Synthesis of Polyacetylenic Acids Isolated from *Heisteria acuminata*

Gilson Zeni,* Rodrigo B. Panatieri, Eliseo Lissner, Paulo H. Menezes,[‡] Antonio L. Braga, and Hélio A. Stefani[§]

Departamento de Química, Laboratório de Bioquímica Toxicológica, UFSM, 97105-900 Santa Maria, RS, Brazil

gzeni@.quimica.ufsm.br

Received December 1, 2000

Four linear polyacetylenic compounds were synthesized. Pentadeca-6,8,10-triynoic acid 1 and octadeca-8,10,12-triynoic acid 2 were synthesized by using acetylene coupling reactions. The syntheses of (*Z*)-hexadec-11-en-7,9-diynoic acid 3 and (*Z*)-octadec-12-en-7,9-diynoic acid 4 by using vinylic telluride coupling reactions were accomplished.

Several examples of polyacetylenic compounds have been isolated in recent years.¹ New linear polyacetilenic compounds 1, 2, 3, and 4 (Scheme 1) were isolated from the

bark of *Heisteria acuminata* by bioassay-guided fractionation.² These compounds were found to have potent antiinflammatory activity by inhibition of cyclooxygenase (COX) and 5-lipoxygenase (5-LO).³ Polyacetylenes have also been reported previously in the literature as potent inhibitors of the arachidonic acid metabolism.⁴ Therefore, it may be inferred that compounds 1-4 are, at least in part, responsible for the antiinflammatory activity of preparations of *Heisteria acuminata* bark used in folk medicine.⁵

The unusual structure, the interesting biological activities, and the low availability of these compounds from natural sources encouraged us to synthesize them. In a previous work we have already reported the synthesis of polyacetylenic montiporic acids A and B⁶ (Scheme 2). In this Letter we wish to describe an easy route to compounds 1-4.

The retrosynthetic analysis of polyacetylenic acids 1 and 2 afforded two basic fragments: alkyldiyne system B and

[‡] Present address: Departamento de Química Fundamental, UFPE, Recife, PE, Brazil.

[§] Present address: Faculdade de Ciências Farmacêuticas, USP, São Paulo, SP, Brazil.

⁽¹⁾ Faulker, D. J. Nat. Prod. Rep. 1995, 12, 223 and earlier reviews cited therein.

⁽²⁾ Kraus, M. C.; Neszmélyi, A.; Holly, S.; Wiedemann, B.; Nenniiger, A.; Torssell, G. B. K.; Bohlin, L.; Wagner, H. J. Nat. Prod. **1998**, *61*, 422.

acetylenic alcohol **A**, which differ only in the number of carbons in the chain (Scheme 3).

The alkyldiynes **B** were synthesized according to Scheme 4. The appropriate terminal acetylene (n = 3 or 4) was

^{*a*} (i) *n*-BuLi, THF/I₂; (ii) pyrrolidine, CuI; (iii) NaOH, xylene, reflux; (iv) *n*-BuLi, THF/I₂; (v)2 equiv of *n*-BuLi, THF/HMPA; (vi) KNH(CH₂)₃NH₂; (vii) pyrrolidine, CuI; (viii) CrO₃/H₂SO₄, -10 °C.

converted into the 1-iodoacetylene **5** by treatment with *n*-BuLi/iodine⁷ in 78% (n = 3) and 82% (n = 4) yields. Coupling reaction of **5** with **6** in the presence of pyrrolidine/ CuI⁸ yielded **7** in 95% and 93% yields, respectively, which by treatment with NaOH in xylene under reflux⁹ afforded the diynes **8** in 70% and 73% yields. Compounds **8** were then transformed into the corresponding fragment **B** by using again *n*-BuLi/I₂ in 85% and 87% yields, respectively.

The synthesis of fragment **A** (Scheme 4) started with alkylation of the lithium derivative of propargylic alcohol with 1-bromobutane or 1-bromohexane,¹⁰ yielding the corresponding alcohols **9** in 83% and 89% yields. These compounds were then subjected to prototropic migration of triple bond with KAPA¹¹ to afford the desired terminal acetylenic alcohols (fragment **A**) in 87 and 85% yields. Subsequent coupling reaction of fragments **A** and **B** using CuI and pyrrolidine⁸ yielded **10** in 90% and 93%. Oxidation with chromium oxide/H₂SO₄¹² afforded the desired acids **1** and **2** in 58% and 60% yields, respectively. The overall yield of the sequence was 30% (**1**) and 34% (**2**).

The retrosynthetic analysis of polyacetylenic acids **3** and **4** afforded two fragments: vinylic telluride **C** and 1,3-alkylidyine system **D** (Scheme 5).

The fragment **D** was synthesized following the sequence shown in Scheme 6, by the same procedure used for the synthesis of compound **8** (Scheme 4). The overall yields of fragment **D** were 40% and 43%.

Further, we synthesized fragment C (Scheme 6) by hydrotelluration¹³ of the appropriate alkyne. The desired

(13) Zeni, G.; Formiga, H. B.; Comasseto, J. V. Tetrahedron Lett. 2000, 41, 1311.

(14) Zeni, G.; Comasseto, J. V. Tetrahedron Lett. 1999, 40, 4619.

(15) Compound **1**. ¹H NMR (400 MHz, CD₃OD) δ 0.95 (3 H, t, J = 7.1Hz); 1.43 (2 H, sex, J = 7.5 Hz); 1.54 (2 H, quint, J = 7.5 Hz); 1.58 (2 H, quint, J = 7.6 Hz); 1.70 (2 H, quint, J = 7.5 Hz); 2.30 (2 H, t, J = 7.5 Hz); 2.33 (2 H, quint, J = 6.9 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 13.30; 18.92; 19.25; 22.00; 24.10; 27.80; 30.20; 60.50; 60.90; 65.83; 66.42; 78.50; 79.83. MS m/z (%): 230 (55), 128 (100), 91 (50), 41 (32). Compound 2. ¹H NMR (400 MHz, CD₃OD) δ 0.90 (3 H, t, J = 7.3 Hz); 1.40 (2 H, quint, J = 7.5Hz); 1.41 (2 H, quint, J = 7.5 Hz); 1.43 (2 H, sex, J = 7.3 Hz); 1.47 (2 H, quint, J = 7.5 Hz); 1.52 (2 H, quint, J = 7.3 Hz); 1.66 (2 H, quint, J = 7.3Hz); 2.23 (2 H, t, J = 7.3 Hz); 2.28 (2 H, t, J = 7.3 Hz); 2.30 (2 H, t, J = 7.3 Hz); ¹³C NMR (100 MHz, CDCl₃) δ 13.60; 19.25; 19.40; 22.10; 28.15; 28.75; 28.83; 29.80; 30.23; 60.40; 60.50; 65.83; 65.95; 79.20; 79.40; MS m/z (%): 272 (20), 230 (8), 129 (100), 41 (70). Compound 3. ¹H NMR (400 MHz, CD₃OD) δ 0.93 (3 H, t, J = 7.2 Hz); 1.36 (2 H, sex, J = 7.3Hz); 1.39 (2 H, quint, J = 7.5 Hz); 1.55 (2 H, quint, J = 7.3 Hz); 1.63 (2 H, quint, J = 7.6 Hz); 2.29 (2 H, t, J = 7.3 Hz); 2.35 (2 H, td, J = 7.0; 0.7 Hz); 5.48(1 H, dt, J = 10.7; 1.1 Hz); 6.07 (1 H, dt, J = 10.7; 7.5 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 13.90; 19.55; 22.30; 24.35; 28.00; 28.43; 30.45; 31.30; 34.05; 65.54; 72.30; 78.24; 84.38; 108.14; 147.81. MS m/z (%): 246 (8), 146 (30), 129 (50), 117 (100), 91 (68). Compound 4. ¹H NMR (400 MHz, CD₃OD) δ 0.93 (3 H, t, J = 7.2 Hz); 1.31 (2 H, quint, J = 7.3 Hz); 1.35 (2 H, quint, J = 7.3 Hz); 1.37 (2 H, sex, J = 7.5 Hz); 1.39 (2 H, quint, J = 7.5 Hz); 1.42 (2 H, quint, J = 7.4 Hz); 1.42 (2 H, quint, J = 7.5 Hz); 1.61 (2 H, quint, J = 7.3 Hz); 2.28 (2 H, t, J = 7.4 Hz); 2.31 (2 H, td, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.34 (2 H, qd, J = 6.9; 1.2 Hz); 5.42 (1 H, dt, J = 7.4; 0.6 Hz); 2.8 Hz = 7.4; 0.6 Hz); 2.8 Hz = 7.4; 0.6 Hz = 7.4; 10.9; 1.2 Hz); 6.07 (1 H, dt, J = 10.9; 7.6 Hz). ¹³C NMR (100 MHz, CDCl₃) δ 14.02; 19.75; 22.36; 24.87; 28.39; 28.71; 28.88; 29.06; 30.05; 31.00; 65.34; 72.22; 78.29; 84.71; 108.26; 147.95. MS m/z (%): 271 (10), 245 (6), 187 (30), 164 (27), 117 (100), 91 (65).

⁽³⁾ Dirsch, V.; Neszmélyi, A.; Wagner, H. Pharm. Pharmacol. Lett. 1982, 2, 184.

⁽⁴⁾ Redl, K.; Breu, W.; Davis, B.; Bauer, R. *Planta Med.* 1994, 60, 58.
(5) Morita, M.; Sato, S.; Yanagisawa, T.; Mihasi, H. Japanese Patent JP 03017043 A2, 1991; *Chem. Abstr.* 1991, 115, 142236.

⁽⁶⁾ Stefani, H. A.; Costa, I. M.; Zeni, G. *Tetrahedron Lett.* **1999**, *40*, 9215

⁽⁷⁾ Brandsma, L. In *Preparative Acetylenic Chemistry*; Elsevier: Amsterdam, 1988.

⁽⁸⁾ Alami, M.; Ferri, F. Tetrahedron Lett. 1996, 37, 2763.

⁽⁹⁾ Shostakovskii, N.; Bogdanova, A. V. In *The Chemistry of Diacety-lenes*; John Wiley & Sons: New York, 1974.

⁽¹⁰⁾ Cossy, J.; Pete, J. P. Tetrahedron Lett. 1986, 27, 573.

⁽¹¹⁾ Abrams, S. R. Can. J. Chem. 1984, 62, 1333.

⁽¹²⁾ Heilbron, I.; Jones, E. R. H.; Sondheimer, F. J. Chem. Soc. 1949, 604.

Scheme 6^a

^{*a*} (i) 2 equiv of *n*-BuLi, THF/HMPA; (ii) KNH(CH₂)₃NH₂; (iii) 2 equiv of *n*-BuLi, THF/I₂; (iv) pyrrolidine, CuI; (v) NaOH, xylene, reflux; (vi) THF, rt; (vii) EtOH, reflux; (viii) PdCl₂/CuI, MeOH/Et₃N; (ix) CrO₃/H₂SO₄, -10 °C.

vinylic tellurides were obtained in a 6:1 mixture of regioisomers, which were separated by column chromatography in 48% yield. These compounds were then coupled to the appropriate alkyldiynes **D** using PdCl₂/CuI in methanol¹⁴ to afford **11** with the desired *Z* geometry of the double bond. Chromium oxide/H₂SO₄¹² (Scheme 4) gave the polyacetylenic acid **3** and **4**. The overall yields of the sequence were 24% (**3**) and 22% (**4**). The spectroscopy data¹⁵ (¹H and ¹³C NMR) of compounds **1**–**4** are in agreement with the data reported by Wagner² and co-workers. In summary, we have achieved the total synthesis of four natural products with biological activity and very limited access, using coupling-based methodologies.

Acknowledgment. We are grateful to the FAPERGS, CNPq, FIPE (UFSM) for financial support. The autors are also grateful to Professor Joachim Demnitz (UFPE) for the revision of this manuscript.

OL006946V