NINE ISOFLAVONES FROM TEPHROSIA MAXIMA

E VENKATA RAO, M SREE RAMA MURTHY and ROBERT S WARD*

Department of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, India, *Department of Chemistry, University College of Swansea, Singleton Park, Swansea SA2 8PP, UK

(Received 24 October 1983)

Key Word Index—Tephrosia maxima, Leguminosae, maxima isoflavones A, C, D, E, F and G, ¹H and ¹³C NMR spectra

Abstract—The isolation and characterisation of nine closely related 3',4'-disubstituted isoflavones from the aerial parts and roots of *Tephrosia maxima* are reported Four of these compounds are new natural products, one of which contains a 7,8-methylenedioxy group, an uncommon feature in naturally occurring isoflavones ¹H and ¹³C NMR data are given for all compounds

INTRODUCTION

As part of our continuing study of *Tephrosia* species [1, 2]we have undertaken a reexamination of the chemical constituents of the aerial parts and roots of *Tephrosia* maxima Pers We report here the isolation of four new isoflavones (4, 8, 9 and 10), besides the previously reported maxima isoflavones A (1) and C (3) [3-6]. Their structures have been established on the basis of spectroscopic and chemical evidence In addition we have isolated and characterised 7,6'-dimethoxy-3',4'-methylenedioxyisoflavone (5), 7,8,6'-trimethoxy-3',4'-methylenedioxyisoflavone (6), and 6-methoxy-7-hydroxy-3',4'-methylenedioxyisoflavone (7) [7-10]

RESULTS AND DISCUSSION

Chromatography of the petrol extract of the aerial parts of T maxima gave maxima isoflavones A and C, while chromatography of the chloroform extracts of the aerial parts and roots gave four new isoflavones which we designate as maxima isoflavones D, E, F and G Although the structures of maxima isoflavones A (1) and C (3) have been established on the basis of chemical evidence [4-6] no spectral data is available in the literature, nor authentic samples available for comparison Since the new isoflavones are closely related to them spectral evidence for the structures of maxima isoflavones A and C is briefly presented

The mp and UV spectrum of maxima isoflavone A (1) were in close accord with those reported in the literature [5] In the mass spectrum the molecular ion was observed

at m/z 310 (C₁₇H₁₆O₆) and other significant fragments at m/z 164 and 146 could be rationalized in terms of the known fragmentation pattern of isoflavones [11] Together with the ions at m/z 165 and 135 in the mass spectrum of the corresponding deoxybenzoin (11), they established the presence of methylenedioxy substituents in both rings A and B

The fact that the 5 and 6 positions of 1 are unsubstituted was immediately evident from the ¹H NMR spectrum (Table 1) which shows an *ortho* coupled doublet (J = 9 Hz) at $\delta 7 68$ due to H-5 As shown in Table 2 the ¹³C NMR spectrum also fully supports the proposed structure [12] The structure was further confirmed by double demethylenation followed by methylation to give 7,8,3',4'-tetramethoxyisoflavone (2) [5]

The structure proposed earlier for maxima isoflavone C (3) [6] is fully supported by its ¹H and ¹³C NMR spectra (Tables 1 and 2), and by those of the corresponding deoxybenzoin (12) [13] (Tables 3 and 4) The mass spectrum of 3 showed a molecular ion at m/z 380 (C₂₂H₂₀O₆) in addition to a prominent fragment ion at m/z 312 corresponding to loss of C₅H₈ Another prominent ion at m/z 281, due to further loss of an OMe group is a characteristic feature observed for all compounds having a 6'-methoxyl group on ring B (*vide infra*)

The first new compound, maxima isoflavone D (4), mp 223–224°, showed $\lambda_{max} 262 \text{ nm and } \nu_{max} 1632 \text{ cm}^{-1}$ typical of an isoflavone The ¹H NMR spectrum (Table 1) showed a singlet at $\delta 8 24$ confirming the isoflavone nucleus The sharp singlets at $\delta 3 72$ (6H) and $\delta 6 19$ (2H) indicated the presence of two methoxy and one methylenedioxy group Two doublets at $\delta 7 64$ and

7 R = OMe, R^2 = OH, R^3 = H R^1 = H, R^2 = OH, R^3 = OMe R^1 = H, R^2 = OAc, R^3 = OMe R^1 = H, R^2 = R^3 = OMe

701 (J = 9 Hz) could be assigned to H-5 and H-6 respectively and the remaining three protons of the B ring were observed as a multiplet at $\delta 68-72$

That the methylenedioxy group and two methoxy groups were attached to carbons 7,8 and 3',4' in rings A and B was proven by demethylenation followed by remethylation to give 7,8,3',4'-tetramethoxyisoflavone (2) [5] In the mass spectrum of 4 the molecular ion was observed at m/z 326 (C₁₈H₁₄O₆) and the formation of significant fragment ions at m/z 162 and 164 was also

consistent with the proposed structure Along with ions at m/z 151 and 165 in the mass spectrum of the corresponding deoxybenzoin (14), they confirm beyond doubt that the two methoxy groups are attached to ring B and the methylenedioxy group to ring A

The ${}^{13}C$ NMR spectrum of 4 closely resembles that of maxima isoflavone A (1) (see Table 2), particularly with regard to the chemical shifts of the ring A carbon atoms The NMR and mass spectra of the product obtained by H_2O_2 -KOH cleavage show it to be a *ca* 1 1 mixture of

					Ţ	able 1 ¹ HNI	MR spectra of 1	isofiavones					
Compound	Solvent	ň	Ś	ور	2	5	9	8	OCH ₂ O	OMe	НО	OAc	20
-	DMSO	69–71	æ		8 36 s	7 68 d(9)	Ι	ł	6 04 s 6 29 s	1			I
4	DMSO	7 0-7 2	æ		8 48 <i>s</i>	7 88 d(8)		I	I	3 79 s(×2) 3 89 s 3 97 s		I	I
	CDCI	7 21 d(2)	7 06 <i>dd</i> (8,2)	6 92 d(8)	8 02 s	8 04 s	7 06 d(9)	I	1	392 s 393 s 401 s(23)	I	I	t
	Cand	6 01 c	6 20 5		8 1 K c	7 86 4(8)	C BIPP CUL	7 00 4(7)	5 08 c	4 01 3(× 2) 3 64 s	I		1 74 s. 4 65 d. 5 45 m
n	CDCI	6 80s	658 <i>s</i>		785 5	8 15 d(9)	6 92 dd(9,2)	6 82 d(2)	590 s	368 s	Ι	I	1 76 s, 1 80 s, 4 58 d, 5 48 t
4	DMSO	6 8-7 2	ш		8 24 s	7 64 d(9)	7 01 4(9)		619 s	3 72 s	ł	1	
	cDCI	7 18 d(2)	7 04 dd(8,2)	6 91 (8)	7 93 s	7 90 d(9)	(6)p 86 9		621 s	392 s 303 s	I		
5	DMSO	6 86 s	6 82 s		8 12 s	7 98 d(9)	7 07 dd(9,2)	7 13 d(2)	6 00 s	3 66 s	I	Ι	I
	CDCI3	6 83 s	6 62 s	I	7 88 s	8 18 d(9)	6 97 dd(9,2)	6 84 <i>d</i> (2)	5 95 s	391 s 373 s	Ι		I
										3 91 s			
9	DMSO	687 s	6 82 <i>s</i>		8 25 s	7 81 d(9)	7 27 d(9)	1	601 s	3 66 s 3 88 s 3 96 s	1	I	I
	CDCI	6 83 <i>s</i>	6 62 <i>s</i>		7 96 s	8 01 d(9)	7 04 <i>d</i> (9)		5 96 s	3 73 <i>s</i> 4 00 <i>s</i>	I	1	I
٢	DMSO	68-72	E		8 30 s	7 44 s		6 94 5	6 04 s	4 02 s 3 88 s	I	ł	I
- oc	DMSO	 - 	69-72 m		841 s	7 73 d(9)	7 02 d(9)		604 s	3 88 s	105 br	1	-
,	CDCI	7 09 d(2)	6 99 dd(8,1)	6 85 d(8)	795 s	7 98 d(9)	7 05 d(9)		5 99 s	4 08 s	617 s		1
8a	CDCI		68-71m		8 00 s	8 04 d(9)	7 19 (9)		5 96 s	3 98 s		2 35 s	
8	DMSO		69-72m		8 44 s	7 86 d(9)	7 28 d(9)		6 04 s	388 s		1	1
6	DMSO	6 86 s	6 82 <i>s</i>		8 22 s	7 68 d(9)	7 00 d(9)		6 00 s	3 66 s	Ι	I	I
										3 87 s			
	CDCI ₃	6 82 <i>s</i>	6 62 s	I	7 93 s	7 95 d(9)	7 03 d(9)		595 s	3 73 s 4 08 s	6 24 s	ŀ	1
9a	cDCI	6 62 <i>s</i>	6 72 s		8 00 s	8 02 d(9)	7 10 d(9)		5 94 s	3 72 s 4 00 s	I	2 38 s	I
10	DMSO	679 s	674 s	ł	8 04 s	7 86 d(9)	6 86 dd(9,2)	6 78 m	5 94 s	3 59 s	6 80 s		I
10a	CDCI	6 76 s	6 56 s		787 s	8 24 d(9)	7 08 dd(9,2)	7 22 d(2)	5 89 s	3 68 s		2 32 s	

Compound	Solvent	1,	2′	З,	4	5'	6,	2	3	4	4a	5	9	٢	80	8a	OMe OAc	0CH ₂ O
1	DMSO	125 26	109 42	146 96	146 96	108 01	122 46	153 24	122 99	174 19	119 68	119 95	107 34	151 99	134 30	140 34		101 00
2	DMSO	124 18	112 71	148 26	148 61	111 57	121 25	153 63	123 01	174 92	118 36	120 85	11095	156 09		149 79	55 49 (× 2) 103 64
																	56 44 60 95	
3	DMSO	112 75	11096	140 39	147 91	95 51	152 81	154 53	121 66	174 29	11747	126 79	115 00	162 81	101 21	157 40	56 56	101 20
	CDCI3	112 97	111 26	141 24	148 40	95 51	153 00	154 11	122 11	174 64	118 39	127 72	11483	163 16	100 96	15793	56 90	101 37
4	DMSO	124 08	11287	148 26	148 70	111 56	121 33	153 15	123 09	174 29	119 76	11996	107 32	151 94	134 29	14040	55 51	103 62
ŝ	DMSO	113 38	111 08	140 99	148 20	96 08	153 16	154 40	122 0		11817	127 17	11441	164 00	100 87	157 78	56 09	101 33
																	57 06	
6	DMSO	113 17	11097	140 75	148 08	96 00	153 12	154 50	121 44	174 63	118 85	120 69	111 35	15621	136r78	15015	56 76	101 26
																	56 97	
																	61 02	
۲	DMSO	12591	109 37	146 93	146 93	108 03	122 28	152 95	122 63	174 16	11613	104 70	146 80	151 70	102 72	152 83	55 79	100 97
80	DMSO	125 59	109 39	146 94	146 94	108 05	122 37	153 27	122 96	174 65	117 36	120 75	11515	154 65	134 61	150 59	60 77	100 99
8a	cpci	125 28	109 74	147 83	147 93	108 49	122 48	152 21	123 78	175 5	12513	120 19	121 13	147 03	1409	1506	6174	101 26
																	168 33	20 69
8b	DMSO	125 47	109 35	146 97	146 97	108 04	122 36	153 70	122 92	174 67	118 40	120 81	11094	156 14	136 09	149 83	56 45	101 01
																	6091	
6	DMSO	112 81	110 97	140 34	147 88	95 50	152 86	154 11	121 34	174 40	117.37	120 63	115 14	154 70	134 78	150 69	56 56 60 74	101 16
9a	CDCI,	112 27	111 10	141 31	148 68	95 53	153 05	154 15	122 49	175 53	23 86	19 99	121 13	150 74	141 31	146 89	56 89	101 46
																	61 73	
																	168 39	20 70
10	DMSO	112 88	110 98	140 33	147 83	95 50	152 80	154 23	121 46	174 29	116 57 1	127 15	115 05	162 48	102 13	157 46	56 53	101 12
10a	CDCI	112 22	11089	14087	148 31	95 28	152 75	154 29	122 01	174 98	21 96 1	127 15	11941	15640	111 00	154 85	56 63	101 25
																	168 25	2096

Table 2¹³C NMR spectra of isoflavones

					Table 3	¹ H NMR	spectra of	deoxy	benzoins		,			
Compound	Solvent	5	S,	وز	CH2	6	5	m	0CH ₂ O	OMe	НО	Ŭ	$\left \right\rangle$	
11	CDCI3		6 70 m		4 12 s	7 46 d(8)	6 44 d(8)		592 s	1	114s		l	
12	CDCI3	6 62 s	6 48 s	I	4 09 s	7 72 d(9)	6 38 m		583 s	3 70 s	12 60 s	5 40 t	4 48 d	172s 177s
13	CDCI3	6 66 s	6 51 s	Ι	4 08 s	7 78 d(9)	6 38 m		585s	3 70 s 2 70 s	12 62 s			1
14 15	មិលិ ពិ	6 65 s	6 79 m 6 51 s	1	4 18 s 4 09 s	7 50 d(8) 7 78 d(9)	6 45 d(8) 6 30 m	Ι	6 04 s 5 85 s	3 70 s 3 70 s	11 3 s 12 45 s		I	

deoxybenzo
5
spectra
¹³ C NMR
4
Table

	OCH ₂ O	101 12	101 22	102 65	101 23
	OMe	I	55 52 56 48	55 92	56 51
	3	147 49	50 146 81 147 98 109 75 122 48 44 81 202 87 116 20 126 45 100 93 154 13 134 70 147 49 - 101 12 48 141 18 147 44 94 92 152 19 38 88 202 54 115 06 131 96 100 96 166 04 107 56 165 56 55 52 101 25 53 148 32 149 22 112 55 121 55 44 84 203 08 116 25 126 50 100 89 154 11 134 70 147 50 55 92 102 25 51 141 19 147 50 55 92 102 25 104 85 177 50 155 50 102 25	163 10	
	3	134 70	107 56	134 70	108 03
	4	154 13	166 04	154 11	165 19
	5	100 93	100 96	100 89	15 CDCl ₃ 113 52 110 51 141 19 147 50 94 99 152 23 38 96 203 03 114 85 132 75 103 50 165 19 108 03 163 10 56 51 101 23
ns	6	126 45	127 108 50 146 109 75 122 44 120 116 20 126 154 134 70 113 38 110 48 147 94 92 152 19 38 202 54 115 06 154 134 70 113 38 110 48 141 94 92 152 38 202 54 115 06 166 107 56 126 9 148 249 152 152 126 100 96 166 107 56 135 148 203 08 116 27 38 203 114 85 134 70 135 141 147 94 95 203 38 148 132 75 103 165 108 108 108 108 108 108 108 108 108 108	132 75	
oxybenzou	1	116 20	115 06	116 25	11485
ctra of dec	S	202 87	202 54	203 08	203 03
VMR spec	CH ₂	98 109 75 122 48 44 81 202 87 11 44 94 92 152 19 38 88 202 54 11 22 112 55 121 55 44 84 203 08 11 50 94 96 157 73 38 96 203 08 11	38 96		
e 4 ¹³ C]	6,	122 48	152 19	121 55	15 CDCl ₃ 113 52 110 51 141 19 147 50 94 99 152 23 38 96 203 03 114 85 132 75 103 50 165 19 108 03 163 10 56
Tabl	S'	109 75	94 92	112 55	94 99
	4′	147 98	147 44	13 C.D.Cl. 113 38 110 48 14.1.8 14.44 94 92 132.13 38 56 202 34 131 50 100 131 50 100 131 50 100 131 50 100 130 132 50 100 89 154 14 CDCl3 126 59 111 53 148 32 149 22 112 55 121 55 44 84 203 08 116 25 126 50 100 89 154 15 CDCl3 113 52 110 51 141 19 147 50 94 99 152 23 38 96 203 03 114 85 132 75 103 50 165	
	2' 3' 4' 108 50 146 81 147 98 1(110 48 141 18 147 44 5	141 18	148 32	141 19	
	2,	l' 2' 3' 4' 127 67 108 50 146 81 147 98 113 38 110 48 141 18 147 44	111 53	110 51	
	١,	127 67	113 38	126 59	113 52
	Solvent	CDCl,	CDCI3	CDCI3	CDCI ₃
	Compound	11	13	14	15

veratric and 2-hydroxypiperonylic acids, as would be expected The 7,8-methylenedioxy group is an unusual feature in the isoflavone series and maxima isoflavone D is only the second naturally occurring compound to possess this feature, the first being maxima isoflavone A [5]

The second new compound, maxima isoflavone \overline{E} (8), mp 268–270°, showed λ_{max} 256 nm and v_{max} 1635 cm⁻¹ indicative of an isoflavone The ¹H NMR spectrum showed singlets at $\delta 8$ 41 (H-2), 388 (OMe) and 604 (OCH₂O) The two doublets at $\delta 7$ 73 and 7 02 (J = 9 Hz) can be assigned to H-5 and H-6 and the multiplet at $\delta 6$ 9–7 2 is attributed to the three protons of the B ring Maxima isoflavone E contains a hydroxyl group as evidenced by the formation of a monoacetate (8a), mp 165–167 5°, and a monomethyl ether (8b), mp 182–183° The methyl ether is isomeric with maxima isoflavone D (4) and is identical with purpuranin A [14] isolated from the pods of *Tephrosia purpurea* var *maxima*, although no direct comparison was possible

The mass spectrum of maxima isoflavone E showed a molecular ion at m/z 312 (C₁₇H₁₂O₆) The presence of ions at m/z 146, 166 and 138 for the parent compound and at m/z 146 and 152 for the methyl ether are again diagnostic of the substituents present in the two halves of the molecule The ¹H NMR spectrum is also indicative of substitution of C-7 and C-8 and the UV shifts ($\lambda_{max}^{\text{MeOH}+\text{ NaOAc}}$ 269 nm) leave no doubt about the orientation of the hydroxyl and methoxyl groups [15] The ¹³C NMR spectrum is consistent with the 7,8-substitution

pattern and the shifts for ring A of the methyl ether (8b) compare closely with those of maxima isoflavone F (9) and 7,8,6'-trimethoxy-3',4'-methylenedioxyisoflavone (6) (see Table 2) It is however clear that the presence of methoxy groups at C-7 and C-8 cause significant differences in the chemical shifts of C-6, C-7 and C-8 as compared with those when a methylenedioxy group is present, perhaps reflecting poorer overlap of the lone pairs on oxygen with the ring due to free rotation of the methoxyl groups

The third new compound, maxima isoflavone F (9), mp 257–259°, showed λ_{max} 254 nm and v_{max} 1622 cm⁻¹ characteristic of an isoflavone, and also showed a characteristic singlet at $\delta 8\,22$ (H-2) in its ¹H NMR spectrum (Table 1) The sharp singlets at δ 366, 387 and 600 indicated the presence of two methoxyl groups and one methylenedioxy group The two doublets at δ 768 and 7 00 (J = 9 Hz) can be assigned to H-5 and H-6 and the singlets at $\delta 6$ 82 and 6 86 are attributed to H-2' and H-5' respectively Maxima isoflavone F contains a hydroxyl group and readily formed a monoacetate (9a), mp 194-197°, and a monomethyl ether mp 214-216°, which was identical in all respects with 7,8,6'-trimethoxy-3',4'methylenedioxyisoflavone (6) [7, 8] It therefore only remained to determine the relative positions of the hydroxyl and methoxyl groups in ring A The UV shift with NaOAc to 266 nm clearly indicates that the hydroxyl is at C-7 A comparison of the ¹H and ¹³C NMR spectra of maxima isoflavone F with the relevant parts of the

spectra of 7,8,6'-trimethoxy-3',4'-methylenedioxy isoflavone (6) and maxima isoflavone E (8) convincingly supports the proposed structure (9) having a 7-hydroxyl and an 8-methoxyl group

The molecular ion of 9 was observed at m/z 342 (C₁₈H₁₄O₇) Other significant fragments ions were at m/z 311 [M - 31], 167, 176 and 137 All of the compounds having an extra methoxyl group at C-6' on ring B show a prominent peak due to loss of methoxyl in their mass spectra and this can therefore be of great assistance in identifying this type of substitution pattern Such interactions have good analogies [11, 16]

The fourth new compound, maxima isoflavone G (10), mp 298-302°, was found to be a hydroxy isoflavone containing one methoxy and one methylenedioxy group That the hydroxyl was at C-7 was indicated by the UV shift with NaOAc (248 \rightarrow 257 nm) The compound readily formed a monoacetate, mp 177-178°, and a monomethyl ether, mp 214-216° The methyl ether was identical in all respects with 7,6'-dimethoxy-3',4'-methylenedioxyisoflavone (5) [7,9] Furthermore the parent isoflavone was identical in all respects with a sample obtained from maxima isoflavone C by acid treatment [6] Compound 10 shows a prominent peak in the mass spectrum at m/z281 due to loss of methoxyl in addition to other important fragment ions are at m/z 137 and 176/175 The ¹³ \overline{C} NMR shifts of the ring A carbon atoms are in complete accord with those reported for 7-hydroxyisoflavones [12] Alkaline cleavage of 10 yields the corresponding deoxybenzoin (15) [9, 13] whose ¹H and ¹³C NMR spectra (Tables 3 and 4) fully support the proposed structure

The remaining compounds (5, 6 and 7) were identified by their spectral characteristics (see Tables 1 and 2) Compounds 5 and 6 have been reported to be present in the trunk wood of *Pterodon apparicioi* (Leguminosae) [7] Compound 5 has been synthesised [9] while compound 6 has been prepared from 4-methoxypterocarpin [8] Compound 7 was reported from the wood of *Dalbergia riparia* (Leguminosae) [10]

The melting points of 5, 6 and 7 isolated by us were slightly higher than those reported for these compounds in the literature and direct comparison was not possible. However their characterisation was firmly established on the basis of their spectral data. In the case of compound 5 it could be compared with the corresponding sample obtained from maxima isoflavone C (3) by selective dealkylation at the 7-position to give 10 followed by subsequent methylation to give 5 Furthermore alkaline cleavage gave the corresponding deoxybenzoin (13)

EXPERIMENTAL

Aerial parts and roots of *Tephrosia maxima* Pers were collected from plants growing around Visakhapatnam A voucher specimen has been deposited in the Botany Department of Andhra University

Dried and powdered aerial parts (23kg) and roots (2kg) were

extracted separately with hot petrol followed by CHCl₃ and EtOH Examination of the EtOH extracts was deferred After removal of solvents the petrol and chloroform extracts left crude semi solid residues (39 g, 57 g) and (19 g, 24 g) respectively The crude residues were subjected to column chromatography on silica gel and eluted with benzene, CHCl₃ and MeOH, and mixtures thereof The fractions were further purified by prep TLC wherever necessary

Column chromatography of the petrol extract from the aerial parts afforded maxima isoflavones A (1) and C (3), while the CHCl₃ extract gave 1, 3, maxima isoflavone D (4), 7,6'-dimethoxy-3',4'-methylenedioxyisoflavone (5), 7,8,6'trimethoxy-3',4'-methylenedioxyisoflavone (6), maxima isoflavone E (8) and 6-methoxy-7-hydroxy-3',4'-methylenedioxyisoflavone (7) Column chromatography of the CHCl₃ extract of the roots gave maxima isoflavones F (9) and G (10), besides all the above mentioned isoflavones except 7 All the compounds gave positive Labat test for a methylenedioxy group

Maxima isoflavone A (1) The fraction eluted with C_6H_6 -CHCl₃ (3 1) afforded 1 (3 2 g) as colourless needles from CHCl₃-MeOH, mp 228-230° (lit [3] mp 226-229°) UV λ_{max}^{MeOH} nm, 261, 295, IR v KB cm⁻¹ 3080, 2900, 1650, 1620, 1178, 1100, 1048, 815, 720 EIMS (probe) 70 eV m/z (rel int) 310 [M]⁺ (91 5), 309 (17 7), 165 (10 5), 164 [C₈H₄O₄]⁺ (100), 146 [C₉H₆O₂]⁺ (54 6), 145 (25 6), 126 (11 5), 106 (28 0) (Found [M]⁺ 310 0477 C₁₇H₁₀O₆ requires 310 0477)

Alkaline degradation of 1 Compound 1 (200 mg) was refluxed with 12% NaOH (12 ml) in EtOH (12 ml) for 20 min The reaction mixture was cooled, diluted with water (100 ml) and acidified with 20% H₃PO₄ The solid that separated after cooling was taken up in CHCl₃ and washed with 5% NaHCO₃ and water, dried and the solvent evaporated The residue was crystallized from CHCl₃-MeOH to give the deoxybenzoin 11 (75 mg), mp 132/143-144 5° (lit [4] 142-144°) UV λ_{max}^{MeOH} nm 217, 243, 295 IR ν_{max}^{EB} cm⁻¹ 3460, 2900, 1655, 1610, 1490, 1440, 1250, 1186, 934 EIMS (probe) 70 eV m/z (rel int) 300 [M]⁺ (65), 165 [C₈H₃O₄]⁺ (100), 135 [C₈H₇O₂]⁺ (86) (Found [M]⁺ 300 0634 C₁₆H₁₂O₆ requires 300 0634)

Oxidation of 1 with alkaline H_2O_2 Compound 1 (100 mg) was dissolved in 5% KOH in 80% EtOH (10 ml) by warming for 15 min To the soln 12% H_2O_2 was added drop by drop (total 4 ml) When the effervescence ceased, the reaction mixture was warmed for a few min, diluted with H_2O to 30 ml, acidified with dil HCl and extracted with Et_2O The Et_2O extract was divided into acidic and phenolic fractions by extracting with 5% NaHCO₃ and 5% NaOH The acidic fraction gave 20 mg piperonylic acid, mp 227-229° (Me₂CO-petrol) while the phenolic fraction afforded the deoxybenzoin (11) (30 mg)

7,8,3'4'-Tetrahydroxyisoflavone Compound 1 (200 mg) in dry C_6H_6 (20 ml) was treated with anhydrous AlCl₃ (2 g) and the mixture refluxed for 3 hr The reaction mixture was cooled and the supernatant decanted off and the solvent removed The two residues were treated with HCl (1 1) and the combined acid solutions extracted with Et_2O The yellow Et_2O soln was extracted with 1% NaOH and the alkali soluble part recovered immediately by acidification and extraction with Et_2O The

residue obtained after evaporation of the solvent was purified by column chromatography over silica gel The fraction eluted with CHCl₃-MeOH (96 4) afforded the tetrahydroxyisoflavone as light yellow prisms from MeOH, mp 320° (decomp) with darkening at ca 270° It gave a dark green colour with FeCl₃ and negative Labat test

7,8,3',4'-Tetramethoxyisoflavone (2) The hydroxy compound (25 mg) was methylated with Me_2SO_4 (0 4 ml) and anhydrous K_2CO_3 (1 g) in Me_2CO (10 ml) The product (2) crystallized from $CHCl_3$ -MeOH as colourless needles (20 mg), mp 166–168° (lit [5] mp 168–170°) It gave no colour with FeCl₃ EIMS (probe) 70 eV m/z (rel int) 342 [M]⁺ (100), 327 [M – OMe]⁺ (17 3), 299 [M – Me – CO]⁺ (10 7), 162 [$C_{10}H_{10}O_2$]⁺ (5 7), 152 [$C_8H_8O_3$]⁺ (9 1), 137 [$C_8H_8O_3 - Me$]⁺ (10 5) 119 (29 5) (Found [M]⁺ 342 1103 $C_{19}H_{18}O_9$ requires 342 1103)

 $\begin{array}{l} Maxima \ isoflavone \ C \ (3) \ The \ fraction \ eluted \ with \\ C_6H_6-CHCl_3 \ (1 \ 1) \ afforded \ 3 \ (2 \ 7 \ g) \ as \ colourless \ large \ hexagonal \ prisms \ from \ MeOH, \ mp \ 145-147^{\circ} \ (ht \ [6] \ mp \ 142-144^{\circ}) \\ UV \ \lambda_{max}^{MeOH} \ nm \ 244, 249, 267, 306, \ IR \ \nu_{max}^{BR} \ cm^{-1} \ 1645, \ 1612, 925 \\ EIMS \ (probe) \ 70 \ eV \ m/z \ (rel \ int) \ 380 \ [M]^+ \ (26 \ 0), \ 312 \\ [M-C_5H_8]^+ \ (26 \ 6), \ 281 \ [M-C_5H_8 - OMe]^+ \ (35 \ 0), \ 175 \\ [C_{10}H_7O_3]^+ \ (7 \ 6), \ 137 \ [C_7H_5O_3]^+ \ (12 \ 1), \ 69 \ [C_5H_9]^+ \ (100) \\ (Found \ M^+ \ 380 \ 1260 \ C_{22}H_{20}O_6 \ requires \ 380 \ 1260 \) \end{array}$

Alkaline degradation of 3 Compound 3 (100 mg) was refluxed with 12% NaOH in 50% EtOH (12 ml) for 30 min The product worked up as described under 'alkaline degradation of 1' afforded the deoxybenzoin 12 as a crystalline solid mp 79° (ht [6] mp 79–81°, ht [13] mp 80°)

Alkaline degradation of 4 Compound 4 (200 mg) was hydrolysed with 12% NaOH in 50% EtOH (25 ml) and the product worked up as usual to give the deoxybenzoin 14 as colourless needles from CHCl₃-MeOH (85 mg), mp 122° It gave light green colour with FeCl₃ UV λ_{MeO}^{MeOH} nm 216, 240, 295, IR ν_{Ma}^{KBr} cm⁻¹ 3456, 2920, 1650, 1610, 1090, 1020, 920 EIMS (probe) 70 eV m/z (rel int) 316 [M]⁺ (111), 165 [C₈H₅O₄]⁺ (100), 151 [C₉H₁₁O₂]⁺ (134) (Found [M]⁺ 316 0947 C₁₇H₁₆O₆ requires 316 0947)

Oxidation of 4 with alkaline H_2O_2 Compound 4 (150 mg) was subjected to H_2O_2 -KOH cleavage as in the case of compound 1 The acid fraction (25 mg) obtained was shown to be an approx 1 1 mixture of veratric acid and 2-hydroxypiperonylic acid by NMR and MS

7,8,3',4'-Tetramethoxyisoflavone (2) from 4 Compound 4 (150 mg) was demethylated and demethylenated with anhydrous AlCl₃ in dry C_6H_6 and the phenol thus obtained was methylated with Mc₂SO₄-K₂CO₃ in Mc₂CO The product crystallized from CHCl₃-MeOH as colourless needles (75 mg), mp 166–168° It was found to be identical in all respects with compound 2 obtained from maxima isoflavone A (1)

7,6'-Dimethoxy-3'4'-methylenedioxyisoflavone (5) This compound was eluted with CHCl₃-MeOH (99 5 0 5) and purified by prep TLC It crystallized from CHCl₃-MeOH to give colourless needles (257 mg), mp 222-224° (lit [7] mp 210-212°, lit [9] mp 208-209°) UV $\lambda_{max}^{CHCl_3}$ nm 244, 250, 267, 307, IR v kBr cm⁻¹ 1637, 1622, 1600, 1492, 1437, 1260, 1242, 1184, 933, 825 EIMS (probe) 70 eV m/z (rel int) 326 [M]⁺ (80 9), 295 [M - OMe]⁺ (100), 182 (10 3), 176 [C₁₀H₈O₃]⁺ (17 5), 175 (18 9), 161 (21 1), 151 $[C_8H_7O_3]^+$ (45 7), 147 (13 0), 107 (10 8), 103 (12 0) (Found $[M]^+$ 326 0790 $C_{18}H_{14}O_6$ requires 326 0790)

Deoxybenzoin 13 from 5 Compound 5 when treated with 12% EtOH-KOH in the usual way gave 13 as colourless needles (CHCl₃-MeOH), mp 133-134° (lit [9] mp 131-132°) UV λ MeOH nm 216, 232, 257, 308, IR ν MeX cm⁻¹ 3450, 2995, 1670, 1630, 928

7,8,6'-Trimethoxy-3',4'-methylenedioxyisoflavone (6) This compound was eluted with CHCl₃-MeOH (99 5 0 5) and purified by prep TLC Crystallization from CHCl₃-MeOH gave colourless prisms (144 mg), mp 215-216° (lit [7] mp 204-206°, lit [8] mp 204°) UV $\lambda_{max}^{CHCl_3}$ nm 248, 256, 308, IR ν_{max}^{KBr} cm⁻¹ 1625, 1610, 1305, 1272, 1090, 970, 920 EIMS (probe) 70 eV m/z (rel int) 356 [M]⁺ (100), 325 [M - OMe]⁺ (85 4), 189 (12 6), 181 [C₉H₉O₄]⁺ (41 5), 176 [C₁₀H₈O₃]⁺ (24 0), 175 [C₁₀H₇O₃]⁺ (28 7), 163 (18 6), 162 (10 5), 161 (21 7), 151 [C₈H₇O₃]⁺ (49), 149 (11 2), 137 [C₇H₅O₃]⁺ (14 8), 109 (10 3), 103 (11 7) (Found [M]⁺ 356 0923 C₁₉H₁₆O₇, requires 356 0896)

6-Methoxy-7-hydroxy-3',4'-methylenedioxyisoflavone (7) The fraction eluted with CHCl₃-MeOH (98 2) was purified by prep TLC to give compound 7 as colourless needles (72 mg) from CHCl₃-MeOH, mp 278 5-281° (lit [10] mp 260-262°) UV λ_{meOH}^{meOH} nm 224, 264, 298, 324, $\lambda_{meoH}^{MeOH+NaOAc}$ nm 225, 267, 294, 351, EIMS (probe) 70 eV m/z (rel int) 312 [M]⁺ (100), 267 (12 9), 166 [C₈H₆O₄]⁺ (31 5), 146 [C₉H₆O₂]⁺ (40 0), 145 [C₉H₅O₂]⁺ (20 0), 127 (13 5), 123 (16 5) (Found [M]⁺ 312 0634 C₁₇H₁₂O₆ requires 312 0634)

Maxima isoflavone E (8) This compound was eluted with CHCl₃-McOH (98 2) and purified by prep TLC Two crystallizations from EtOH afforded compound 8 as colourless needles (153 mg), mp 268-270°, UV λ_{max}^{MeOH} nm 218, 256, 298, $\lambda_{max}^{MeOH+NaOAc}$ nm 220, 269, 295, IR v KBr cm⁻¹ 3190, 1635, 1595, 1070, 923, 902 EIMS (probe) 70 eV m/z (rel int) 312 [M]⁺ (100), 166 [C₈H₆O₄]⁺ (4 5), 146 [C₉H₆O₂]⁺ (21 1), 141 (10 4), 138 [C₇H₆O₃]⁺ (20 7) (Found [M]⁺ 312 0634 C₁₇H₁₂O₆ requires 312 0634)

Maxima isoflavone E acetate (8a) A 20 mg sample of maxima isoflavone E (8) when acetylated with Ac₂O-C₅H₅N in the usual way gave the acetate (8a) (16 mg), mp 165-167 5° UV λ_{max}^{MeOH} nm 214, 260, 297 (unaffected by NaOAc), IR ν_{max}^{KBr} cm⁻¹ 2920, 1750, 1643, 1600, 1495, 1225, 1032, 930, 875

Maxima isoflavone E methyl ether (8b) (= purpuranin A) Compound 8 (35 mg) was methylated with Me₂SO₄-K₂CO₃ in Me₂CO to give the methyl ether (8b) as colourless plates from MeOH (20 mg), mp 182–183° (lit [14] mp 189–191°) EIMS (probe) 70 eV m/z (rel int) 326 [M]⁺ (100), 152 [C₈H₈O₃]⁺ (10 7), 146 [C₉H₆O₂]⁺ (100) (Found [M]⁺ 326 0790 C₁₈H₁₄O₆ requires 326 0790)

 $\begin{array}{l} Maxima \ isoflavone \ F \ (9) \ This \ compound \ was \ eluted \ with \ CHCl_3-MeOH \ (98 \ 2) \ and \ crystallized \ from \ CHCl_3-MeOH \ (92 \ mg), \ mp \ 257-259^\circ \ UV \ \lambda_{meO}^{MeOH} \ nm \ 214, \ 254, \ 306, \ \lambda_{meOH}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ \lambda_{max}^{MeOH} \ ham \ 214, \ 254, \ 306, \ 316, \ 319, \ 310, \ 311 \ [M - OMe]^+ \ (814), \ 299 \ (117), \ 297 \ (139), \ 296 \ [M - OMe - Me]^+ \ (319), \ 189 \ (122), \ 177 \ (104), \ 176 \ [C_{10}H_8O_3]^+ \ (253), \ 175 \ (253), \ 167 \ [C_{8}H_7O_4]^+ \ (281), \ 161 \ (316), \ 138 \ (104), \ 137 \ [C_{7}H_5O_3]^+ \ (79), \ 123 \ (259), \ 103 \ (143) \ (Found \ [M]^+ \ 342 \ 0736 \ C_{18}H_{14}O_7 \ requires \ 342 \ 0733 \)$

Maxima isoflavone F acetate (9a) Compound 9 (20 mg) when acetylated with $Ac_2O-C_5H_5N$ in the usual way afforded the acetate (9a) as colourless needles from CHCl₃-MeOH (15 mg), mp 194-197°, UV λ_{max}^{MeOH} nm 216, 252, 308 (unaffected by NaOAc), IR ν_{max}^{KBr} cm⁻¹ 2910, 1770, 1635, 1470, 1320, 1055, 930, 875

Maxima isoflavone F methyl ether (6) Compound 9 was methylated with $Me_2SO_4-K_2CO_3$ in Me_2CO to give a methyl

ether (6), mp 214–216°, identical in all respects with the natural sample $\boldsymbol{6}$

Maxima isoflavone G (10) This compound was eluted with CHCl₃-MeOH (96 4) It crystallized from MeOH as colourless needles (135 mg), mp 298-302° (lit [6] mp 298-300°) UV $\lambda_{\text{MeO}}^{\text{MeOH}}$ nm 215, 248, 308, $\lambda_{\text{max}}^{\text{MeOH}+\text{NaOAc}}$ nm 213, 257, 316, IR $\nu_{\text{max}}^{\text{MeO}}$ cm⁻¹ 3150, 2960, 1635, 1615, 1586, 1395, 1230, 1092, 950, 933, 832, 780 EIMS (probe) 70 eV m/z (rel int) 312 [M]⁺ (100), 281 [M - OMe]⁺ (75 0), 176 [C₁₀H₈O₃]⁺ (10 0), 175 [C₁₀H₇O₃]⁺ (13 0), 161 (10 1), 140 (20 4), 137 [C₇H₈O₃]⁺ (23 4). (Found M⁺ 312 0634 C₁₇H₁₂O₆ requires 312 0634) The natural sample (10) was identical in all respects with an authentic sample of 7-hydroxy-6'-methoxy-3',4'-methylenedioxyisoflavone (6'-methoxy-pseudobaptigenin) [6] obtained from maxima isoflavone C by treatment with 2% EtOH-HCl at 75-80° for 2 hr

Maxima isoflavone G acetate (10a) Compound 10 (15 mg) was acetylated with Ac₂O-C₅H₅N in the usual way to give the acetate (10a), mp 177–178°, UV λ_{max}^{meOH} nm 216, 262, 304, IR ν_{max}^{KBr} cm⁻¹ 3050, 2900, 1750, 1638, 1610, 1480, 1420, 1160, 926, 902, 780

Maxima isoflavone G methylether (5) Compound 10 (20 mg) was methylated with Me_2SO_4 - K_2CO_3 in Me_2CO to give the methyl ether (5), mp 214–216°, identical in all respects with the natural sample 5

Deoxybenzoin 15 from maxima isoflavone G Compound 10 when treated with 12% EtOH-KOH afforded the deoxybenzoin (15) as colourless prisms from MeOH, mp 168–169° (lit [13] mp 167°, lit [9] mp 164–165°)

Acknowledgements—One of us (MSRM) thanks the CSIR, New Delhi for a fellowship Our thanks are due to Professor A Pelter for his interest in this work

REFERENCES

- 1 Venkato Rao, E and Ranga Raju, N (1979) Phytochemistry 18, 1581
- 2 Pelter, A, Ward, R S Venkato Rao, E and Ranga Raju, N (1981) J Chem Soc Perkin Trans 1, 2491
- 3 Rangaswami, S and Rama Sastry, B V (1954) Curr Sci (India) 23, 397
- 4 Rangaswami, S and Rama Sastry, B V (1956) Proc Indian Acad Sci 44a, 279
- 5 Kukla, A S and Seshadri, T R (1962) Tetrahedron 18, 1443
- 6 Rangaswami, S and Rama Sastry, B V (1959) Arch Pharm 292, 170
- 7 Galma, E and Gottlieb, O R (1974) Phytochemistry 13, 2593
- 8 Bouwer, D, Brink, C M, Engelbrecht, J P and Rall, G J H (1968) J S Afr Chem Inst 21, 159
- 9 Sugmone, H (1960) Tetrahedron Letters 16
- 10 Braz Filho, R, Leite De Almeida, M E and Gottlieb, O R (1973) Phytochemistry 12, 1187
- 11 Mabry, T J and Markham, K R (1975) in *The Flavonoids* (Harborne, J B, Mabry, T J and Mabry, H, eds) p 97 Chapman & Hall, London
- 12 Pelter, A, Ward, R S and Bass, R J (1978) J Chem Soc Perkin Trans 1, 666
- 13 Anirudhan, C A and Whalley, W B (1963) J Chem Soc 6049
- 14 Subba Rao, N V (1956) Curr Sci (India) 25, 396
- 15 Mabry, T J, Markham, K R and Thomas, M B (1970) The Systematic Identification of Flavonoids, p 165 Springer, New York
- 16 Pelter, A and Stainton, P (1967) J Chem Soc 1933