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The following report describes novel methodology for the rapid synthesis of unique conformationally
constrained norstatine analogs of potential biological relevance. A PADAM (Passerini reaction–Amine
Deprotection–Acyl Migration reaction) sequence is followed by a TFA-mediated microwave-assisted
cyclization to generate the final benzimidazole isostere of the norstatine scaffold in moderate to good
yields. The applicability of this solution phase methodology to the preparation of a small collection of
compounds is discussed.

� 2012 Elsevier Ltd. All rights reserved.
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Aspartic proteases are a group of enzymes involved in a pleth-
ora of biological processes including the development and progres-
sion of a variety of diseases, such as HIV infection, inflammation,
and cancer.1–3 Possessing this variety of therapeutic potential, they
have become attractive targets over the last 20 years. As such,
these enzymes catalyze the amide bond hydrolysis of peptidic sub-
strates, a process which proceeds via a classical ‘tetrahedral inter-
mediate’, often targeted as a key motif to mimic for new inhibitor
design. Indeed, it is typically found that incorporation of a second-
ary hydroxyl group enables access to this key interaction, although
interestingly over the last 10 years amines have also been shown to
play this role.2–6 Accordingly the hydroxyl group is typically found
on a poly-peptidic moiety linked together with different heterocy-
cles.2,3 In fact, the most well-known amide isosteres in this class
are represented by hydroxyethylamines, hydroxyethylenes (mono
or dihydroxy), statines, hydroxymethylenes, and norstatines 1.2–5,7

This laboratory has recently been actively involved in the genera-
tion of conformationally constrained analogs of the latter norsta-
tines, enabling entry into feasibly unique biologically active
aspartic protease space. On this theme, the rapid generation of li-
braries of cis-constrained norstatine analogs of general structure
2 using a TMSN3-modified Passerini/de-Boc/N-capping protocol
(a slight modification of the PADAM strategy used to produce li-
braries of 1) was reported in 2002 (Fig. 1). Such tetrazoles are well
known isosteres for cis-amide bonds.8
ll rights reserved.

Hulme).
In a continuation of our studies, we herein report a novel syn-
thetic protocol for the synthesis of unique norstatine analogs of
general structure 3 (Fig. 1). Partially driving the decision making
process toward this new isostere of norstatine was the increased
pKa �5.2 of the benzimidazole which dramatically alters the phys-
icochemical properties of the molecules under investigation rela-
tive to that of the tetrazole 2 or parent norstatine 1.9 Thus,
synthetic methodology coined PADAM (Passerini reaction–Amine
Deprotection–Acyl Migration) by Banfi, which is typically used to
access norstatines 1, was thought potentially applicable to the syn-
thesis of 3.10 However, in this example, utilizing ortho-N-Boc-phe-
nylisonitrile 5, N-Boc-a-aminoaldehydes 6 and supporting
carboxylic acids 4, two reagents contain protected ‘internal’
amines and it was envisioned that in addition to the PADAM se-
quence, amino-cyclodehydration onto the carbonyl in 7, derived
from the isocyanide input, would simultaneously deliver a benz-
imidazole moiety, Scheme 1. Note that the PADAM sequence of
reactions has the advantage of enabling assembly of complex
Figure 1. General structure of norstatines 1, cis-constrained norstatine analogs 2
and targeted novel benzimidazole analogs 3.
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Scheme 2. Passerini condensation (R1 = see Fig. 2, R2 = iso-propyl, 6a; methyl, 6b; benzyl, 6c).
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Scheme 3. Synthesis of 3 from Passerini product 8.
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peptidomimetics in a straightforward and rapid way and the meth-
odology has been extensively applied to the synthesis of proteases
inhibitors.11

Thus, condensation between N-Boc-a-aminoaldehyde 6, car-
boxylic acid 4, and ortho-N-Boc phenylisonitrile 5 afforded the cor-
responding Passerini product 8 in good isolated yield, Scheme 2.
Removal of the two Boc protecting groups of 8 occurred at room
temperature upon treatment with 10% TFA in DCM, Scheme 3.

Subsequent treatment of the crude intermediate 9 with trieth-
ylamine (TEA) in methanol at room temperature delivered the ex-
pected intermediate 7, the product of acyl transfer. Due to the
excellent purity of the crude reaction mixtures of 7 and 9, column
chromatography was unnecessary for the final two steps, greatly
facilitating the overall production process. Encouragingly, the for-
mation of the expected benzimidazole scaffold 3 was achieved
upon treatment of crude 7 with trifluoroacetic acid in dichloroeth-
ane, promoted by microwave irradiation, Scheme 3.

With satisfactory conditions in hand, the reaction scope in
terms of substrate tolerance was explored. A small collection of
twelve examples was prepared according to the same synthetic
protocol to demonstrate the generality of the reaction, Figure 2.
Diversity was generated through the employment of eight different
carboxylic acids and three N-Boc protected a-amino aldehydes.
While the carboxylic acids and isonitriles were commercially
available, known a-aminoaldehydes 6 were prepared through
LiAlH4 reduction of the corresponding Weinreb hydroxamates, in
line with reported methodology.12,13 The synthesis of the Passerini
products proceeded smoothly with isolated yields ranging from
41% to 84%, Figure 2.14 Noteworthy, a slight decrease in the yields
of the Passerini product was observed when 2-pyridine carboxylic
acid and 1H-indole-6-carboxylic acid were employed. In all the
examples, purification of intermediates 7 and 9 was avoided, thus
significantly simplifying the synthetic protocol. The final products
were obtained after silica-gel column chromatography in satisfying
overall yields (23–38%), spanning 4 functional transformations in
one pot.14 As expected, the observed average stereoselectivity for
the final products was ca. 1:1, as judged by 1H NMR spectra of
the pure compounds. In view of the potential applicability of this
methodology to combinatorial synthesis, the lack of stereoselectiv-
ity and production of diastereomers is not considered as a
drawback.

In summary, a series of novel conformationally constrained
norstatine isosteres were synthesized in four steps by means of
PADAM methodology, combined with benzimidazole formation.
The methodology also represents the first example of an applica-
tion of the Passerini reaction utilizing two internal amine nucleo-
philes. With final products characterized by two points of
diversity and a facile and practical production protocol, access to
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Figure 2. Example analogs (x% = Passerini yield, x% = yield from 8 to 3).
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large libraries of diverse analogs is now possible. Being amenable
to high-throughput synthesis, it is expected that this methodology
will be embraced by the lead generation community.
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