Tetrahedron Letters 53 (2012) 5159-5161

Contents lists available at SciVerse ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Copper(II)-acid co-catalyzed intermolecular substitution of electron-rich aromatics with diazoesters

Eiji Tayama*, Moe Ishikawa, Hajime Iwamoto, Eietsu Hasegawa

Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181, Japan

ARTICLE INFO

Article history: Received 4 June 2012 Revised 9 July 2012 Accepted 13 July 2012 Available online 22 July 2012

Keywords: Aromatic substitution Co-catalysis Synthetic method Arene Diazo compound

Transition metal-catalyzed aromatic substitution using α-diazocarbonyl compounds (formally, an aromatic C-H insertion) is a powerful and efficient synthetic method that enables the formation of C–C bonds between aromatic (sp²) and aliphatic (sp³) carbons under mild conditions.¹ These are several well-studied examples of successful intramolecular benzofused-ring formations catalyzed by rhodium complexes; however, examples of the intermolecular version are rare,² except for some reactions with heteroaromatic compounds.³ Furthermore, whereas rhodium complexes are among the most efficient catalysts for the reactions, these complexes are too expensive to use for large-scale synthesis. As such, it is important to develop catalysts composed of earth-abundant metals such as copper.⁴ Recently, we reported that the intermolecular aromatic substitution of N,N-disubstituted aniline 1 with diazoester 2 proceeded in the presence of copper(II) triflate, [Cu(OTf)₂] (Scheme 1).^{5,6} In the course of our research, we found that co-catalysts derived from a non-Lewis acidic copper(II) salt and a common acid catalyst also accelerated the aforementioned intermolecular aromatic substitution.^{7,8} Herein, we report the development of the Cu(II)-acid co-catalyzed version of the aromatic substitution reaction using diazoesters. This method is a mild and rare metal-free C-C bond formation reaction between aromatic (sp^2) and aliphatic (sp^3) carbons.

In our previous paper, we reported the intermolecular aromatic substitution of *N*,*N*-dialkylaniline **1a** with diazoester **2a** catalyzed by $Cu(OTf)_2$ (Table 1, entries 1, 2). The reaction proceeded smoothly in the presence of 2 mol % Cu(OTf)_2 generating the desired

ABSTRACT

The intermolecular aromatic substitution of *N*,*N*-dialkylanilines and alkoxybenzenes with diazoesters is shown to proceed in the presence of catalytic amounts of both copper(II) salt and acid (Lewis or Brønsted). This method is a mild and rare metal-free C–C bond formation reaction between aromatic (sp²) and aliphatic (sp³) carbons.

© 2012 Elsevier Ltd. All rights reserved.

etrahedro

Scheme 1. The catalytic effect in the intermolecular aromatic substitution of *N*,*N*-disubstituted aniline **1** with diazoester **2**.

para-substituted adduct **3a** in good yield. In contrast, the use of a non-Lewis acidic copper(II) salt such as copper(II) acetylacetonate $[Cu(acac)_2]$ resulted in a lower yield (entry 3). These results suggest that a combination of a copper(II) salt (Catalyst A) and a common Lewis acid (Catalyst B) might also catalyze the intermolecular aromatic substitution. Thus, we attempted the reaction in the presence of a co-catalyst derived from 1 mol % Cu(acac)₂ and 1 mol % boron trifluoride diethyl etherate, (BF₃·OEt₂) (entry 4). As expected, the reaction afforded the desired product with a yield similar to the original reaction with 2 mol % Cu(OTf)₂. To clarify the effects of the Cu(acac)₂-BF₃·OEt₂ co-catalyst, we examined the reactions without Cu(acac)₂ and/or BF₃·OEt₂ (entries 5–7). These reactions were unsuccessful. After further screening with a number of different copper(II) salts, Lewis acids, and their catalytic amounts (entries 8-18), we found that the best yields were obtained from reactions with 1 to 2 mol% (total amount) co-catalyst derived from

^{*} Corresponding author. Tel.: +81 25 262 7740; fax: +81 25 262 7741. *E-mail address:* tayama@chem.sc.niigata-u.ac.jp (E. Tayama).

^{0040-4039/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tetlet.2012.07.070

20

Table 1

1 -

Screening of Cu(II) and Lewis acid catalysts for the intermolecular aromatic substitution of 1a with 2a

	CO ₂ Me	Catalyst A Catalyst B	N-	CO₂Me -√
CO ₂ Et	Ph	CH ₂ Cl ₂ rt, time	CO ₂ Et	Ph

2-

iu	20		Ju	
Entry	Catalyst A (mol %)	Catalyst B (mol %)	Time (h)	3a ^a (%)
1	$Cu(OTf)_2(2)$	_	12	89 ^b
2	$Cu(OTf)_2(1)$	-	12	53 ^b
3	$Cu(acac)_2(1)$	-	12	31
4	$Cu(acac)_2(1)$	$BF_3 \cdot OEt_2(1)$	6	89
5	-	$BF_3 \cdot OEt_2(1)$	6	31
6	-	$BF_3 \cdot OEt_2(1)$	24	53
7	-	_	6	0
8	Cu(acac) ₂ (0.5)	$BF_{3} \cdot OEt_{2} (0.5)$	6	92
9	$Cu(acac)_2(2)$	$BF_3 \cdot OEt_2(2)$	6	70
10	$Cu(acac)_2(1)$	$BF_3 \cdot OEt_2(2)$	6	84
11	$Cu(acac)_2(2)$	$BF_3 \cdot OEt_2(1)$	6	76
12	$Cu(OAc)_2 \cdot H_2O(1)$	$BF_3 \cdot OEt_2(1)$	6	88
13	$Cu(OAc)_2(1)$	$BF_3 \cdot OEt_2(1)$	6	86
14	$Cu(hfacac)_2 \cdot nH_2O(1)$	$BF_3 \cdot OEt_2(1)$	6	42
15	Cu(phen)Cl ₂ (1)	$BF_3 \cdot OEt_2(1)$	6	38
16	$Cu(acac)_2(1)$	$Sc(OTf)_3(1)$	6	65
17	$Cu(acac)_2(1)$	$Zn(OTf)_2(1)$	6	29
18	$Cu(acac)_2(1)$	$Sn(OTf)_2(1)$	6	67

^a Isolated yield.

^b Reported data in Ref. 5.

 $Cu(acac)_2-BF_3\cdot OEt_2$.⁹ The use of other common copper(II) salts, such as copper(II) acetate, hexafluoroacetylacetonate [Cu(hfacac)_2], dichloro(1,10-phenanthroline)copper(II) [Cu(phen)Cl_2], or Lewis acids showed no further improvement on the yield.

With the method in hand, we investigated the reactions of various types of N,N-dialkylanilines 1 with 2 in the presence of Cu(acac)₂-BF₃·OEt₂ co-catalyst (Method A) and compared the catalytic activity with Cu(OTf)₂ (Method B) (Table 2). The reaction of N,Ndiethylamide 1b and tert-butylketone derivatives 1c under co-catalyzed conditions afforded **3b** and **3c**, respectively, in yields similar to those reactions using only Cu(OTf)₂ (entries 1, 2). Interestingly, the reaction of phenylketone derivative 1d proceeded without unfavorable side reactions under co-catalyzed conditions (entry 3); the yield of the desired product **3d** was improved to 76% (Method A) from 0% (Method B). Favorable effects of the Cu(acac)₂-BF₃·OEt₂ co-catalyst were also observed in the reactions of substrates **1e-1i** with **2a-2c**¹⁰ (entries 4-10); however, the reactions of *N*,*N*-dimethylaniline (**1j**) failed (entry 11), even with stoichiometric amounts of BF₃·OEt₂ (entry 12). Any C-H insertion products into the *N*-methyl group^{2b} as in **1** were not obtained.¹¹

To expand the scope of $Cu(acac)_2-BF_3 \cdot OEt_2$ co-catalyzed intermolecular aromatic substitution, we examined reactions of alkoxybenzenes **4**, which, due to their alkoxy substituents, are poorer electron donors and thus potentially less reactive (Table 3). First, we selected 1,2-dimethoxybenzene (**4a**) as a substrate and carried out the reactions in the presence of either Cu(II)–BF₃·OEt₂ co-catalyst or Cu(OTf)₂ alone. Unfortunately, these reactions were unsuccessful (entries 1–3). We tested a variety of Cu(II) salts for this reaction and found that 1,10-phenanthroline Cu(II) complexes, [Cu(phen)_mCl_n], gave the desired adduct **5a** in low yields (entries 4–6). Increasing the amount of catalyst to 5 mol % BF₃·OEt₂ with 1 mol % Cu(phen)_mCl_n produced **5a** in acceptable yields (entries 7, 8). The analagous 1,3-dimethoxybenzene (**4b**) showed similar reactivity (entry 9); however, a reaction of mono-alkoxybenzene,

Table 2

Cu(II)-Lewis acid co-catalyzed intermolecular aromatic substitution of various types of ${\bf 1}$ with ${\bf 2}$

Method A: 1 mol% Cu(acac)₂, 1 mol% BF₃·OEt₂, 6 h Method B: 2 mol% Cu(OTf)₂, 12–24 h

Entry	\mathbb{R}^1	R ²	Product	Method, yield ^a	
				A (%)	B (%)
1	CONEt ₂ (1b)	H (2a)	3b	41	42 ^b
2	COt-Bu (1c)	H (2a)	3c	54	68 ^b
3	COPh (1d)	H (2a)	3d	76	0 ^b
4	CH_2OBn (1e)	H (2a)	3e	90	59 ^b
5	$CH_2OMe(1f)$	H (2a)	3f	92	59 ^b
6	Ph (1g)	H (2a)	3ga	78	35 ^b
7	p-Cl-Ph (1h)	H (2a)	3h	79	40
8	p-MeO-Ph (1i)	H (2a)	3i	89	28
9	Ph (1g)	Cl (2b)	3gb	90	36
10	Ph (1g)	OMe (2c)	3gc	78	86
11	H (1j)	H (2a)	3j	4	2
12	H (1 j)	H (2a)	3j	25 ^c	—

^a Isolated yield.

^b Reported data in Ref. 5.

^c 100 mol % BF₃·OEt₂ was used.

Table 3

The intermolecular aromatic substitution of alkoxybenzenes 4 with 2a

МеО <i>—</i> ∢ 4а –4	R = => + 4c	N ₂ =	CO ₂ Me Catalyst A Catalyst B Ph CH ₂ Cl ₂ rt, 6 h 2a	→ MeO ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	CO₂Me ≺ Ph
Entry	R of 4		Catalyst A ^a (mol %)	Catalyst B (mol %)	5 ^b (%)
1	2-OMe	а	$Cu(OTf)_2(2)$	_	6
2	2-OMe	а	$Cu(acac)_2(1)$	$BF_3 \cdot OEt_2(1)$	17
3	2-OMe	а	$Cu(OAc)_2(1)$	$BF_3 \cdot OEt_2(1)$	19
4	2-OMe	а	$Cu(phen)Cl_2(1)$	$BF_3 \cdot OEt_2(1)$	53
5	2-OMe	а	[Cu(phen) ₂ Cl]Cl (1)	$BF_3 \cdot OEt_2(1)$	51
6	2-OMe	a	[Cu(phen)3]Cl2 (1)	$BF_3 \cdot OEt_2(1)$	40
7	2-OMe	a	$Cu(phen)Cl_2(1)$	$BF_3 \cdot OEt_2(5)$	66
8	2-OMe	а	[Cu(phen) ₂ Cl]Cl (1)	$BF_3 \cdot OEt_2(5)$	60
9	3-OMe	b	[Cu(phen) ₂ Cl]Cl (1)	$BF_3 \cdot OEt_2(5)$	56
10	Н	с	[Cu(phen) ₂ Cl]Cl (1)	$BF_3 \cdot OEt_2(5)$	35

^a phen = 1,10-phenanthroline.

^b Isolated yield.

specifically anisole (**4c**), resulted in a low yield (entry 10). Previously, we reported that substrates such as **1** function as ligands of Cu(II) salts, and the catalytic activity is determined by the structure of the complexes.⁵ 1,2-Dimethoxybenzene **4a** also function as ligands; however, the catalytic activity is lowered (entry 1–3). 1,10-Phenanthroline, as in Cu(phen)_mCl_n may not exchange with **4a** because of its higher chelating ability and the catalytic activity may be maintained.

We expected that the reaction might be accelerated with a Brønsted acid instead of a Lewis acid catalyst. Thus, we attempted the Cu(II)-acid co-catalyzed intermolecular aromatic substitution of **1a** with **2a** in the presence of 1 mol % common sulfonic acid as

Table 4

Cu(II)-Brønsted acid co-catalyzed intermolecular aromatic substitution of 1 with 2a

Entry	R ¹	х	Brønsted acid	Time (h)	Product	3 ^a (%)
1	CO ₂ Et	1	TsOH·H ₂ O	24	3a	30
2	CO ₂ Et	1	DL-CSA ^b	24	3a	37
3	CO ₂ Et	1	PPTS	24	3a	6
4	CO ₂ Et	1	TfOH	6	3a	86
5	CO ₂ Et	0	TfOH	6	3a	91
6	CONEt ₂	1	TfOH	6	3b	69
7	CONEt ₂	0	TfOH	6	3b	0
8	CH ₂ OMe	1	TfOH	6	3f	78
9	CH ₂ OMe	0	TfOH	6	3f	6
10	Ph	1	TfOH	6	3ga	85
11	Ph	0	TfOH	6	3ga	61
12	Н	1	TfOH	6	3ј	5
13	CO ₂ Et	1	Tf ₂ NH	6	3a	77
14	CO ₂ Et	0	Tf ₂ NH	6	3a	51
15	CONEt ₂	1	Tf ₂ NH	6	3b	11
16	CH ₂ OMe	1	Tf ₂ NH	6	3f	28
17	Ph	1	Tf_2NH	6	3ga	27

^a Isolated yield.

^b CSA = camphorsulfonic acid.

an acid component (Table 4, entries 1–4). The use of a strongly acidic Brønsted acid such as triflic acid afforded the adduct **3a** in excellent yield (entry 4). Interestingly, the reaction of **1a** proceeded smoothly without Cu(II) salts (entry 5). When reactions of the less-reactive substrate **1** were examined, the addition of Cu(acac)₂ was necessary to obtain adduct **3** in acceptable yields (entries 6–11). Again, the reaction of *N*,*N*-dimethylaniline (**1j**) did not proceed under these conditions (entry 12). The analogue of triflic acid, bistriflimide (Tf₂NH), also worked as a Brønsted acid catalyst; however, the catalytic activity was lowered (entries 13–17).

In conclusion, we have demonstrated the Cu(II)–acid co-catalyzed intermolecular aromatic substitution of *N*,*N*-dialkylanilines or alkoxybenzenes with diazoesters. This method is a mild and rare metal-free C–C bond formation reaction between aromatic (sp²) and aliphatic (sp³) carbons.

Acknowledgment

This work was supported by Grant for Basic Science Research Projects from The Sumitomo Foundation (110187).

Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tetlet.2012.07.070.

References and notes

- For reviews, see: (a) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley: New York, 1998; (b) Davies, H. M. L. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, Chapter 4.8.
- (a) Park, C. P.; Nagle, A.; Yoon, C. H.; Chen, C.; Jung, K. W. J. Org. Chem. 2009, 74, 6231–6236; (b) Davies, H. M. L.; Jin, Q. Org. Lett. 2004, 6, 1769–1772; (c) Davies, H. M. L.; Smith, H. D.; Hu, B.; Klenzak, S. M.; Hegner, F. J. J. Org. Chem. 1992, 57, 6900–6903; (d) Toda, M.; Hattori, M.; Okada, K.; Oda, M. Chem. Lett. 1987, 16, 1263–1266; (e) Ledon, H.; Linstrumelle, G.; Julia, S. Bull. Soc. Chim. Fr. 1973, 2065–2071.
- Examples of intermolecular aromatic substitution using heteroaromatic compounds, see: (a) Chan, W. W.; Yeung, S. H.; Zhou, Z.; Chan, A. S. C.; Yu, W. Y. Org. Lett. 2010, 12, 604–607; (b) Davies, H. M. L.; Hedley, S. J. Chem. Soc. Rev. 2007, 36, 1109–1119. and references therein.
- An example of rhodium and copper catalyzed intramolecular aromatic substitution and their mechanistic studies, see: Kim, J.; Ohk, Y.; Park, S. H.; Jung, Y.; Chang, S. Chem. Asian J. 2011, 6, 2040–2047.
- Tayama, E.; Yanaki, T.; Iwamoto, H.; Hasegawa, E. Eur. J. Org. Chem. 2010, 6719– 6721.
- Previous examples of acid-promoted intramolecular aromatic substitution, see:

 (a) Wang, H. L.; Li, Z.; Wang, G. W.; Yang, S. D. *Chem. Commun.* 2011, 47, 11336–11338;
 (b) Doyle, M. P.; Shanklin, M. S.; Pho, H. Q.; Mahapatro, S. N. *J. Org. Chem.* 1988, 53, 1017–1022;
 (c) Johnson, D. W.; Mander, L. N. *Aust. J. Chem.* 1974, 27, 1277–1286;
 (d) Newman, M. S.; Eglinton, G.; Grotta, H. M. *J. Am. Chem.* Soc. 1953, 75, 349–352.
- For a review of Brønsted acid catalyzed reaction using diazo compounds, see: Johnston, J. N.; Muchalski, H.; Troyer, T. L. Angew. Chem., Int. Ed. 2010, 49, 2290– 2298.
- Examples of transition metal-acid co-catalyzed reaction using diazo compounds, see: (a) Xu, X.; Zhou, J.; Yang, L.; Hu, W. Chem. Commun. 2008, 6564–6566; (b) Hu, W.; Xu, X.; Zhou, J.; Liu, W. J.; Huang, H.; Hu, J.; Yang, L.; Gong, L. Z. J. Am. Chem. Soc. 2008, 130, 7782–7783.
- 9. Although the reactions of entry 4 (total 2 mol %) and entry 8 (total 1 mol %) in Table 1 were quenched for 1 h, a remarkable difference between the yields was not observed (entry 4: 38%, entry 8: 30%).
- We attempted reactions using diazoesters without an α-aryl substituent such as cyclohexyl 2-diazoacetate or cyclohexyl 2-diazo-3-oxobutanoate; however, the corresponding products were not obtained.
- 11. Davies et al. reported that the electrophilic aromatic substitution reaction proceeds in the presence of electron-deficient rhodium catalysts (Ref. 2b). Acid catalysts may interact with the ligands around Cu(II), leading to more electron-deficient catalysts.