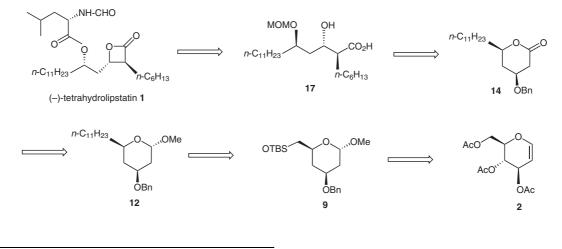
A Chiron Approach to (-)-Tetrahydrolipstatin

J. S. Yadav,* K.Vishweshwar Rao, A. R. Prasad

Division of Organic Chemistry, Indian Institute of Chemical Technology, Hyderabad 500007, India Fax +91(40)27160387; E-mail: yadavpub@iict.res.in Received 28 June 2006; revised 4 July 2006

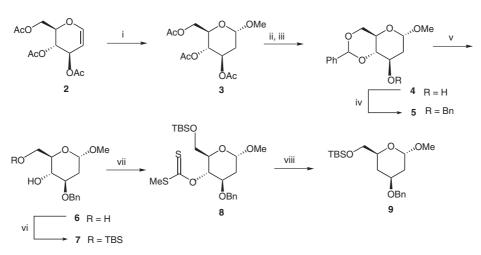
Abstract: An efficient chiron approach to the total synthesis of (–)tetrahydrolipstatin is described. The main features of the synthetic strategy, which starts from tri-*O*-acetyl-D-glucal, are coppermediated C–C bond formation, Frater alkylation, and Barton– McCombie deoxygenation.

Key words: (–)-tetrahydrolipstatin, anti-obesity, tri-*O*-acetyl-D-glucal, Frater alkylation


(–)-Tetrahydrolipstatin 1, a β -lactone, is a potent and irreversible inhibitor of pancreatic lipase; it is the saturated analogue of lipstatin and was first isolated from *Streptomyces toxytricini* in 1987.¹ Recently, it has been marketed in several countries as an anti-obesity agent under the name Xenical. The key to the biological activity of the lipstatins is the β -lactone moiety, which features *anti* stereo-chemistry about the ring. Due to its biological properties, tetrahydrolipstatin has been the target of many synthetic organic chemists since its isolation.²

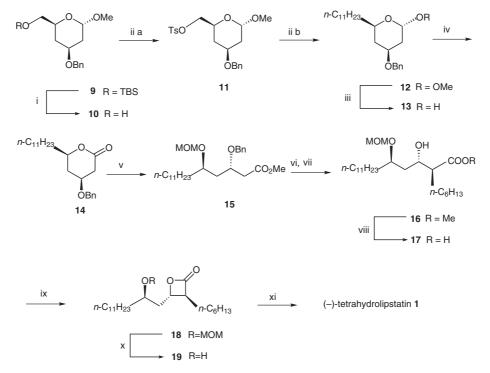
Our retrosynthetic analysis is depicted in Scheme 1. Thus, (–)-tetrahydrolipstatin (1) could be obtained in a threestep sequence from β -hydroxy acid 17. It is envisaged that the hydroxy acid 17 could be obtained from δ -lactone 14. The δ -lactone 14 could be, in turn, obtained from tri-*O*acetyl-D-glucal, with methanol addition and Barton– McCombie deoxygenation as the key transformations.

The synthesis begins by C-glycosidation of tri-*O*-acetyl-D-glucal (**2**) by addition of methanol and cerium(III) chloride heptahydrate/sodium iodide in acetonitrile, a method developed by our group,³ to afford methyl acetal **3**. The methyl acetal **3** was subjected to methanolysis and subsequent selective protection of the 1,3-diol part to furnish **4** in 66% overall yield. Compound **4** was protected its benzyl ether **5** and then subjected to benzylidene acetal cleavage with 4-toluenesulfonic acid in methanol to afford 1,3-diol **6**, which was selectively protected with a *tert*-butyldimethylsilyl group at the primary hydroxy group to give **7** and the secondary hydroxy group was then protected as its xanthate ester to afford **8** in 40% yield over four steps. Now the stage is set for Barton–McCombie deoxygenation. Accordingly, compound **8** was treated with tributyltin hydride and a catalytic amount of 2,2'-azo-bis(isobutyronitrile) in dry toluene under reflux conditions to afford the deoxygenated compound **9**.⁴


The *tert*-butyldimethylsilyl group of compound **9** was removed and the resulting alcohol **10** was treated with 4-toluenesulfonyl chloride and triethylamine in dichloromethane to afford the corresponding tosylate **11**, which was treated with *n*-decylmagnesium bromide and catalytic copper(I) bromide to obtain the coupled product **12**.⁵ Compound **12** could also be obtained from alcohol **10** via conversion to the corresponding triflate and copper-mediated Grignard displacement.⁶

The methyl acetal of **12** was converted into lactol **13** by treatment with 80% aqueous acetic acid, which in turn was subjected to oxidation with Dess-Martin periodinane⁷ to yield lactone **14**. The β -lactone **14** was opened in the presence of triethylamine in methanol to

Scheme 1


SYNTHESIS 2006, No. 22, pp 3888–3894 Advanced online publication: 20.10.2006 DOI: 10.1055/s-2006-950325; Art ID: Z13306SS © Georg Thieme Verlag Stuttgart · New York

Scheme 2 *Reagents and conditions:* (i) CeCl₃–NaI, MeCN, MeOH, reflux, 3 h, 87%; (ii) NaOMe, MeOH, r.t., 2 h; (iii) PhCH(OMe)₂, PTSA (cat.), toluene, reflux, 2 h, 66% for 2 steps; (iv) NaH, BnBr, TBAI (cat.), THF, reflux, 6 h, 78%; (v) PTSA (cat.), MeOH, overnight, 79%; (vi) TBSCl, imidazole, CH₂Cl₂, 0 °C to r.t., 4 h, 83%; (vii) NaH, CS₂, MeI, 0 °C to r.t., overnight, 78%; (viii) *n*-Bu₃SnH, AIBN (cat.), toluene, reflux, 6 h, 79%.

yield the corresponding δ -hydroxy ester, which without workup, on removal of methanol under reduced pressure was protected as its methoxymethyl ether **15** in the presence of *N*,*N*-diisopropylethylamine and methoxymethyl chloride in dichloromethane. Attempts made to isolate the methanol addition product, the δ -hydroxy ester, were unsuccessful as it cyclized back to lactone **14**. The methyl ester **15** was hydrogenated with palladium(II) hydroxide Pd(OH)₂ in ethyl acetate to afford a β -hydroxy ester. The key step, stereocontrolled alkylation, was effected by treating the β -hydroxy ester with lithium diisopropylamide in tetrahydrofuran, followed by addition of *n*-hexyl iodide to the dianion to give **16** as the major diastereomer in 75% yield after a flash column chromatography.⁸ The crude product of the reaction revealed $\sim 2\%$ of the other diastereomer.

Hydroxy ester 16 was converted to β -lactone 18 by hydrolysis of ester group with lithium hydroxide followed by exposure of acid 17 to benzenesulfonyl chloride in pyridine. Deprotection of the methoxymethyl ether of β -lactone 18 with boron trifluoride–diethyl ether complex and

Scheme 3 *Reagents and conditions:* (i) TBAF, THF, 0 °C to r.t., 2 h, 98%; (ii) (a) TsCl, Et₃N, DMAP (cat.), CH₂Cl₂, 0 °C to r.t., 2 h, 92%; (ii) (b) n-C₁₀H₂₁MgBr, CuBr (cat.), THF, 0 °C to r.t., 5 h, 76%; (iii) 80% aq AcOH, reflux, 6 h, 72%; (iv) Dess–Martin periodinane, CH₂Cl₂, 0 °C to r.t., 2 h, 84% (v) Et₃N, MeOH, 0 °C to r.t., 12 h, then MOMCl, DIPEA, CH₂Cl₂, 0 °C to r.t., 12 h, 71%; (vi) Pd(OH)₂/C, EtOAc, 12 h, 94%; (vii) LDA, n-C₆H₁₃I, HMPA, THF, -78 °C, 3 h, 75%; (viii) LiOH, THF-H₂O, (4:1), 0 °C to r.t., 12 h, 88%; (ix) PhSO₂Cl, pyridine, 12 h, 0 °C, 76%; (x) BF₃·OEt₂, (CH₂SH)₂, 0 °C to r.t., 1 h, 88%; (xi) DIAD, TPP, *N*-formyl-L-leucine, 0 °C to r.t., 2 h, 90%.

Synthesis 2006, No. 22, 3888-3894 © Thieme Stuttgart · New York

ethane-1,2-dithiol⁹ in dichloromethane produced alcohol **19** which on esterification with (*S*)-*N*-formyl-L-leucine under Mitsunobu conditions¹⁰ furnished (–)-tetrahydro-lipstatin (**1**). The spectroscopic and physical data of **1** were in good agreement with those in literature.

In conclusion, an efficient total synthesis of (–)-tetrahydrolipstatin using the chiron approach has been achieved. Simple manipulations of commercially available, inexpensive tri-*O*-acetyl-D-glucal led to the complex and demanding anti-obesity drug (–)-tetrahydrolipstatin (1).

Melting points were recorded on a Fisher John melting point apparatus. IR spectra were recorded on a Perkin Elmer Infrared-683 spectrophotometer with NaCl optics. ¹H NMR and ¹³C NMR spectra were recorded in CDCl₃ on Varian Gemini 200 and AV-300 spectrometers. Optical rotations were measured on JASCO DIP-360 digital polarimeter. Analytical TLC was performed on precoated silica gel-60 F₂₅₄ (0.5 mm) glass plates. Column chromatography was performed using silica gel (60–120 mesh) and the column was generally eluted with EtOAc–petroleum ether.

(2*R*,3*R*,4*R*,6*S*)-3,4-Diacetoxy-2-(acetoxymethyl)-6-methoxy-tetrahydro-2*H*-pyran (3)

A mixture of 3,4,6-tri-*O*-acetyl-D-glucal (**2**; 20.6 g, 75.6 mmol), MeOH (6.13 mL, 151.2 mmol), CeCl₃·7 H₂O (42.32g, 113.6 mmol), and NaI (17.02 g, 113.6 mmol) in MeCN (150 mL) was stirred at reflux temperature for 6 h. The mixture was diluted with H₂O (150 mL) and extracted with EtOAc (3×100 mL). The combined organic layers were dried (anhyd Na₂SO₄), concentrated in vacuo, and purified by column chromatography to give methyl glucoside **3** as a colorless oil; yield: 20.0 g (87%); 10:1 mixture of anomers.

Data for the major anomer:

 $[\alpha]_{D}^{20}$ +130.76 (*c* 1.5, CHCl₃).

 $R_f = 0.4$ (silica gel, 30% EtOAc-hexane).

IR (neat): 2947, 2838, 1745 (C=O), 1231, 1049 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): $\delta = 5.25$ (ddd, J = 11.7, 9.4, 5.3 Hz, 1 H), 4.93 (t, J = 9.8 Hz, 1 H), 4.81 (d, J = 3.4 Hz, 1 H), 4.28 (dd, J = 12.0, 4.53 Hz, 1 H), 4.01 (dd, J = 12.0, 2.2 Hz, 1 H), 3.88 (ddd, J = 10.2, 4.5, 2.2 Hz, 1 H), 3.35 (s, 3 H), 2.22 (ddd, J = 12.8, 5.7, 1.1 Hz, 1 H), 2.08 (s, 3 H), 2.02 (s, 3 H), 2.00 (s, 3 H), 1.78 (ddd, J = 12.8, 11.7, 3.8 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 170.01, 169.46, 169.22, 97.43, 68.83, 68.48, 67.17, 61.88, 54.22, 34.33, 20.24, 20.04.

MS (ESI): $m/z = 327 (M^+ + Na)$.

HRMS: m/z [M⁺ + Na] calcd for C₁₃H₂₀NaO₈: 327.1055; found: 327.1058.

(4a*R*,6*S*,8*R*,8a*S*)-6-Methoxy-2-phenylhexahydropyrano[3,2*d*][1,3]dioxin-8-ol (4)

To a soln of methyl glucoside 3 (12.8 g, 42.1 mmol) in MeOH (100 mL) was added 1 M NaOMe in MeOH (6.6 mL, 0.660 mmol). The mixture was stirred at r.t. for 1 h and the reaction was quenched by addition of Amberlyst. The mixture was filtered and concentrated under reduced pressure to give the crude triol, which was used in the next step without further purification.

A mixture of the crude triol, toluene (50 mL), benzaldehyde dimethyl acetal (6.1 mL, 41.1 mmol), and PTSA (325 mg, 1.7 mmol) was heated at reflux in a Soxhlet containing freshly activated powdered 4 Å molecular sieves (10 g) under an N₂ flow for 5 h. After 5 h, another batch of 4 Å molecular sieves (10 g) was placed in the Soxhlet extractor and reflux was continued for 1 h. The solid was filtered off, and the soln was diluted with CH_2Cl_2 and H_2O . The phases were separated and the aqueous phase was extracted with CH_2Cl_2 . The combined organic extracts were washed with H_2O , dried (MgSO₄) and filtered and the solvents were evaporated to give crude acetal. Column chromatography afforded the pure acetal **4** as colorless needles; yield: 7.4 g (66%); mp 153–154 °C.

$$[\alpha]_{D}^{20}$$
 +93.74 (*c* 7.0, CHCl₃).

 $R_f = 0.4$ (silica gel, 40% EtOAc-hexane).

IR (KBr): 3358 (OH), 2930, 1457, 1380, 1114, 1022 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.44–7.32 (m, 5 H), 5.50 (s, 1 H), 4.74 (d, *J* = 3.7 Hz, 1 H), 4.20 (m, 1 H), 4.08 (m, 1 H), 3.70 (m, 2 H), 3.38 (m, 1 H), 3.32 (s, 3 H), 2.47 (d, 1 H, OH), 2.16 (dd, *J* = 12.8, 5.3 Hz, 1 H), 1.71 (ddd, *J* = 13.6, 11.3, 3.7 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 137.40, 129.17, 128.30, 126.35, 102.00, 99.03, 83.87, 68.98, 65.63, 62.55, 54.75, 37.33.

MS (ESI): $m/z = 267 [M^+ + H]$.

(4a*R*,6*S*,8*R*,8a*S*)-8-(Benzyloxy)-6-methoxy-2-phenylhexahydropyrano[3,2-*d*][1,3]dioxin (5)

A magnetically stirred suspension of dry, oil-free NaH (1.24 g, 51.8 mmol) in anhyd THF (5 mL) at 0 °C was treated with the alcohol 4 (6.9 g, 25.9 mmol) in THF (25 mL). After 15 min, BnBr (3.38 mL, 28.5 mmol) was added followed by catalytic TBAI (479 mg). The mixture was brought to r.t. and stirred at reflux for 4 h, cooled to 0 °C, and treated slowly with sat. aq NH₄Cl (20 mL). The product was extracted into EtOAc (2×100 mL); the combined extracts were dried (Na₂SO₄) and concentrated and the residual oil was purified by chromatography (silica gel) to afford **5** as white solid; yield: 6.64 g (78%); mp 95–96 °C.

 $[\alpha]_{D}^{25}$ +71.35 (*c* 1.5, CHCl₃).

 $R_f = 0.6$ (silica gel, 30% EtOAc-hexane).

IR (neat): 2973, 1219, 1054, 1013, 772 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.45–7.28 (m, 10 H), 5.56 (s, 1 H), 4.81–4.61 (m, 3 H), 4.20 (q, *J* = 8.3, 3.0 Hz, 1 H), 3.97–3.89 (m, 1 H), 3.74–3.70 (m, 2 H), 3.67–3.57 (m, 1 H), 3.30 (s, 3 H), 2.20 (dd, *J* = 12.9, 4.53 Hz, 1 H), 1.73 (ddd, *J* = 12.8, 10.5, 3.7 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 128.0, 127.6, 127.4, 126.9, 126.7, 125.4, 100.6, 98.3, 83.2, 72.1, 68.4, 62.2, 53.9, 35.8.

MS (ESI): $m/z = 357 [M^+ + H]$.

HRMS (ESI): m/z [M⁺ + H] calcd for C₂₁H₂₅O₅: 357.1701; found: 357.1700.

(2*R*,3*S*,4*R*,6*S*)-4-(Benzyloxy)-2-(hydroxymethyl)-6-methoxytetrahydro-2*H*-pyran-3-ol (6)

To **5** (6.7 g, 18.8 mmol) in MeOH (15 mL) was added catalytic PTSA (178 mg) and the mixture was stirred for 12 h. It was quenched by addition of sat. aq NaHCO₃ (5 mL), MeOH was evaporated under reduced pressure, and the aqueous phase was extracted with EtOAc (2×75 mL). The organic extracts were washed with brine (20 mL) and dried (anhyd Na₂SO₄). The solvent was evaporated and the residue was purified by column chromatography to afford pure diol **6** as a greasy solid; yield: 3.98 g (79%); mp 38–40 °C.

 $[\alpha]_D^{25}$ +62.77 (*c* 5.0, CHCl₃).

 $R_f = 0.2$ (silica gel, 60% EtOAc-hexane).

IR (neat): 3417 (OH), 1618, 1352, 1063, 772 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.31–7.26 (m, 5 H), 4.77 (d, J = 3.1 Hz, 1 H), 4.58 (q, J = 28.1, 11.7 Hz, 2 H), 3.78–3.69 (m, 3 H), 3.55–3.52 (m, 2 H), 3.31 (s, 3 H), 3.0 (br s, 1 H, OH), 2.37 (br s, 1 H, OH), 2.22 (dd, J = 12.5, 4.6 Hz, 1 H), 1.57 (ddd, J = 14.8, 11.7, 3.1 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 127.8, 127.0, 97.9, 76.3, 70.7, 70.6, 70.4, 61.8, 54.0, 34.0.

MS (ESI): $m/z = 291 [M^+ + Na]$.

HRMS (ESI): m/z [M⁺ + Na] calcd for C₁₄H₂₀NaO₅: 291.1208; found: 291.1206.

(2*R*,3*S*,4*R*,6*S*)-4-(Benzyloxy)-2-[(*tert*-butyldimethylsiloxy)methyl]-6-methoxytetrahydro-2*H*-pyran-3-ol (7)

To a magnetically stirred soln of diol **6** (3.5 g, 13.0 mmol) in anhyd CH_2Cl_2 (5 mL) and imidazole (1.77 g, 26.0 mmol) at 0 °C under an N_2 atmosphere was added TBSCl (1.96 g, 13.0 mmol); the mixture was allowed to warm up to r.t. and it was stirred for 4 h. The mixture was diluted with H_2O (20 mL) and extracted with CH_2Cl_2 (2 × 20 mL). The combined organic layers were washed with brine (20 mL), dried (anhyd Na_2SO_4), and concentrated in vacuo to afford the crude product. Column chromatography of the crude product afforded 7 as a colorless liquid; yield: 4.14 g (83%).

 $[\alpha]_D^{25}$ +45.38 (*c* 3.75, CHCl₃).

 $R_f = 0.5$ (silica gel, 20% EtOAc-hexane).

IR (neat): 3478 (OH), 2931, 2896, 2857, 1464, 1053, 836, 777 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.31 (m, 5 H), 4.74 (d, *J* = 3.1 Hz, 1 H), 5.59 (q, *J* = 18.7, 11.7 Hz, 2 H), 3.80 (m, 3 H), 3.56 (m, 2 H), 3.29 (s, 3 H), 2.65 (br s, 1 H, OH), 2.17 (dd, *J* = 14.0, 4.6 Hz, 1 H), 1.55 (ddd, *J* = 13.2, 11.7, 3.9 Hz, 1 H), 0.89 (s, 9 H), 0.07 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 138.6, 128.4, 127.7, 98.4, 76.9, 72.5, 71.5, 71.2, 64.1, 54.5, 34.6, 25.9, -5.3.

MS (ESI): $m/z = 383 [M^+ + H]$.

HRMS (ESI): m/z [M⁺ + H] calcd for C₂₀H₃₅O₅Si: 383.2253; found: 383.2260.

(2*R*,3*S*,4*R*,6*S*)-4-(Benzyloxy)-2-[(*tert*-butyldimethylsiloxy)methyl]-6-methoxy-3-{[(methylsulfanyl)carbothioyl]oxy}tetrahydro-2*H*-pyran (8)

To a magnetically stirred suspension of NaH (460 mg, 19.2 mmol) in CS₂ (150 mL) was added a soln of **7** (3.7 g, 9.6 mmol) in CS₂ (12 mL). After 4 h, neat MeI (3.02 mL, 48.4 mmol) was introduced via syringe. The mixture was stirred for 12 h and then diluted with Et₂O (200 mL) and washed with H₂O (100 mL) and aq NH₄Cl soln (30 mL), dried (Na₂SO₄), and the solvent evaporated. The residue was purified by chromatography to give xanthate **8** as a viscous yellow liquid; yield: 3.56 g (78%).

 $[\alpha]_D^{25}$ +28.25 (*c* 5.0, CHCl₃).

 $R_f = 0.5$ (silica gel, 10% EtOAc-hexane).

IR (neat): 2929, 2856, 1463, 1363, 1217, 1057, 837, 777 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.28–7.24 (m, 5 H), 5.85 (t, *J* = 9.5 Hz, 1 H), 4.83 (d, *J* = 3.47 Hz, 1 H), 4.55 (q, *J* = 12.1 Hz, 2 H), 4.10–3.98 (m, 1 H), 3.87–3.75 (m, 1 H), 3.69–3.61 (m, 2 H), 3.34 (s, 3 H), 2.56 (s, 3 H), 2.27 (dd, *J* = 13.0, 5.2, 1 H), 1.78 (dt, *J* = 11.2, 3.4 Hz, 1 H), 0.88 (s, 9 H), 0.05 (s, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 215.4, 138.2, 128.2, 127.5, 97.9, 80.3, 74.4, 71.7, 71.1, 62.8, 54.5, 35.5, 25.9, 19.2, 18.3, –5.27, – 5.36.

MS (ESI): $m/z = 495 [M^+ + Na]$.

[(2*S*,4*S*,6*S*)-4-(Benzyloxy)-2-[(*tert*-butyldimethylsiloxy)methyl]-6-methoxytetrahydro-2*H*-pyran (9)

To a magnetically stirred soln of xanthate **8** (3.1 g, 6.56 mmol) and AIBN (ca. 30 mg) in anhyd toluene (20 mL) was added Bu_3SnH (8.7 mL, 32.8 mmol). The resulting soln was stirred at reflux temperature for 1.5 h. The reaction contents were cooled, concentrated in vacuo, and flushed rapidly through a short column of silica gel to afford **9** as a clear, colorless oil; yield: 1.89 g (79%).

 $[\alpha]_D^{25}$ +71.68 (*c* 2.0, CHCl₃).

 $R_f = 0.45$ (silica gel, 10% EtOAc-hexane).

IR (neat): 2932, 2895, 1460, 1055, 831, 772 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.28 (m, 5 H), 4.81 (d, *J* = 3.00 Hz, 1 H), 4.52 (m, 2 H), 3.82 (m, 1 H), 3.65 (m, 2 H), 3.53 (m, 2 H), 3.27 (s, 3 H), 2.08 (ddd, *J* = 16.6, 12.0, 4.53 Hz, 2 H), 1.50 (ddd, *J* = 15.1, 11.3, 3.7 Hz, 1 H), 1.23 (q, *J* = 11.3 Hz, 1 H), 0.89 (s, 9 H), 0.05 (s, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 128.24, 127.42, 99.02, 96.11, 70.83, 69.80, 68.62, 66.31, 54.30, 36.55, 34.42, 25.93, -5.29.

MS (ESI): $m/z = 389 [M^+ + Na]$.

HRMS: m/z [M⁺ + Na] calcd for C₂₀H₃₄NaO₄Si: 389.2124; found: 389.2134.

(2*S*,4*S*,6*S*)-4-(Benzyloxy)-6-methoxytetrahydro-2*H*-pyran-2-methanol (10)

To a cold (0 °C), magnetically stirred soln of **9** (3.5 g, 9.56 mmol) in anhyd THF (10 mL) was added 1.0 M TBAF in THF (19 mL, 19.1 mmol). The mixture was warmed to 25 °C, stirred for 2 h, treated with aq NH₄Cl soln (30 mL), and extracted with EtOAc. The combined organic layers were dried (Na₂SO₄) and concentrated. The crude product was purified by chromatography (silica gel) to give **10** as a clear, colorless oil; yield: 2.36 g (98%).

 $[\alpha]_{\rm D}^{25}$ +110.6 (*c* 4.5, CHCl₃).

 $R_f = 0.4$ (silica gel, 50% EtOAc–hexane).

IR (neat): 3447, 2930, 1363, 1119, 1048, 737 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.31–7.27 (m, 5 H), 4.86 (d, J = 2.5 Hz, 1 H), 4.52 (s, 2 H), 3.95–3.71 (m, 2 H), 3.58–3.53 (m, 2 H), 3.30 (s, 3 H), 2.32 (br s 1 H, OH), 2.17 (dd, J = 12.7, 4.2 Hz, 1 H), 1.99–1.91 (m, 1 H), 1.53 (dt, J = 12.7, 3.4 Hz, 1 H), 1.36 (q, J = 11.8 Hz, 1 H).

¹³C NMR (75 MHz, CDCl₃): δ = 138.4, 128.2, 127.3, 99.0, 70.4, 69.7, 68.4, 65.5, 54.4, 36.4, 33.5.

MS (ESI): $m/z = 275 [M^+ + Na]$.

HRMS (ESI): m/z [M⁺ + Na] calcd for C₁₄H₂₀NaO₄: 275.1259; found: 275.1252.

(2*S*,4*S*,6*S*)-4-(Benzyloxy)-2-methoxy-6-(tosyloxymethyl)tetrahydro-2*H*-pyran (11)

To soln of **10** (1.96 g, 7.77 mmol) in anhyd CH_2Cl_2 (15 mL) was added Et_3N (2.16 mL, 15.5 mmol) at 0 °C and this was followed by addition of TsCl (1.63 g, 8.55 mmol). The mixture was allowed to warm to r.t. and stirred for 3 h. The reaction was treated with aq 1 M HCl (12 mL) and extracted with CH_2Cl_2 (3 × 25 mL). The organic layer was washed with sat. aq NaHCO₃ (20 mL) and H₂O. The combined organic phases were dried (Na₂SO₄) and concentrated under reduced pressure. Flash chromatography of the crude product afforded tosylate **11** as a colorless viscous liquid; yield: 2.9 g (92%).

 $[\alpha]_D^{25}$ +77.04 (*c* 4.1, CHCl₃).

 $R_f = 0.4$ (silica gel, 30% EtOAc-hexane).

IR (neat): 2933, 1362, 1177, 772 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.79 (d, *J* = 8.4 Hz, 2 H), 7.34–7.27 (m, 7 H), 4.77 (d, *J* = 2.5 Hz, 1 H), 4.49 (s, 2 H), 4.00–3.91 (m, 2 H), 3.88–3.72 (m, 2 H), 3.23 (s, 3 H), 2.46 (s, 3 H), 2.15–1.94 (m, 2 H), 1.47 (ddd, *J* = 1.52, 12.7, 3.4 Hz, 1 H), 1.23 (q, *J* = 11.8 Hz, 1 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 129.6, 128.2, 127.8, 127.3, 99.0, 71.9, 70.1, 69.7, 65.6, 54.5, 36.1, 33.5, 21.4.

MS (ESI): $m/z = 429 [M^+ + Na]$.

(2*S*,4*S*,6*R*)-4-(Benzyloxy)-2-methoxy-6-undecyltetrahydro-2*H*-pyran (12)

To a suspension of CuBr (170 mg, 1.2 mmol) in THF (10 mL) at 0 °C was added 0.67 M n-C₁₀H₂₁MgBr in Et₂O (13 mL, 8.71 mmol), followed by monotosylate **11** (2.5 g, 6.15 mmol) in THF (25 mL); the mixture was stirred at r.t. for 5 h. The reaction was quenched with sat. aq NH₄Cl soln and the insoluble residue was removed by filtration through Celite. The filtrate was concentrated and the residue was poured into Et₂O. The organic layer was rinsed with H₂O and sat. brine (20 mL). Following solvent removal, the crude product was purified by column chromatography to give **12** as a colorless oil; yield: 1.76 g (76%).

 $[\alpha]_D^{25}$ +54.26 (*c* 2.2, CHCl₃).

 $R_f = 0.7$ (silica gel, 30% EtOAc-hexane).

IR (neat): 2933, 1659, 1391, 770 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 7.34–7.23 (m, 5 H), 4.82 (d, J = 3.0 Hz, 1 H), 4.55–4.54 (m, 2 H), 3.87–3.76 (m, 1 H), 3.63 (t, J = 9.8 Hz, 1 H), 3.30 (s, 3 H), 2.16 (dd, J = 12.0, 3.7 Hz, 1 H), 2.03–1.99 (m, 1 H), 1.56–1.24 (m, 22 H), 0.91 (t, J = 6.0 Hz, 3 H). ¹³C NMR (75 MHz, CDCl₃): δ = 128.3, 127.5, 99.1, 77.1, 69.8, 67.6,

54.4, 38.1, 36.5, 35.9, 31.9, 29.6, 29.3, 25.6, 22.6, 14.0.

MS (ESI): m/z = 399 (M⁺ + Na).

HRMS: m/z [M⁺ + Na] calcd for C₂₄H₄₀NaO₃: 399.2875; found: 399.2865.

(2*S*,4*S*,6*R*)-4-(Benzyloxy)-6-undecyltetrahydro-2*H*-pyran-2-ol (13)

A soln of methyl acetal **12** (1.39 g, 3.69 mmol) in 80% aq AcOH (25 mL) was refluxed for 4 h. The mixture was cooled to 0 °C, neutralized by addition of solid NaHCO₃, and extracted with CH₂Cl₂ (2 × 20 mL). The organic extracts were washed with H₂O (2 × 10 mL), brine (10 mL), and dried (anhyd Na₂SO₄). Filtration and evaporation of the solvent followed by purification (column chromatography) afforded pure lactol **13** as a syrupy liquid; yield: 0.96 g (72%).

 $[\alpha]_D^{25}$ +6.24 (*c* 2.25, CHCl₃).

 $R_f = 0.4$ (silica gel, 30% EtOAc-hexane).

IR (neat): 3367, 2921, 2850, 1092, 741 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.30–7.27 (m, 5 H), 5.39 (br s, 1 H), 4.54 (s, 2 H), 3.93–3.83 (m, 1 H), 3.57–3.46 (m, 1 H), 3.32–3.24 (m, 1 H), 2.34–2.15 (m, 2 H), 2.06–1.91 (m, 1 H), 1.52–1.15 (m, 21 H), 0.89 (t, *J* = 6.7 Hz, 3 H).

MS (ESI): m/z = 385 (M⁺ + Na).

(4*S*,6*R*)-4-(Benzyloxy)-6-undecyltetrahydro-2*H*-pyran-2-one (14)

To a soln of lactol **13** (1.8 g, 4.9 mmol) in CH_2Cl_2 (20 mL) was added Dess-Martin periodinane (3.16 g, 7.45 mmol) at 0 °C and the mixture was stirred for 1 h under argon. The mixture was poured into 10% Na₂S₂O₃ soln and extracted with Et₂O. The organic layer was washed with sat. aq NaHCO₃ and brine, dried (MgSO₄) and concentrated in vacuo. Column chromatography of the residue (silica gel) afforded lactone **14** as a waxy solid; yield: 1.50 g (84%); mp 31–33 °C.

 $[\alpha]_D^{25}$ +10.14 (*c* 3.0, CHCl₃).

 $R_f = 0.45$ (silica gel, 30% EtOAc-hexane).

¹H NMR (300 MHz, CDCl₃): δ = 7.31–7.25 (m, 5 H), 4.53 (q, J = 11.3 Hz, 2 H), 4.10 (m, 1 H), 2.82 (dd, J = 16.6, 10.5 Hz, 1 H), 2.51 (dd, J = 17.3, 9.8 Hz, 1 H), 2.23 (d, J = 16.6 Hz, 1 H), 1.71 (m,

1 H), 1.61–1.55 (m, 2 H), 1.34– 1.18 (m, 18 H), 0.88 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 170.3, 137.6, 128.5, 127.8, 127.5, 77.0, 70.3, 36.7, 35.5, 31.8, 29.5, 29.3, 24.8, 22.6, 14.0.

MS (ESI): $m/z = 361 (M^+ + H)$.

HRMS (ESI): m/z [M⁺ + H] calcd for C₂₃H₃₇O₃: 361.2742; found: 361.2747.

Methyl (3*S*,5*R*)-3-(Benzyloxy)-5-(methoxymethoxy)hexadecanoate (15)

To the lactone **14** (1.2 g, 3.33 mmol) in anhyd MeOH (8 mL) was added Et_3N (2.32 mL, 16.6 mmol) at r.t. and the mixture was stirred at this temperature for 10 h. The MeOH was removed under reduced pressure, anhyd CH₂Cl₂ was added, and the soln cooled to 0 °C. The DIPEA (1.73 mL, 10.0 mmol), DMAP (7 mg), and MOMCl (536 mg, 6.6 mmol) were added sequentially at 0 °C and the mixture was stirred at r.t. for 6 h. It was then diluted with H₂O (15 mL) and extracted with CH₂Cl₂ (2 × 15 mL) and the combined extracts were washed with H₂O (10 mL) and brine (10 mL). The solvent was evaporated in vacuo and the crude product was subjected to column chromatography to afford **15** as colorless oil; yield: 1.03 g (71%).

 $[\alpha]_{\rm D}^{25}$ –24.46 (*c* 3.3, CHCl₃).

 $R_f = 0.9$ (silica gel, 20% EtOAc-hexane).

IR (neat): 2926, 2854, 1740 (C=O), 1459, 1038, 740 cm⁻¹.

¹H NMR (200 MHz, CDCl₃): δ = 7.31–7.28 (m, 5 H), 4.59–4.46 (m, 4 H), 4.05–3.97 (m, 1 H), 3.72–3.64 (m, 4 H), 3.34 (s, 3 H), 2.55 (m, 2 H), 1.75–1.43 (m, 2 H), 1.34–1.25 (m, 20 H), 0.88 (t, *J* = 6.0 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 171.8, 128.3, 127.8, 127.6, 97.9, 75.2, 73.4, 71.6, 55.6, 51.6, 40.7, 40.1, 35.2, 31.9, 29.8, 29.6, 29.3, 24.9, 22.6, 14.1.

MS (ESI): $m/z = 459 (M^+ + Na)$.

HRMS: m/z [M⁺ + Na] calcd for C₂₆H₄₄NaO₅: 459.3086; found: 459.3107.

Methyl (3*S***,5***R***)-3-Hydroxy-5-(methoxymethoxy)hexadecanoate** Compound **15** (0.9 g, 2.06 mmol) in EtOAc (40 mL) was added Pd(OH)₂/C (250 mg) and the suspension was hydrogenated for 12 h. Removal of the catalyst by filtration and flash chromatography gave alcohol as a colorless liquid; yield: 0.67 g (94%).

 $[\alpha]_{D}^{25}$ -42.89 (*c* 2.85, CHCl₃).

 $R_f = 0.6$ (silica gel, 20% EtOAc–hexane).

IR (neat): 3471, 2925, 2854, 1738 (C=O), 1461, 1153, 1038 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 4.63 (q, *J* = 9.0, 2.2 Hz, 2 H), 4.21 (m, 1 H), 3.77 (m, 1 H), 3.69 (s, 3 H), 3.39 (s, 3 H), 3.29 (br s, 1 H, OH), 2.42 (m, 2 H), 1.55 (m, 4 H), 1.25 (m, 18 H), 0.88 (t, *J* = 6.8 Hz, 3 H).

¹³C NMR (75 MHz, CDCl₃): δ = 172.6, 96.2, 75.5, 64.7, 55.7, 51.4, 41.7, 41.1, 34.9, 31.8, 29.5, 25.1, 22.5, 13.9.

MS (ESI): $m/z = 347 (M^+ + H)$.

HRMS (ESI): m/z [M⁺ + Na] calcd for C₁₉H₃₈NaO₅: 369.2616; found: 369.2610.

Methyl (2*S*,3*S*,5*R*)-2-Hexyl-3-hydroxy-5-(methoxymethoxy)hexadecanoate (16)

To a stirred soln (-50 °C) of LDA (2.5 mmol) [generated from 1.6 M *n*-BuLi in THF (2.7 mL) and *i*-Pr₂NH (0.61 mL)] in THF (3 mL) was quickly added a soln of methyl (3*S*,5*R*)-3-hydroxy-5-(meth-oxymethoxy)hexadecanoate (600 mg, 1.73 mmol) in THF (6 mL). The mixture was stirred at -50 °C for 1 h and then hexyl iodide (1.47 g, 6.9 mmol) in HMPA (0.8 mL) was then added dropwise.

The resulting mixture was stirred at this temperature for 1 h, warmed to -20 °C, again stirred for 1 h, warmed to 0 °C and stirred for 1 h. The yellow mixture was diluted with Et₂O (80 mL) and poured in to sat. aq NH₄Cl (50 mL). The aqueous layer was extracted with Et₂O (3 × 50 mL), the combined organic layers were washed with H₂O (15 mL) and brine (20 mL) and dried (Na₂SO₄), and the solvent was removed in vacuo. Flash chromatography afforded the **16** as the major diastereomer; yield: 559.2 mg (75%).

 $[\alpha]_D^{25}$ –3.91 (*c* 0.6, CHCl₃).

 $R_f = 0.3$ (silica gel, 10% EtOAc-hexane).

IR (neat): 3449, 2924, 2854, 1735 (C=O), 1460, 1159, 1037 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 4.67 (d, *J* = 8.4, Hz, 2 H), 3.96 (m, 1 H), 3.80 (m, 1 H), 3.70 (s, 3 H), 3.39 (s, 3 H), 2.47–2.36 (m, 1 H), 1.71–1.4 (m, 6 H), 1.25 (m, 26 H), 0.89–0.84 (m, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 175.6, 96.3, 76.9, 68.9, 51.9, 39.5, 34.9, 31.5, 29.6, 29.1, 27.3, 25.2, 22.4, 13.9.

MS (ESI): $m/z = 431 (M^+ + H)$.

(3*S*,4*S*)-3-Hexyl-4-[(2*R*)-2-(methoxymethoxy)tridecyl]oxetan-2one (18)

To a soln of **16** (360 mg, 0.83 mmol) in THF–MeOH–H₂O (3:1:1, 5 mL) at 0 °C was added LiOH·H₂O (350 mg, 8.3 mmol) in one portion and the mixture stirred for 1 h and the temperature allowed to rise from 0 °C to r.t.. It was then acidified with 1 M HCl at 0 °C to pH 2 and diluted with EtOAc (10 mL) and washed with brine (5 mL), dried (Na₂SO₄), and concentrated in vacuo. The crude acid **17** was used directly in the next reaction.

To a stirred soln of acid **17** in anhyd pyridine (10 mL) cooled at 0 °C was added, dropwise via a syringe, PhSO₂Cl (0.18 mL, 1.43 mmol). The light yellow soln was stirred at 0 °C overnight and then diluted with Et₂O (30 mL). H₂O (20 mL) was added, and the aqueous layer was extracted with Et₂O (3 × 25 mL). The combined organic layers were washed once with H₂O (15 mL) and dried (anhyd Na₂SO₄). The residue was subjected to column chromatography to afford **18**; yield: 210 mg (66% over two steps).

 $[\alpha]_D^{25}$ –9.34 (*c* 0.45, CHCl₃).

 $R_f = 0.4$ (silica gel, 10% EtOAc-hexane).

IR (neat): 2926, 1824 (C=O lactone), 1730, 1271, 1038 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 4.62 (q, *J* = 14.9, 8.31 Hz, 2 H), 4.38 (m, 1 H), 3.67 (m, 1 H), 3.35 (s, 3 H), 3.15 (m, 1 H), 1.80–1.67 (m, 2 H), 1.61–1.46 (m, 2 H), 1.26 (m, 28 H), 0.88 (m, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 171.3, 95.9, 75.1, 74.5, 56.5, 55.6, 39.9, 34.7, 31.8, 29.6, 29.5, 29.2, 28.9, 27.6, 26.7, 24.8, 22.6, 22.4, 14.0.

MS (ESI): $m/z = 399 (M^+ + H)$.

(3S,4S)-3-Hexyl-4-[(2R)-2-hydroxytridecyl]oxetan-2-one (19)

A stirred soln of compound **18** (130 mg, 0.320 mmol) in CH₂Cl₂ (4 mL) was cooled to 0 °C and treated with BF₃·OEt₂ (28.5 mg, 0.20 mmol) and ethane-1,2-dithiol (75.7 mg, 0.8 mmol). The resulting mixture was stirred at 0 °C for 1 h and then quenched with aq NaHCO₃ soln (2 mL), and the aqueous layer was extracted with Et₂O (2 × 5 mL). The combined organic extracts were washed with brine (3 mL), dried (Na₂SO₄), and concentrated in vacuo. Column chromatography (silica gel) of the crude product afforded **19** as a white solid; yield: 101.7 mg (88%); mp 61–62 °C.

 $[\alpha]_{D}^{25}$ –41.3 (*c* 0.9, CHCl₃).

 $R_f = 0.6$ (silica gel, 20% EtOAc-hexane).

IR (KBr): 2924, 2854, 1730, 1461, 1273, 1078, 967 cm⁻¹.

¹H NMR (300 MHz, CDCl₃): δ = 4.46–4.40 (m, 1 H), 3.84–3.72 (m, 1 H), 3.24–3.17 (dt, *J* = 7.55, 3.8 Hz, 1 H), 1.93–1.67 (m, 4 H), 1.46–1.40 (m, 2 H), 1.26 (m, 26 H), 0.88 (t, *J* = 6.0 Hz, 6 H).

¹³C NMR (75 MHz, CDCl₃): δ = 171.3, 75.1, 68.4, 56.8, 41.5, 38.3, 31.4, 31.7, 29.3, 26.3, 25.8, 22.3, 13.9.

MS (ESI): $m/z = 355 (M^+ + H)$.

(1*S*)-1-{[(2*S*,3*S*)-3-Hexyl-4-oxooxetan-2-yl]methyl}dodecyl (2*S*)-2-(Formylamino)-4-methylpentanoate (1)

To a stirred mixture of **19** (25 mg, 0.07 mmol), Ph_3P (22.2 mg, 0.08 mmol) and (*S*)-*N*-formyl-L-leucine (13.4 mg, 0.08 mmol) in anhyd THF (2 mL) cooled at 0 °C was added DIAD (17.1 mg, 0.08 mmol) via a syringe. The mixture was then stirred at r.t. overnight. Removal of solvent under reduced pressure followed by flash chromatography afforded **1** as white crystals; yield: 31.5 mg (90%); mp 39–41 °C.

 $[\alpha]_{D}^{20}$ –33.2 (*c* 0.85, CHCl₃).

 $R_f = 0.2$ (silica gel, 20% EtOAc-hexane).

¹H NMR (200 MHz, CDCl₃): δ = 8.23 (s, 1 H), 6.05 (d, *J* = 8.5 Hz, 1 H, NH), 5.02 (m, 1 H), 4.68 (m, 1 H), 4.28 (m, 1 H), 3.22 (dt, *J* = 7.6, 3.9 Hz, 1 H), 2.25–2.11 (m, 1 H), 2.02 (m, 1 H), 1.80–1.15 (m, 33 H), 0.95 (d, *J* = 5.2 Hz, 6 H), 0.87 (distorted t, 6 H).

 ^{13}C NMR (75 MHz, CDCl₃): δ = 171.9, 170.8, 160.7, 74.8, 72.6, 56.9, 49.7, 41.4, 38.7, 34.0, 31.9, 31.2, 29.6, 29.5, 29.4, 29.3, 29.2, 28.8, 27.7, 26.8, 25.2, 24.9, 22.8, 22.7, 22.5, 21.7, 14.1, 14.0.

MS (ESI): m/z = 496 (M + H).

HRMS (ESI): m/z [M⁺ + H] calcd for C₂₉H₅₄NO₅: 496.4001; found: 496.3994.

Acknowledgement

K.V.R. thanks CSIR, New Delhi for the award of a fellowship.

References

- (a) Weibel, E. K.; Hadvary, P.; Hochuli, E.; Kupfer, E.; Lengsfeld, H. J. Antibiot. 1987, 40, 1081. (b) Hochuli, E.; Kupfer, E.; Maurer, R.; Meister, W.; Mercadal, Y.; Schmidt, K. J. Antibiot. 1987, 40, 1086.
- (2) (a) Barbier, P.; Schneider, F.; Widmer, U. Helv. Chim. Acta 1987, 70, 1412. (b) Barbier, P.; Schneider, F.; Widmer, U. Helv. Chim. Acta 1987, 70, 196. (c) Barbier, P.; Schneider, F. J. Org. Chem. 1988, 53, 1218. (d) Dirat, O.; Kouklovsky, C.; Langlois, Y. Org. Lett. 1999, 1, 753. (e) Ghosh, A. K.; Liu, C. Chem. Commun. 1999, 1743. (f) Paterson, I.; Doughty, V. A. Tetrahedron Lett. 1999, 40, 393. (g) Wedler, C.; Costisella, B.; Schick, H. J. Org. Chem. 1999, 64, 5301. (h) Parsons, P. J.; Cowell, J. K. Synlett 2000, 107. (i) Ghosh, A. K.; Fidanze, S. Org. Lett. 2000, 2, 2405. (j) Bodkin, J. A.; Humphries, E. J.; Mcleod, M. D. Aust. J. Chem. 2003, 56, 795. (k) Bodkin, J. A.; Humphries, E. J.; McLeod, M. D. Tetrahedron Lett. 2003, 44, 2869. (1) Thadani, A. N.; Batey, R. A. Tetrahedron Lett. 2003, 44, 8051. (m) Polkowska, J.; Lukaszewicz, E.; Kiegiel, J.; Jurczak, J. Tetrahedron Lett. 2004, 45, 3873. (n) Yadav, J. S.; Rao, K. V.; Reddy, M. S.; Prasad, A. R. Tetrahedron Lett. 2006, 47, 4393; and references cited therein.
- (3) Yadav, J. S.; Reddy, B. V. S.; Reddy, K. B.; Satyanarayana, M. *Tetrahedron Lett.* **2002**, *43*, 7009.
- (4) Barton, D. H. R.; McCombie, S. W. J. Chem. Soc., Perkin Trans. 1 1975, 1574.

- (5) Kotsuki, H.; Kadota, I.; Ochi, M. J. Org. Chem. 1990, 55, 4417.
- (6) Kotsuki, H.; Kadota, I.; Ochi, M. Tetrahedron Lett. 1989, 30, 1281.
- (7) Dess, D. B.; Martin, J. C. J. Am. Chem. Soc. 1991, 113, 7277.

- (8) (a) Frater, G. *Helv. Chim. Acta* 1979, *62*, 2825. (b) Frater, G.; Muller, U.; Gunther, W. *Tetrahedron* 1984, *40*, 1269.
- (9) (a) Naito, H.; Kawahara, E.; Maruta, K.; Maeda, M.; Sasaki, S. J. Org. Chem. 1995, 60, 4419. (b) Fuji, K.; Kawabata, T.; Fujita, E. Chem. Pharm. Bull. 1980, 28, 3662.
- (10) Mitsunobu, O. Synthesis 1981, 1.