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ABSTRACT: Base-promoted competitive Ar−F and Ar−X
(X = Cl, Br) bond cleavage with iridium porphyrin complexes
was investigated. Mechanistic studies suggested that Ir(ttp)−

(ttp = 5,10,15,20-tetra-p-tolylporphyrinato dianion) cleaves
the Ar−F bond via nucleophilic aromatic substitution and
Ir2(ttp)2 cleaves the Ar−X (X = Cl, Br) bond via metalloradical
ipso substitution. Therefore, a stronger base, polar solvent,
lower temperature, and iridium anion precursor favor Ar−F
bond cleavage, while a weaker base, nonpolar solvent, higher
temperature, and Ir2(ttp)2 precursor favor Ar−X (X = Cl, Br) bond cleavage.

An Ar−F bond is generally thermally, photochemically,
electrooxidatively, and chemically stable due to its high

bond dissociation energy (BDE), with that of the Ph−F bond
being about 125 kcal/mol.1−3 The activation of carbon−
fluorine bonds has gained increasing attention due to the
challenge in defluorination,4 organic synthesis,3,5 and peptide
sequencing.6 In the presence of Cl, Br, or I substituents,
selective Ar−F bond cleavage is even more difficult.7−11 This is
a consequence of the much lower BDE of Ar−Cl, −Br, and −I
(about 95, 80, and 65 kcal/mol, respectively) in comparison to
that of Ar−F.1 The Ar−F bond is inert toward most
palladium,7,9 nickel,10 and cobalt11 catalysts in cross-coupling,7

dehalogenation,8 and amination9,10 reactions in the presence of
Cl or Br substituents. The Stille cross-coupling reaction of p-
fluorochlorobenzene with ArSnBu3 catalyzed by Pd(OAc)2 and
XPhos (=2-dicyclohexylphosphino-2′,4′,6′-triisopropylbiphen-
yl) gave 4-fluorobiaryl in 93% yield.7a The Ar−Cl bond was
cleaved rather than the Ar−F bond at the para or meta position
with the catalyst {Pd(cinnamyl)Cl}2.

7b Fluorobenzene was
obtained in the hydrodehalogenation reaction of p-fluorochlor-
obenzene over a supported palladium catalyst.8 The Ar−Cl
bond was aminated in the presence of an Ar−F bond with a
nickel(0) catalyst and NHC ligand.10

Selective cleavage of the stronger Ar−F bond in the presence
of other Ar−X bonds (X = Cl, Br, I) is very difficult, with only a
few examples being reported in the last century. The first
observation of C−F bond cleavage in the presence of a C−Cl
bond was reported by Frank et al. on saturated chlorofluor-
ocarbons with phosphorus in 1965. However, a chlorophilic
process and elimination of fluoride anion rather than direct C−
F bond cleavage account for the observed product.12

In the past 20 years, several approaches have been applied to
achieve selective Ar−F bond cleavage in the presence of other
halogen substituents. In the first approach, a fluorophilic
phosphorus reagent was first used in 1993 to cleave the C−F
bond. The reaction between diisopropyl sodiophosphite and

dibromofluoromethane gave C−F and C−Br bond cleavage
products in a 1.7:1 ratio.13 The second approach employed
carbon or oxygen nucleophiles by taking advantage of the better
leaving ability of fluoride.14 The treatment of 1-bromo-3-
chloro-5-fluorobenzene with 2-(trimethylsilyl)ethanol and
potassium bis(trimethylsilyl)amide gave the Ar−F bond
cleavage product.14a In the third approach, selective Ar−F
bond cleavage has been accomplished by chelation control
using an ortho directing group.15 The coordination of phenol
to Mg facilitated oxidative addition of Ni to the adjacent C−F
bond.15a Recently, it was reported that the Ar−F bond ortho to
an imine directing group was cleaved by a platinum complex
even in the presence of a chlorine group ortho to the imine
group. However, a directing imine group is a must and the
mechanism of this selectivity was not reported.16

For simple fluorohalobenzenes without an ortho directing
group, to our knowledge, few example of selective Ar−F bond
cleavage with transition-metal complexes exist. In our
continuing studies of Ar−X (X = Cl, Br, I) cleavage by
metalloporphyrins,17 we have discovered competitive Ar−F and
Ar−X (X = Cl, Br) bond cleavage with iridium porphyrin
complexes and now report our findings.
Initially, Ir(ttp)(CO)Cl (1a; ttp = 5,10,15,20-tetra-p-

tolylporphyrinato dianion) reacted with p-fluorochlorobenzene
in the presence of K2CO3 in benzene at 150 °C to give a 60%
yield of the Ar−Cl cleavage product, Ir(ttp)(4-fluorophenyl)
(3b) (Table 1, entry 1). Unexpectedly, when the stronger base
KOH was used, competitive Ar−F and Ar−Cl bond cleavage
reactions occurred to give Ir(ttp)(4-chlorophenyl) (3a) and
Ir(ttp)(4-fluorophenyl) (3b) in a 1:1 ratio (Table 1, entry 2).
When THF was used as the solvent, the product ratio further
increased to 3:1 (Table 1, entry 3). When the reaction
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temperature was lowered to 120 °C, the reaction became
slower, and the ratio of 3a to 3b increased further (Table 1,
entry 4). To our delight, when Ir(ttp)SiEt3, a known precursor
for Ir(ttp)−,18 was used as the starting material, exclusive Ar−F
bond cleavage occurred to give 3a in 90% yield (Table 1, entry
5).
To find out whether competitive Ar−F and Ar−Br occur, we

then examined the reaction with p-fluorobromobenzene. When
Ir(ttp)(CO)Cl was reacted with p-fluorobromobenzene and
KOH in benzene, only Ar−Br cleavage product 3b was
obtained (Table 2, entry 1). However, in THF solvent, the

reaction gave a trace amount of Ar−F bond cleavage product
(Table 2, entry 2). The same temperature effect was observed,
that the Ar−F bond cleavage product became significant when
the temperature was lowered to 120 °C (Table 2, entry 3).
With Ir(ttp)SiEt3 (1b)/KOH used as the starting materials, the
ratio of 3c to 3b further increased to 4:3 (Table 2, entry 4).
To investigate whether the Ar−F bond cleavage product is

the kinetic product or the thermodynamic product formed
from the Ar−Cl cleavage product, the reactivities of 3a and 3b
were studied. Both 3a and 3b were stable under the reaction

conditions, and the recovery yields were quantitative (eqs 1 and
2). Thus, the reaction products are not interconvertible and the
product ratios are kinetic.

To gain a mechanistic understanding of the competitive Ar−
F and Ar−X (X = Cl, Br) bond cleavages, various iridium
porphyrins were tested as the intermediates of these bond
cleavages. Since we have earlier identified that ipso substitution
addition−elimination of IrII(ttp) is responsible for Ar−Cl and
Ar−Br bond cleavage,17 IrII(ttp) was tested for Ar−F bond
cleavage. However, Ir2(ttp)2 (1e) reacted with fluorobenzene to
give a complex mixture without any Ar−F bond cleavage
product. As it is known that Ir2(ttp)2 equilibrates with Ir(ttp)H
(1d) and Ir(ttp)− (1c) under basic conditions,17,19 Ir(ttp)H
(1d) and Ir(ttp)− (1c) were also tested for the Ar−F bond
cleavage. Without base, Ir(ttp)H (1d) reacted with fluoroben-
zene to give a complex mixture as well. However, Ir(ttp)− (1c),
generated from the Na/Hg reduction of Ir(ttp)(CO)Cl, reacted
with fluorobenzene at 120 °C to give Ir(ttp)Ph (3d) in 40%
yield (eq 3). Therefore, Ir(ttp)− (1c) is the most probable
intermediate for Ar−F bond cleavage.
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Scheme 1 shows the proposed mechanism for competitive
cleavage of Ar−F and Ar−X bonds (X = Cl, Br). Initially,
Ir(ttp)(CO)Cl (1a) undergoes ligand dissociation and ligand

Table 1. Competitive Ar−F and Ar−Cl Bond Cleavage with Iridium Porphyrin Complexes

entry Ir(ttp)X base temp/°C solvent time/h yield 3a/% yield 3b/% total yield/%

1 Ir(ttp)(CO)Cl (1a) K2CO3 150 benzene 48 60 60
2 Ir(ttp)(CO)Cl (1a) KOH 150 benzene 5 50 50 100
3 Ir(ttp)(CO)Cl (1a) KOH 150 THF 18 75 24 99
4 Ir(ttp)(CO)Cl (1a) KOH 120 THF 24 85 13 98
5 Ir(ttp)SiEt3 (1b) KOH 120 THF 24 90 trace 90

Table 2. Competitive Ar−F and Ar−Br Bond Cleavage with
Iridium Porphyrin Complexes

entry Ir(ttp)X
temp/
°C solvent time/h

yield
3c/%

yield
3b/%

total
yield/%

1 Ir(ttp)
(CO)Cl
(1a)

200 benzene 6 90 90

2 Ir(ttp)
(CO)Cl
(1a)

200 THF 6 trace 70 70

3 Ir(ttp)
(CO)Cl
(1a)

120 THF 18 20 66 86

4 Ir(ttp)
SiEt3
(1b)

120 THF 24 40 30 70
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substitution with OH− to give Ir(ttp)OH, which undergoes
reductive elimination and subsequent dimerization to give
Ir2(ttp)2 (1e) and H2O2.

20,21 Ir2(ttp)2 (1e) or, more accurately,
IrII(ttp) monomer then cleaves the Ar−X (X = Cl, Br) bond to
afford Ir(ttp)(4-fluorophenyl) (3b). Ir2(ttp)2 (1e) also reacts
with hydroxide to form Ir(ttp)− (1c),17,20,21 which undergoes
ipso nucleophilic aromatic substitution (SNAr) (addition−
elimination) to give Ir(ttp)Ar.22 On the other hand, when
Ir(ttp)SiEt3 (1b) and KOH are used as the starting materials,
they give Ir(ttp)− (1c) first selectively. The independent
reaction of Ir(ttp)SiEt3 (1b) with KOH gave Ir(ttp)− (1c),
KOSiEt3, and (Et3Si)2O, which formed from condensation of
Et3SiOH,

23 thus providing an experimental support (eqs 4 and
5).24

+
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Aryl halides can in principle undergo nucleophilic aromatic
substitution with Ir(ttp)− to form a benzyne intermediate,
which can then be attacked by Ir(ttp)− followed by protonation
to give Ir(ttp)Ar.25 Had the benzyne mechanism indeed
operated, a 1:1 ratio of Ir(ttp)(4-FG-phenyl) and Ir(ttp)(3-FG-
phenyl) would have formed (Scheme 2). However, this
mechanism was excluded, since the regiochemistry of the
starting material was retained.
The competitive cleavage of Ar−X (X = Cl, Br) and Ar−F

bonds in an equilibrated Ir(ttp)− and Ir2(ttp)2 mixture under
basic conditions is highly temperature and solvent depend-

ent.17,20,21 At higher temperature, a nonpolar solvent favors the
radical process, while a polar solvent and lower temperature
favor the ionic process. Therefore, Ar−X bonds (X = Cl, Br)
were cleaved at high temperatures in benzene and Ar−F
cleavage was more favored at lower temperatures in THF. As an
Ar−Br bond is much weaker than an Ar−Cl bond, Ar−Br bond
cleavage also occurred competitively at lower temperatures in
THF.
In summary, selective Ar−F bond cleavage of p-fluorochlor-

obenzene was achieved. The competitive Ar−F and Ar−X (X =
Cl, Br) bond cleavage was investigated. A stronger base, polar
solvent, lower temperature, and iridium anion precursor favor
Ar−F bond cleavage. On the other hand, a weaker base,
nonpolar solvent, higher temperature, and Ir2(ttp)2 precursor
favor Ar−X (X = Cl, Br) bond cleavage. Ir2(ttp)2 is responsible
for the Ar−X (X = Cl, Br) bond cleavage, and Ir(ttp)− is the
intermediate for Ar−F bond cleavage.
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