. E. Hammond, J. Am. Chem. Soc., in press.