

Bioorganic & Medicinal Chemistry Letters 12 (2002) 2561-2564

Dihydroquinolines as Novel n-NOS Inhibitors

Stefan Jaroch,^{a,*} Peter Hölscher,^a Hartmut Rehwinkel,^a Detlev Sülzle,^b Gerardine Burton,^c Margrit Hillmann^c and Fiona M. McDonald^c

^aDepartment of Medicinal Chemistry, Corporate Research, Schering AG, D-13342-Berlin, Germany ^bDepartment of Computational Chemistry, Corporate Research, Schering AG, D-13342-Berlin, Germany ^cCNS-Research, Corporate Research, Schering AG, D-13342-Berlin, Germany

Received 17 May 2002; revised 19 June 2002; accepted 21 June 2002

Abstract—Dihydroquinolines have been synthesized and have been shown to be potent n-NOS inhibitors. Selectivity versus e-NOS was increased to approximately 100-fold through appropriate substitution at the benzene ring. © 2002 Elsevier Science Ltd. All rights reserved.

Excessive brain levels of nitric oxide (NO) have been linked to tissue injury in the wake of a cerebral ischemic event and other neurodegenerative processes.¹ Since NO is formed in central and peripheral nerves through transformation of arginine into citrulline by constitutive neuronal nitric oxide synthase (n-NOS),² suppression of NO production with an n-NOS inhibitor appears as a promising neuroprotective treatment for a variety of disease states, notably stroke. Two further isoforms of nitric oxide synthase are known, one constitutively expressed in the endothelial lining of blood vessels (e-NOS) and another inducible form found in cells of the immune system (i-NOS). Due to the blood pressure modulating properties of endothelial NO, it is of paramount importance to identify a selective n-NOS inhibitor having minimal interaction with e-NOS.³

Our compound design started with 3-aminobenzoxazine 1 (Fig. 1) which emerged as a hit from high throughput screening.⁴ In an effort to explore the steric demand of the oxazine moiety, among several structural variations, the lactate fragment was replaced by the rigid framework of proline leading to dihydroquinoxaline 2^5 as prototype. However, this compound proved to be sensitive towards air oxidation, though it still exhibited an $IC_{50}=3.3 \ \mu M$ for n-NOS. Thus, further optimization seemed worthwhile and we moved from the oxidation-prone dihydroquinoxaline core⁶ on to the less labile dihydroquinoline⁷ template. Fortunately, dihydroquinoline **3** proved to be far superior to **2** both in terms of stability

and potency, which was increased 30-fold. The syntheses and structure-activity relationship (SAR) in the dihydroquinoline series are described in this paper.

The compounds were synthesized via two different routes as outlined in Schemes 1 and 2. The first path involved a conrotatory⁸ Nazarov cyclization⁹ of a phenyl cycloalkenyl ketone as a key step establishing the *cis*-stereochemistry at the stereogenic centers which eventually would become C-3a and C-9b in the final product.¹⁰ The synthesis was accomplished with a reaction sequence including a Beckmann rearrangement,¹¹ a thionation process,¹² and an ammonolysis step.¹³

The second route (Scheme 2) relied on a dissolving metal reduction of a quinolone,¹⁴ which provided predominantly the *trans*-dihydroquinolone, followed by the same endgame as described above. Generally, the quinolones were accessible through enamine addition to isocyanates followed by sulfuric acid-mediated cyclization.¹⁵ However, in the case of electron-deficient phenyl isocyanates (e.g., $\mathbf{R} = \mathbf{F}$, \mathbf{CF}_3) this process failed to deliver quinolones. Fortunately, an alternate sequence¹⁶ proved to be successful comprising Suzuki coupling of *N*-pivaloylanilide-derived¹⁷ boronic acids with triflates **II**

0960-894X/02/\$ - see front matter \odot 2002 Elsevier Science Ltd. All rights reserved. P11: S0960-894X(02)00481-X

^{*}Corresponding author. Tel.: +49-30-468-12146; fax: +49-30-469-92146; e-mail: stefan.jaroch@schering.de

Scheme 1. (a) $SOCl_2$, reflux; (b) PhH, AlCl_3; (c) Me_3SiCN, *n*-BuLi, THF; (d) PhMgCl, THF; aq H₂SO₄; (e) concd H₂SO₄; (f) H₂NOH x¹/₂H₂SO₄, THF–EtOH–H₂O; (g) PPA, 120 °C; (h) Lawesson's reagent, DME; (i) NH₃, MeOH.

Scheme 2. (a) I, CHCl₃; (b) concd H₂SO₄, 100 °C; (c) n-BuLi, THF; B(OMe)₃; aq HCl; (d) II, Pd(PPh₃)₄, Na₂CO₃, DME-H₂O; (e) concd HCl, reflux; (f) Mg, MeOH; (g) Lawesson's reagent, DME; (h) NH₃, MeOH.

Table 1. Inhibition of NOS isoforms by dihydroquinolines

Compd	Х	R	R′	$IC_{50}~(\mu M)^a$			Selectivity	
				n-NOS	e-NOS	i-NOS	e/n^b	i/n ^b
3	CH ₂	Н	NH ₂	0.16	3.3	2.7	21	17
4	$(CH_2)_2$	Н	NH_2	6.80	_	_	_	
5	$(CH_2)_3$	Н	NH_2	100	_	_	_	
6	0	Н	NH_2	0.13	0.96	4.1	7	32
7	CH_2	Н	NHMe	> 100	_	_		
8	CH_2	Н	NHOH	> 100	_	_	_	
9c	CH_2	Н	Hc	> 200	_	_	_	
10	CH_2	8-Me	NH_2	0.50	21	12	42	24
11	CH_{2}	8-F	NH_2	0.11	2.3	1.7	21	15
12	CH_{2}	8-C1	NH_2	0.14	6.2	5.7	44	41
13	CH_{2}	8-Br	NH_{2}	0.31	17	14	55	45
14	CH_{2}	8-CF3	NH_2	1.6	57	89	36	56
15	CH_{2}	8-NO ₂	NH_2	0.25	34	15	136	60
16	CH_2	8-CN	NH_2	0.64	54	32	84	50
17	CH_2	8-OMe	NH_2	0.64	24	13	38	20
18	CH_2	7-Me	NH_2	0.19	6.2	1.1	33	6
19	CH_{2}	7-F	NH_2	0.13	2.3	1.1	18	8
20	CH_2	7-NO ₂	NH_2	0.31	12	2.6	39	8
21	CH_2	7-OMe	NH_2	0.24	4.1	1.4	17	6
22	CH_2	6-F	NH_2	0.17	5.8	2.3	34	14
23	CH_2	6,7-F ₂	NH_2	0.68	20	5.1	29	8
24	CH_2	6-F, 8-Cl	NH_2	0.73	72	35	99	48
25	CH_2	6,8-Cl ₂	NH_2	4.1	> 200	30	_	7
26	CH_2^2	6,7-F ₂ , 8-Cl	NH_2^2	2.1	>200	78	—	37
Standards:								
l-NAME				1.6	1.5	8	1	5
L-NNA				0.08	0.32	5.5	4	69
l-NMMA				0.89	0.54	1.0	0.6	1

^aNOS activity was determined at least three times with recombinant human enzyme according to ref 20.

^hO(n exact Wity was determined at least three times with recombinant number in the generic structural formula on top of the table (i.e., 2,3,3a,4,5,9b-^be/n means IC₅₀(e-NOS)/ IC₅₀(n-NOS) and i/n means IC₅₀(i-NOS)/ IC₅₀(n-NOS). ^cThis compound contains an endocyclic CH₂–NH group instead of the CH=N given in the generic structural formula on top of the table (i.e., 2,3,3a,4,5,9b-hexahydro-1*H*-cyclopenta[*c*]quinoline (cf. ref 21)).

followed by depivaloylation and cyclization. Further introduction of substituents into the benzene ring is feasible at the dihydroquinolone stage through classical aromatic substitution reactions.¹⁸

We started to explore the SAR of the dihydroquinolines by determining the optimal ring size of the annulated ring. As is apparent from Table 1 (3-5) both cyclohexane and cycloheptane annulation led to a dramatic loss in potency. The cyclopentane could be replaced by a tetrahydrofuran ring at the expense of diminished selectivity versus e-NOS (6). Substitution at or removal of the 4-amino group was detrimental for activity (7–9). Modification of the benzene substitution pattern allowed us to improve the selectivity versus e-NOS. Whereas substitution at C-7 was broadly accepted irrespective of the electronic nature of the substituent and had only minor effects on the selectivity against e-NOS (18–21), introduction of residues at position 8 had a more severe impact (10–17). The 8-chloro derivative 12 proved to be more potent than both the methyl or methoxy analogue 10 and 17. In the 8-halogen series, increasing the size of the substituent correlated with a moderate loss in potency (11-14) with the maximum selectivity against e-NOS found for the bromo derivative 13. A more than 100-fold selectivity and a fair potency was observed for the 8-nitro derivative 15, while the high selectivity of 8-cyanoquinoline 16 was compromised by a drop in potency. The 6-fluoro derivative 22 showed a moderately improved selectivity compared to 3. Combination with a chloro substituent into 8-chloro-6-fluoroquinoline 24 led to an increased selectivity but a 5-fold loss in potency, a profile comparable to that of 8-cyanoquinoline 16. Further di- and trisubstitution resulted in poorly active n-NOS inhibitors (23, 25, and 26). Taken together, compounds displaying reasonable potency and fair selectivity were 8chloro-, 8-bromo-, 8-nitro-, and 6-fluoroquinoline (12, 13, 15, 22); these seem to be clearly superior to argininederived standards¹⁹ especially in terms of selectivity against e-NOS.

In summary, novel, potent, and selective dihydroquinoline-based n-NOS inhibitors have been identified, and two synthetic routes have been described. The SAR reported herein sets the stage for further medicinal chemistry optimization and for an extensive pharmacological characterization.

Acknowledgements

The dedicated and skilfull technical assistence by Mrs. Bärbel Bennua-Skalmowski and Mr. Detlev Schmidt is gratefully acknowledged.

References and Notes

1. Huang, Z.; Huang, P. L.; Panahian, N.; Dalkara, T.; Fishman, M. C.; Moskowitz, M. A. *Science* **1994**, *265*, 1883. Holscher, C. *Trends Neurosci.* **1997**, *20*, 298. Eliasson, M. J. L.; Huang, Z.; Ferrante, R. J.; Sasamata, M.; Molliver, M. E.; Snyder, S. H.; Moskowitz, M. A. *J. Neurosci.* **1999**, *19*, 5910. 2. Reviews Kerwin, J. F.; Lancaster, J. R.; Feldman, P. L. J. *Med. Chem.* **1995**, *38*, 4343. Pfeiffer, S.; Mayer, B.; Hemmens, B. *Angew. Chem.* **1999**, *111*, 1824. Pfeiffer, S.; Mayer, B.; Hemmens, B. *Angew. Chem., Int. Ed.* **1999**, *38*, 1714.

3. Marletta, M. A. J. Med. Chem. 1994, 37, 1899.

4. For an overview of recent patent applications in the NOS field, see: Cheshire, D. R. IDrugs 2001, 4, 795. Lowe, J. A., III IDrugs 2000, 3, 63. Some recent literature reports on n-NOS inhibitors are. Beaton, H.; Hamley, P.; Nicholls, D. J.; Tinker, A. C.; Wallace, A. V. Bioorg. Med. Chem. Lett. 2001, 11, 1023. Beaton, H.; Boughton-Smith, N.; Hamley, P.; Ghelani, A.; Nicholls, D. J.; Tinker, A. C.; Wallace, A. V. *Bioorg. Med.* Chem. Lett. 2001, 11, 1027. Hah, J.-M.; Roman, L. J.; Martásek, P.; Silverman, R. B. J. Med. Chem. 2001, 44, 2677. Lee, Y.; Martásek, P.; Roman, L. J.; Silverman, R. B. Bioorg. Med. Chem. Lett. 2000, 10, 2771. Huang, H.; Martásek, P.; Roman, L. J.; Silverman, R. B. J. Med. Chem. 2000, 43, 2938. Huang, H.; Martásek, P.; Roman, L. J.; Masters, B. S. S.; Silverman, R. B. J. Med. Chem. 1999, 42, 3147. Lowe, J. A., III; Qian, W.; Volkmann, R. A.; Heck, S.; Nowakowski, J.; Nelson, R.; Nolan, C.; Liston, D.; Ward, K.; Zorn, S.; Johnson, C.; Vanase, M.; Faraci, W. S.; Verdries, K. A.; Baxter, J.; Doran, S.; Sanders, M.; Ashton, M.; Whittle, P.; Stefaniak, M. Bioorg. Med. Chem. Lett. 1999, 9, 2569. Collins, J. L.; Shearer, B. G.; Oplinger, J. A.; Lee, S.; Garvey, E. P.; Salter, M.; Duffy, C.; Burnette, T. C.; Furfine, E. S. J. Med. Chem. 1998, 41, 2858. Shearer, B. G.; Lee, S.; Oplinger, J. A.; Frick, L. W.; Garvey, E. P.; Furfine, E. S. J. Med. Chem. 1997, 40, 1901.

5. The compound was synthesized by adding proline to 1-fluoro-2-nitrobenzene (cf. Abou-Gharbia, M.; Freed, M. E.; McCaully, R. J.; Silver, P. J.; Wendt, R. L. *J. Med. Chem.* **1984**, *27*, 1743) followed by zinc reduction and amidine formation as described in Scheme 1.

6. A well-known property which was used for a 2-aminoquinoxaline synthesis by Pfister, K., III; Sullivan, A. P., Jr.; Weijlard, J.; Tishler, M. J. Am. Chem. Soc. **1951**, 73, 4955. A new example is given in Maidwell, N. L.; Rezai, M. R.; Roeschlaub, C. A.; Sammes, P. G. J. Chem. Soc., Perkin Trans. 1 **2000**, 1541.

7. Iminopiperidines are described as i-NOS inhibitors in Moore, W. M.; Webber, R. K.; Fok, K. F.; Jerome, G. M.; Connor, J. R.; Manning, P. T.; Wyatt, P. S.; Misko, T. P.; Tjoeng, F. S.; Currie, M. G. J. Med. Chem. **1996**, *39*, 669. Webber, R. K.; Metz, S.; Moore, W. M.; Connor, J. R.; Currie, M. G.; Fok, K. F.; Hagen, T. J.; Hansen, D. W., Jr.; Jerome, G. M.; Manning, P. T.; Pitzele, B. S.; Toth, M. V.; Trivedi, M.; Zupec, M. E.; Tjoeng, F. S. J. Med. Chem. **1998**, *41*, 96.

 Woodward, R. B.; Hoffmann, R. Angew. Chem., Int. Ed. 1969, 8, 781. Santelli-Rouvier, C.; Santelli, M. Synthesis 1983, 429.
Jones, T. K.; Denmark, S. E. Helv. Chim. Acta 1983, 66, 2397.
Baker, W.; Jones, P. G. J. Chem. Soc. 1951, 787. Ohta, S.; Yamashita, M.; Arita, K.; Kajiura, T.; Kawasaki, I.; Noda, K.; Izumi, M. Chem. Pharm. Bull. 1995, 43, 1294.

10. The stereochemical assignment was proven by X-ray crystallography on the thiolactam stage.

11. Hino, K.; Nagai, Y.; Uno, H. Chem. Pharm. Bull. 1988, 36, 2386.

12. Thomson, I.; Claussen, K.; Scheibye, S.; Lawesson, S.-O. Org. Syn., Coll. VII 1990, 372.

13. A new application of a well-known reaction (cf. Gautier, J.-A.; Miocque, M.; Farnoux, C. C. In *The Chemistry of Amidines and Imidates;* Patai, S., Ed.; John Wiley & Sons: London; 1975, p 283) is given in Papandreou, G.; Tong, M. K.; Ganem, B. J. Am. Chem. Soc. **1993**, 115, 11682. For the *N*-hydroxyimino derivative see: Behringer, H.; Meier, H. Liebigs Ann. Chem. **1957**, 607, 67.

14. Blount, W. H.; Perkin, W. H., Jr.; Plant, S. G. P. J. Chem. Soc. **1929** 1975; 1983. Brettle, R.; Shibib, S. M. J. Chem. Soc., Perkin Trans. 1 **1981**, 2912.

15. Ried, W.; Käppler, W. *Liebigs Ann. Chem.* **1964**, *673*, 132. 16. White, L. A.; O'Neill, P. M.; Park, B. K.; Storr, R. C. *Tetrahedron Lett.* **1995**, *36*, 5983. White, L. A.; Storr, R. C. *Tetrahedron* **1996**, *52*, 3117.

17. Fuhrer, W.; Gschwend, H. W. J. Org. Chem. **1979**, 44, 1133. Guillier, F.; Nivoliers, F.; Godard, A.; Marsais, F.; Quéguiner, G.; Siddiqui, M. A.; Snieckus, V. J. Org. Chem. **1995**, 60, 292.

18. E.g. bromination or chlorination with either NBS or NCS in DMF, respectively (Martinez, G. R.; Walker, K. A. M.;

Hirschfeld, D. R.; Bruno, J. J.; Yang, D. S.; Maloney, P. J. J.

Med. Chem. 1992, 35, 620) or nitration with HNO_3/H_2SO_4 .

19. Moore, W. M.; Webber, R. K.; Jerome, G. M.; Tjoeng, F. S.; Misko, T. P.; Currie, M. G. *J. Med. Chem.* **1994**, *37*, 3886.

20. Bredt, D. S.; Snyder, S. H. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 682.

21. Higuchi, R. I.; Edwards, F. P.; Caferro, T. R.; Ringgenberg, J. D.; Kong, J. W.; Hamann, L. G.; Arienti, K. L.; Marschke, K. B.; Davis, R. L.; Farmer, L. J.; Jones, T. K. *Bioorg. Med. Chem. Lett.* **1999**, *9*, 1335.