AGRICULTURAL AND FOOD CHEMISTRY

Subscriber access provided by TULANE UNIVERSITY

Agricultural and Environmental Chemistry

Natural Products for Drug Discovery: Discovery of Gramines as Novel Agents against a Plant Virus

Aidang Lu, Tienan Wang, Hao Hui, Xiaoye Wei, Weihao Chui, Chunlv Zhou, Hongyan Li, Ziwen Wang, Jincheng Guo, Dejun Ma, and Qingmin Wang

J. Agric. Food Chem., Just Accepted Manuscript • Publication Date (Web): 07 Feb 2019 Downloaded from http://pubs.acs.org on February 7, 2019

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Natural Products for Drug Discovery: Discovery of Gramines as Novel Agents against a Plant Virus

Aidang Lu^{†,*}, Tienan Wang[†], Hao Hui[†], Xiaoye Wei[†], Weihao Cui[†], Chunlv Zhou[†], Hongyan Li[†], Ziwen Wang^{‡,*}, Jincheng Guo[§], Dejun Ma[§], Qingmin Wang^{§,*}

[†]School of Chemical Engineering and Technology, Hebei University of Technology, Hebei Collaborative Innovation Center of Modern Marine Chemical Technology, Tianjin 300130, China

[‡]Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin Normal University, Tianjin 300387, China;

[§]State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China

* To whom correspondence should be addressed. For Aidang Lu, E-mail: luaidang@hebut.edu.cn; Phone: 0086-22-60302812; Fax: 0086-22-60204274; For Ziwen Wang, E-mail: hxxywzw@tjnu.edu.cn; Phone: 0086-22-23766531; Fax: 0086-22-23766531; For Prof. Qingmin Wang, E-mail: wangqm@nankai.edu.cn; Phone: 0086-22-23503952; Fax: 0086-22-23503952. 1

2

ABSTRACT: Plant viral diseases seriously affect crop yield and quality. Natural product 3 gramine (1) and its structure simple analogues 2-35 were synthesized from indoles, 4 amines and aldehydes by one-step. The antiviral effects of these alkaloids were evaluated 5 6 systematically. Most of these compounds were found to have higher antiviral effects than commercial ribavirin for the first time. Especially for compounds 22, 30 and 31 exhibited 7 significantly higher effects than ningnanmycin, since emerged as novel antiviral leads for 8 further optimization. The preliminary implementation indicated that these compounds 9 likely inhibit the assembly of TMV by crosslinking TMV CP. Gramine analogues were 10 also found to have broad-spectrum fungicidal effects. Although gramine has been 11 reported to have influence on germination and development of Erysiphe graminis, these 12 compounds displayed no fungicidal effects against Blum eria graminis f. sp.tritici on 13 wheat in our test. Some of these compounds also exhibited certain insecticidal activities. 14 15 16 17 **KEYWORDS:** natural product, gramine analogues, anti-TMV activity, fungicidal 18 activity 19 20 21

22 INTRODUCTION

In the past 60 years, the population has more than doubled. The demand for more 23 fast increasing food production is needed.^{1,2} Plant diseases can cause a significant 24 economic and environmental impact on agricultural communities. Tobacco Mosaic Virus 25 (TMV), named after its first discovery in tobacco, is a well-studied plant virus. It is 26 27 reported that TMV can infect more than 400 crops including tobacco, pepper, cucumber, banana and ornamental flowers.³ Ningnanmycin (Figure 1), perhaps the most effective 28 antiviral agent, only gave 50-60% control effects at 500 µg/mL. Ribavirin (Figure 1), 29 currently widely used antiviral agent, conveys an anti-TMV effect of less than 50% at 30 500 µg/mL. In fact, once a plant is infected with TMV, there is no agent to cure it 31 completely. Therefore, it is urgently needed to find agents with novel structures and 32 unique mechanisms of action.⁴ 33

Nitrogen-containing heterocyclic compounds often exhibit a variety of biological 34 activities and are widely concerned in the field of medicine and pesticides. Among them, 35 compounds containing indole skeleton have aroused great interest of chemists,⁵ and have 36 been reported to have various kinds of activities, such as antibacterial activity, anticancer 37 activity, antiviral activity, protein kinase inhibitory effect.⁶⁻¹² Gramine (Figure 1) is an 38 indole alkaloid widely found in raw plants and in coal tar.¹²⁻¹⁴ This alkaloid has various 39 kinds of activities, such as regulation of bronchial smooth muscle activity, regulation of 40 vasodilation activity and controlling blood pressure activity.¹⁵ It can control 41 mitochondrial energy metabolism in rat liver and beef heart and displayed weak 42

acetylocholinesterase inhibitory effect.^{16,17} Recent studies have shown that gramine can
act as a 5-HT_{2A} receptor and thus exhibits vasodilatory activity.^{15,18} In agriculture,
gramine was reported to have influence on germination and development of *Erysiphe graminis*.¹⁹ However, there is no report on the antiviral activity of gramine in plants.

In our previous work, indole alkaloid topsentin A (Figure 1) and its derivatives,²⁰ were found to have good anti-TMV activities. As another indole-containing natural alkaloid, gramine has more simple structure than topsentin A. As a continuation of our work, various of gramine analogues were designed (Figure 2), synthesized and systematically evaluated for their antiviral, anti-phytopathogenic fungi and insecticidal activities.

53 MATERIALS AND METHODS

54 **Instruments**. The melting points of the target compounds were determined on an X-4 binocular microscope (Gongyi Yuhua Instrument Co., China). NMR spectra were 55 acquired with a Bruker 400 MHz (100 MHz for ¹³C) instrument at room temperature. 56 Chemical shifts were measured relative to residual solvent peaks of CDCl₃ (¹H: δ = 7.26 57 ppm; ¹³C: δ = 77.0 ppm) with tetramethylsilane as internal standards. HRMS data were 58 obtained with an FT-ICR MS spectrometer (Ionspec, 7.0 T). Analytical TLC was 59 performed on silica gel GF 254. Column chromatographic purification was performed 60 using silica gel. The in vitro TMV rod assembly inhibition and 20S CP Disk assembly 61 62 inhibition were tested on transmission electron microscopy (Tecnai G2 F20).

63 **General Synthesis.** The synthetic route is given in Figure 3.

64

The detailed operation steps and experimental data of gramines 1-35 can be found in

65	the Supporting Information.
66	Biological Assay. Each group of tests was repeated three times at 25±1 °C. Activity
67	results were given as a percentage scale of 0–100 (0: no activity; 100: total inhibited).
68	Detailed bioassay procedures for the anti-TMV, ²¹ fungicidal ²²⁻²⁴ and insecticidal ²²
69	activities were described in literature, also can be seen in Supporting Information.
70	Mode of Action Studies.
71	In vitro TMV rod assembly inhibition : TMV was purified by Leberman method. ²⁵
72	TMV RNA purification was performed by RNApure virus kit (CoWin Biosciences) and
73	TMV capsid protein (TMV CP) was purified by the acetic acid method. ²⁶ Before
74	assembling, 20S CP Disk was obtained by hatching CP (20 mg/mL) in pH 7.0 phosphate
75	buffer (0.1 M) at 20 °C for 12 h. Then, in vitro TMV assembly experiments were carried
76	out by successive adding the phosphate buffer 5 μL (0.1 M, pH 7.0), 20S Disk 4 μL (2
77	mg/mL) and TMV RNA 1 μL (200 ng/ μL). The mixture was hatched at 20 °C for 12 h
78	and could be then transferred into the copper grid for transmission electron microscopy
79	(TEM) assay. The assembly reaction mixture (5 μ L) was mixed with 0.1 M phosphate
80	buffer 5 μL (pH 7.0) and dropped onto the copper film waiting for 5 minutes. After the
81	incubation, the droplet was removed by filter paper and negatively stained by 2%
82	phosphotungstic acid (pH 7.0) for three minutes. After removing the staining agent, the
83	copper was placed at 37 °C for 2 h for drying. The morphology of the reconstituted TMV
84	rods was imaged at 200 keV on a CCD camera. For the inhibition experiments with the

target compounds, in vitro TMV reconstitution inhibition experiments were performed by

85

86	successive adding phosphate buffer 4.8 μL (0.1 M, pH 7.0), 20S Disk 4 μL (2 mg/mL),
87	TMV RNA 1 μ L (200 ng/ μ L) and DMSO 0.2 μ L or the target compound (10 μ M). Repeat
88	each experiment at least three times to ensure the reliability of the data.
89	In vitro 20S CP Disk assembly inhibition: For the inhibition tests with the compounds,
90	TMV CP was first adjusted with 0.1 M phosphate buffer (pH 7.0) to 20.4 mg/mL. In vitro
91	20S CP Disk assembly experiments were carried out by adding 9.8 μL TMV CP (20.4
92	mg/mL) and 0.2 μL DMSO or the compound (10 μM). The assembly experiment was
93	hatched at 20 °C for 12 h. The morphology of the 20S CP Disk was imaged via TEM at
94	200 keV on a CCD camera. Repeat each experiment at least three times to ensure the
95	reliability of the data.
96	RESULTS AND DISCUSSION
97	Chemistry.
98	Synthesis of the Compounds $1-35$. Indole group was selected as template for structural
99	diversification. By introducing a series of functional groups into the side chain, we
100	investigated the effects of electronic effect, steric hindrance, hydrophilicity and
101	lipophilicity on the activity. The Mannich reaction in the presence of either protic or
102	Lewis acids ¹⁴ is considered as powerful carbon-carbon bond forming processes to afford
103	3-substituted indoles. Compounds 1-35 were prepared by using the depicted procedures
104	in Figure 3. Substituted indoles were reacted with corresponding aldehydes and amines to
105	obtain 1-35 in 53%-97% yields. As the new compounds, 7-9, 12, 14-16, 18 and 24-35
	6

were identified by nuclear magnetic resonance (NMR) and high-resolution mass
spectrometer (HR-MS). Other known compounds were compared with literature.
Compound 22 is a known compound, but no physical properties available. So the NMR
and data of HR-MS of 22 were also given.

Phytotoxic Activity. The phytotoxic activities of compounds 1–35 were first tested by using the test plants which indicated that compounds 1–35 showed no phytotoxic activities at 500 μ g/mL. No local lesion appear on the plant leaves. The detailed test procedures also can be seen in Supporting Information.

Antiviral Activity. The in vitro and in vivo anti-TMV activities of gramine and its analogues were listed in Tables 1 and 2. The commercial plant virucides ribavirin and ningnanmycin were selected as the controls.

In Vitro Anti-TMV Activity. Gramine analogues 1-35 were first tested in vitro 117 anti-TMV activities using the conventional half-leaf method.²¹ As shown in Table 1, 118 compounds 2, 4, 8–10, 15, 17, 22, 27, 30, 31 and 35 displayed significantly higher 119 antiviral activities than ribavirin. Among the compounds, 22, 30 and 31 exhibited higher 120 TMV inhibition effects than ningnanmycin. The mainly difference among 1-4 lies in the 121 substituents in indole ring. Gramine analogues 2-4 displayed significantly higher 122 antiviral activities than gramine (1), which showed that the introduction of substituent 123 groups at 1-position, 5-position and 6-position of indole ring are favorable for antiviral 124 activity. Bromination of 5-position is more favorable than 6-position (antiviral effect: 2 > 2125 3). Gramine analogues 5–12 displayed higher antiviral activities than gramine (1), further 126

revealed that the substituents of N,N-dimethylmethanamine region in gramine are 127 favorable for antiviral activity. Among analogues 5–12, compounds 8, 9 and 10 exhibited 128 much higher antiviral activities than the others, which indicated that the substituents of 129 *N*,*N*-dimethylmethanamine region in gramine exhibited synergistic effect. The mainly 130 difference among 6, 13 and 19-21 lies in the replacement of N,N-dimethyl group in 131 132 gramine. Compound 13 exhibited higher TMV inhibitory effects than the others, which showed that the introduction of 2-amine pyridine group is favorable for antiviral activity. 133 Among derivatives 13–18, compounds 15 and 17 exhibited much higher antiviral 134 activities than the others. Based on the above structure-activity relationships, 5-bromine 135 and 1-substituent gramine analogues 22–35 were further designed. Among derivatives 136 22-24, compound 22 exhibited much higher TMV inhibitory effects than the others, 137 138 which indicated that the methylation of gramine is favorable for antiviral activity. The mainly difference among 25–35 lies in the aryl substituents. Compounds 25, 26, 28, 29, 139 32, and 34 showed similar level antiviral activities with ribavirin. Compound 33 140 displayed relatively lower antiviral activity than the others. Gramine analogues 27, 30, 31 141 and 35 exhibited significantly higher antiviral activities than ribavirin, especially for 30 142 and **31** (antiviral effect: **30** and **31** > ningnanmycin). 143

In Vivo Anti-TMV Activity. The in vivo antiviral tests including inactivation activity, curative activity and protection activity against TMV is carried out using reported method.²¹ As depicted in Table 2, target compounds also showed higher *in vivo* TMV inhibitory effects than ribavirin. Compounds **22**, **30** and **31** showed significantly higher TMV inhibitory effects than ningnanmycin, since emerged as novel antiviral leads for further optimization. Unlike *in vitro* anti-TMV test results, gramine analogues **1**, **4**–**6**, **14**, **15** and **18** exhibited relatively higher *in vivo* TMV inhibitory effects than *in vitro*. The protection effects of compounds **15**, **17** and **30** relatively higher than inactivation effect and curative effect, which indicated that compounds **15**, **17** and **30** may have a certain inducible antiviral activities. The other structure-activity relationships *in vivo* are similar to that of *in vitro*.

Preliminary Mode of Action. The preliminary mode of action of compounds 15 and 22 155 were evaluated via TEM with RNA inhibitor antofine²⁷ and CP disks assembly inhibitor 156 NK0209²⁸ as controls. The TMV is 300 nm length rod-shaped particle. It contains a 157 single-stranded RNA consisting of about 6400 nucleotides. Its coat protein contains 2130 158 159 protein subunits, each of which is composed of 158 amino acids and spirally arranged around RNA molecules.²⁹ The test results revealed that 20S CP Disk and TMV RNA can 160 assemble into TMV rod effectively (Figure 4, B). The use of a small amount of DMSO 161 does not affect assembly (Figure 4, C). Compounds 15, 22, antofine and NK0209 can 162 significantly inhibit the assembly of TMV rod (Figure 4, D-G). Further 20S CP Disk 163 assembly inhibition tests were carried out to evaluate the interaction of these compounds 164 with TMV CP. The 20S CP Disk can obtained by incubation of TMV CP at 20 °C for 12 165 h (Figure 5, A). The use of a small amount of DMSO has no impact on assembly of 20S 166 CP Disk (Figure 5, B). As the TMV RNA inhibitor, antofine displayed no impact on 20S 167 CP Disk assembly (Figure 5, C). CP disks assembly inhibitor NK0209 showed 168

significantly impact on 20S CP Disk. Although the 20S CP Disk can assemble efficiently, 169 aggregation and fusion of a large number of CP Disks was detected (Figure 5, D). Just 170 171 like NK0209, compounds 15 and 22 also can effectively induce CP Disks aggregation and fusion (Figure 5, E, F). Compound 22 with higher in vivo TMV inhibitory effect than 172 15 did exhibit stronger polymerization-promoting ability (As shown in Figure 5, the 173 174 number of 20S CP Disk in F is significantly lower than that in E). The above results indicated that these compounds likely inhibit virus assembly by crosslinking TMV CP. 175 Fungicidal Activity. Gramines 1–35 were simultaneously determined for fungicidal 176 177 activity with chlorothalonil and azoxystrobin as controls. In Vitro Fungicidal Activity. The in vitro fungicidal effects of gramines 1-35 were 178 obtained by using mycelial growth tests²² with 14 plant pathogens as artificial media. 179 180 Gramines 1–35 exhibited broad-spectrum fungicidal activities (Table 3). What's more, these compounds displayed high bioselective. Compounds 17 and 23 displayed about 181 similar level antifungal activities against Alternaria solani with chlorothalonil. Most of 182 these compounds showed good antifungal activities against Phytophthora capsici and 183 Physalospora piricola, especially for compounds 17 and 30 (antifungal activity against 184 *Phytophthora capsici*: 30 > 90%; antifungal activity against *Physalospora piricola*: 17 185 and $30 \ge 90\%$). Compound 8 displayed more than 60% antifungal activity against 186 Rhizoctonia cerealis. 187 In Vivo Fungicidal Activity. Gramines 1-35 were further tested fungicidal activities in 188

189 vivo.²² The pathogens tested in this screen were *Sclerotinia sclerotiorum* on rape,

197

190	Rhizoctonia cerealis on cerealis, Botrytis cinerea on cucumber, Phytophthora capsici or
191	capsici, Corynespora cassiicola on cucumber with protection and Blum eria graminis f.
192	sp.tritici on wheat. The results (Table 3) showed that lots of compounds displayed more
193	than 30% inhibitory effect. Although gramine has been reported to have influence or
194	germination and development of Erysiphe graminis,19 all compounds displayed no
195	fungicidal activity against Blum eria graminis f. sp.tritici on wheat in our test.
196	Insecticidal Activity. Some compounds showed certain insecticidal activity. Compounds

13, 22 and 32 exhibited broad-spectrum insecticidal activities against Mythimna separate,

- 198 Helicoverpa armigera, Ostrinia nubilalis and Culex pipiens pallens.

In summary, natural product gramine and its derivatives were prepared and tested for 199 their TMV inhibitory effects for the first time. Most of these structure simple compounds 200 201 showed higher TMV inhibitory effects than ribavirin. Compounds 22, 30 and 31 with significantly higher TMV inhibitory effects than ningnanmycin emerged as new antiviral 202 leads for further research. The introduction of substituents at 1-position, 5-position and 203 6-position of indole ring are favorable for TMV inhibitory effect. Bromination of 204 5-position is more favorable than 6-position. Compounds 15, 17 and 30 may have a 205 certain inducible antiviral activities. The preliminary mode of action studies revealed that 206 these compounds likely inhibited TMV assembly by crosslinking TMV CP. Further 207 fungicidal activity test showed that these compounds exhibited broad-spectrum fungicidal 208 activity. Compounds 17 and 23 displayed about similar level antifungal activities against 209 Alternaria solani with chlorothalonil. Insecticidal activity bio-assay showed that gramine 210

211	and its derivatives also displayed a certain insecticidal activity. Current study provides									
212	strong data support for the application of gramines in plant protection.									
213	ASSOCIATED CONTENT									
214	Supporting Information									
215	The detailed bio-assay procedures. The preparation procedures and the spectra data of									
216	compounds 1-35. This material is available free of charge via the Internet at									
217	http://pubs.acs.org.									
218	AUTHOR INFORMATION									
219	Corresponding Authors									
220	*(A.L.) E-mail: luaidang@hebut.edu.cn; Phone: 0086-22-60302812; Fax:									
221	0086-22-60204274									
222	*(Z.W.) E-mail: hxxywzw@tjnu.edu.cn; Phone: 0086-22-23766531; Fax:									
223	0086-22-23766531.									
224	*(Q.W.) E-mail: wangqm@nankai.edu.cn. Phone: 0086-22-23503952. Fax:									
225	0086-22-23503952									
226	Funding									
227	This study was supported by Natural Science Fund of China (21772145, 21732002,									
228	21672117, 21501042).									
229	Notes									
230	The authors declare no competing financial interest.									

231 **REFERENCES**

232	(1)	Godfrey, H. C. J.; Beddington, J. R.; Crute, I. R.; Haddad, L.; Lawrence, D.; Muir, J.
233		F.; Pretty, J.; Robinson, S.; Thomas, S. M.; Toulmin, C. Food security: the challenge
234		of feeding 9 billion people. Science 2010, 327, 812–818.
235	(2)	Ray, D. K.; Mueller, N. D.; West, P. C.; Foley, J. A. Yield trends are insufficient to
236		double global crop production by 2050. PLoS ONE 2013, 8, e66428.
237	(3)	Liu, L. R. The control of disease and pests of tobacco. Beijing, China, Science Press
238		Beijing, 1998 , 31.
239	(4)	Song, B. A.; Yang, S.; Jin, L. H.; Bhadury, P. S. Environment-friendly anti-plant
240		viral agents. Chemical Industry Press (Beijing) & Springer Press, 2009, 1–305.
241	(5)	Shiri, M. Indoles in multicomponent processes (MCPs), Chem. Rev. 2012, 112,
242		3508–3549.
243	(6)	Rao, V. K.; Chhikara, B. S.; Shirazi, A. N.; Tiwari, R.,; Parang, K.; Kumar, A.
244		3-Substitued indoles: One-pot synthesis and evaluation of anticancer and Src kinase
245		inhibitory activities, Bioorg. Med. Chem. Lett. 2011, 21, 3511-3514.
246	(7)	Chiou, C.; Chen, G. S.; Chen, M.; Li, H.; Shi, L.; Huang, X.; Dai, W.; Chern, J.
247		Synthesis of anti-microtubule N-(2-arylindol-7-yl)benzenesulfonamide derivatives
248		and their antitumor mechanisms. Chemmedchem. 2010, 5, 1489–1497.
249	(8)	Hanna-Elias, A.; Manallack, D. T.; Berque-Bestel, I.; Irving, H. R.; Coupar, I. M.;
250		Iskander, M. N. Synthsis and preliminary screening of novel indole-3-methanamines
251		as 5-HT4 receptor ligands. Eur. J. Med. Chem. 2009, 44, 2952-2959.
252	(9)	Rao, V. K.; Rao, M. S.; Jain, N.; Panwar, J.; Kumar, A. Silver triflate catalyzed

	253	SV	nthesi	is of	3-amino	alkylate	d indoles	and	evaluation	of	their	antibacterial	activit
--	-----	----	--------	-------	---------	----------	-----------	-----	------------	----	-------	---------------	---------

- 254 Org. Med. Chem. Lett. 2011, 1, 10.
- 255 (10) Lee, Y. J.; Han, Y. R.; Park, W.; Nam, S. H.; Oh, K. B.; Lee, H. S. Synthetic analogs
- of indole-containing natural products as inhibitors of sortase A and isocitrate lyase.

257 Bioorg. Med. Chem. Lett. 2010, 20, 6882–6885.

- 258 (11) Granchi, C.; Roy, S.; De Simone, A.; Salvetti, I.; Tuccinardi, T.; Martinelli, A.;
- 259 Macchia, M.; Lanza, M.; Betti, L.; Giannaccini, G.; Lucacchini, A.; Giovannetti, E.;
- 260 Sciarrillo, R.; Peters, G. J.; Minutolo, F. *N*-Hydroxyindole-based inhibitors of lactate
- dehydrogenase against cancer cell proliferation. *Eur. J. Med. Chem.* 2011, 46,
 5398–5407.
- 263 (12) Ke, S. Y.; Shi, L. Q.; Cao, X. F.; Yang, Q. Y.; Liang, Y.; Yang, Z. W.
- Heterocycle-functional gramine analogues: Solvent- and catalyst-free synthesis and their inhibition activities against cell proliferation, *Eur. J. Med. Chem.* **2012**, *54*, 248–254.
- (13) Hanson, A. D.; Ditz, K. M.; Singletary, G. W.; Leland, T. J. Gramine
 accumulation in leaves of barley grown under high-temperature stress. *Plant Physiol.* **1983**, *71*, 896–904.
- (14) Semenov, B. B.; Granik, V. G. Chemistry of *N*-(1*H*-indol-3-ylmethyl)-*N*,*N*dimethylamine (gramine): a review. *Pharm. Chem. J.* 2004, *38*, 287–310.
- 272 (15) Lwata, S.; Saito, S.; Kon-ya, K.; Shizuri, Y.; Ohizumi, Y. Novel marine-derived
- halogen-containing gramine analogues induce vasorelaxation in isolated rat aorta.

274	Eur. J. Pharmacol. 2001, 432, 63–70.
275	(16) Niemeyer, H. M.; Roveri, O. A. Effects of gramine on energy metabolism of rat and
276	bovine mitochondria. Biochem. Pharmacol. 1984, 33, 2973-2979.
277	(17) Lockhart, B.; Closier, M.; Howard, K.; Steward, C.; Lestage, P. Differential
278	inhibition of [3H]-oxotremorine-M and [3H]-quinuclinidyl benzilate binding to
279	muscarinic receptors in rat brain membranes with acetylcholinesterase inhibitors. N-S.
280	Arch. Pharmacol. 2001, 363, 429–438.
281	(18) Froldi, G.; Silvestrin, B.; Dorigo, P.; Caparrotta, L. Gramine: a vasorelaxing alkaloid
282	acting on 5-HT _{2A} receptors. <i>Planta Med.</i> 2004, 70, 373–375.
283	(19) Wippich, C.; Wink, M. Biological properties of alkaloids. Influence of quinolizidine
284	alkaloids and gramine on the germination and development of powdery mildew,
285	Erysiphe graminis f. sp. Hordei. Experientia 1985, 41, 1477–1479.
286	(20) Ji, X. F.; Wang, Z. W.; Dong, J.; Liu, Y. X.; Lu, A. D.; Wang, Q. M. Discovery of
287	topsentin alkaloids and their derivatives as novel antiviral and anti-phytopathogenic
288	fungus agents. J. Agric. Food Chem., 2016, 64, 9143-9151.
289	(21) Wang, Z. W.; Wei, P.; Wang, L. Z.; Wang, Q. M. Design, synthesis, and
290	anti-tobacco mosaic virus (TMV) activity of phenanthroindolizidines and their
291	analogues. J. Agric. Food Chem. 2012, 60, 10212–10219.
292	(22) Zhao, H. P.; Liu, Y. X.; Cui, Z. P.; Beattie, D.; Gu, Y. C.; Wang, Q. M. Design,
293	synthesis, and biological activities of arylmethylamine substituted chlorotriazine and
294	methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711-11717.

295	(23)Lv, P.; Chen, Y. L.; Zhao, Z.; Shi, T. Z.; Wu, X. W.; Xue, J. Y.; Li, Q. X.; Hua, R. M
296	Design, synthesis, and antifungal activities of 3-acyl thiotetronic acid derivatives:
297	New fatty acid synthase inhibitors. J. Agric. Food Chem. 2018, 66, 1023–1032.
298	(24)Lv, P.; Chen, Y. L.; Shi, T. Z.; Wu, X. W.; Li, Q. X.; Hua, R. M. Synthesis and
299	fungicidal activities of sanguinarine derivatives. Pestic. Biochem. Phys. 2018, 147,
300	3–10.
301	(25) Leberman, R. Isolation of plant viruses by means of simple coacervates. Virol 1966,
302	30, 341–347.
303	(26) Fraenkel Conrat, H.; Williams, R. C. Reconstitution of active tobacco mosaic virus
304	fromits inactive protein and nucleic acid components. Proc Natl Acad Sci U S A
305	1955, 41, 690–698.
306	(27) Xi, Z.; Zhang, R. Y.; Yu, Z. H.; Ouyang, D. The interaction between tylophorine B
307	and TMV RNA. Bioorg. Med. Chem. Lett. 2006, 16, 4300–4304.
308	(28) Li, X. Y.; Hao, G. F.; Wang, Q. M.; Chen, Z.; Ding, Y.; Yu, L.; Hu, D. Y.; Song, B.
309	A. Ningnanmycin inhibits tobacco mosaic virus virulence by binding directly to its
310	coat protein discs. Oncotarget 2017, 8, 82446-82458.

- 311 (29) Butler, P. J. G. The current picture of the structure and assembly of tobacco mosaic
- 312 virus. J. Gen. Virol. 1984, 65, 253–279.

Figure Captions

Figure 1. Structures of Ningnanmycin, Ribavirin, Gramine and Topsentin A.

Figure 2. Design of Gramine Analogues.

Figure 3. Synthesis of Gramine Analogues 1–35.

Figure 4. TMV Rod Assembly Inhibition of Compounds 15, 22, NK0209 and Antofine.

(A) 20S CP Disk (50 nm scale bar); (B) 20S CP Disk + RNA (100 nm scale bar); (C)

20S CP Disk + RNA + DMSO (200 nm scale bar); (D) 20S CP Disk + RNA + antofine

(200 nm scale bar); (E) 20S CP Disk + RNA + NK0209 (200 nm scale bar); (F) 20S CP

Disk + RNA + **15** (200 nm scale bar); (G) 20S CP Disk + RNA + **22** (100 nm scale bar).

Figure 5. 20S CP Disk Assembly Inhibition of Compounds **15**, **22**, NK0209 and Antofine (100 nm scale bar). (A) CP; (B) CP + DMSO; (C) CP + antofine; (D) CP + NK0209; (E) CP + **15**; (F) CP + **22**.

Table 1. In Vitro Antiviral Activities of Compounds 1–35, Ribavirin and Ningnanmycin

against	ΤM	V	
<u> </u>			

Comnd	Concn	Inhibition	aamnd	Concn	Inhibition
Compa	$(\mu g/mL)$	rate (%) ^a	compa	(µg/mL)	rate (%) ^a
1	500	23±1	20	500	16±1
1	100	0	20	100	0
2	500	51±2	31	500	30±2
2	100	20±2	21	100	0
2	500	39±1	22	500	61±2
3	100	5±1	22	100	27±1
4	500	48±2	22	500	35±3
4	100	31±1	25	100	10±2
F	500	33±2	24	500	40±1
5	100	4±1	24	100	18±2
ſ	500	25±2	25	500	45±1
0	100	0	25	100	18±1
-	500	43±1	24	500	39±3
/	100	16±2	20	100	11±2
0	500	52±2	27	500	54±2
ð	100	23±2	27	100	19±1
0	500	49±1	20	500	43±2
9	100	15±1	28	100	16±1
10	500	51±2	20	500	46±2
10	100	19±1	29	100	15±2
11	500	35±2	20	500	62±1
11	100	0	30	100	29±1
10	500	46±1	21	500	67±2
12	100	14 ± 1	31	100	31±2
12	500	36±2	22	500	44±1
13	100	0	32	100	18±2
14	500	35±2	22	500	30±1
14	100	13±1	33	100	0
15	500	52±2	24	500	42±2
15	100	17±1	34	100	16±2
16	500	36±1	25	500	51±1
16	100	5±2	35	100	20±2
	500	50±1	D 11 · · ·	500	41±1
17	100	22±2	Ribavirin	100	15±2
10	500	46±1	N T• •	500	58±2
18	100	13±2	Ningnanmycin	100	23±2
19	500	19±2	^a Average of three re	eplicates; All re	esults are

100 0 expressed as mean \pm SD.

Table 2. In Vivo Antiviral Activities of Compounds 1-35, Ribavirin and Ningnanmycin

Compd	Concn	Inactivation	Curative	Protection	Compd	Concn	Inactivation	Curative	Protection
	$(\mu g/mL)$	effect (%) ^a	effect (%) ^a	effect (%) ^a	compa	$(\mu g/mL)$	effect (%) ^a	effect (%) ^a	effect (%) ^a
1	500	32±1	26±1	37±2	20	500	21±2	18±2	26±1
1	100	0	0	0	20	100	0	0	0
2	500	57±1	53±2	51±1	21	500	30±2	31±1	30±2
-	100	29±1	22±1	27±1	21	100	0	0	6±2
3	500	42±2	47±2	41±2	22	500	64±2	60±1	65±2
0	100	6±2	12±1	8±1		100	30±2	31±2	35±1
4	500	59±2	53±2	54±2	23	500	32±1	29±2	35±2
-	100	27±1	29±1	33±1	20	100	0	0	0
5	500	46±2	42±2	39±2	24	500	41±2	38±1	45±2
0	100	12±1	7±1	17±2	24	100	12±2	8±2	13±2
6	500	33±2	32±2	31±2	25	500	48±3	42±1	44±2
U	100	0	0	0	25	100	18±2	14±2	16±1
7	500	52±1	45±1	41±2	26	500	40±2	38±1	41±2
1	100	26±2	16±1	9±1	20	100	11±2	7±2	16±2
8	500	57±2	53±1	61±1	27	500	57±1	52±2	56±1
0	100	31±1	28±1	23±1	21	100	21±2	24±2	23±2
9	500	45±4	48±2	41±2	28	500	47±2	44±3	46±2
,	100	7±1	9±1	13±1	28	100	22±2	20±1	27±1
10	500	55±1	51±1	49±2	29	500	45±1	40±2	42±2
10	100	13±2	24±2	27±1		100	18±2	12±1	16±1
11	500	43±1	36±1	36±2	30	500	61±2	59±1	65±2
11	100	6±1	8±1	10±1	50	100	28 ±1	27±2	33±1
12	500	41±1	39±2	34±2	31	500	68±2	65±1	66±2
14	100	6 ± 2.0	11±2	0	51	100	34±2	32±1	35±2
13	500	36±1	34±2	38±2	37	500	44±3	45±1	40±2
15	100	0	0	0	52	100	11±2	15±2	12±1
14	500	44±2	48±1	42±2	33	500	32±1	28±1	26±2
14	100	10±1	21±1	15±1		100	0	0	0
15	500	60±2	55±2	64±1	34	500	41±3	37±3	42±2
10	100	13±1	19±2	32±1		100	12±2	15±2	17±1
16	500	43±2	47±1	39±2	35	500	52±2	50±3	53±2
10	100	10±2	18±1	6±1		100	20 ±1	18±2	23±2
17	500	56±4	52±2	60±1	Rihavirin	500	38±1	36±2	39±1
17	100	15±2	20±1	25±1	Ribavii in	100	11±1	14±1	10±1
18	500	53±1	51±2	58±1	Ningnanmycin	500	58 ± 1	56 ± 1	58 ± 2
10	100	29±2	31±1	25±1	1 mgnanny chi	100	27 ± 2	25 ± 2	30 ± 1
19	500	33±2	27±2	23±2	^a Average of thre	ee replicates	; All results are	expressed as	$mean \pm SD.$

against TMV.

Table 3. In Vitro Fungicidal Activities of Compounds 1–35 and Chlorothalonil against 14

Kinds of Fungi.

Coursel						Fun	gicidal ac	tivities (%))ª/ 50 µg/m	L				
Compa	A.S ^b	$B.C^b$	B.M ^b	C.H ^b	$F.C^b$	$F.G^b$	$F.M^b$	$P.C^b$	$P.I^b$	$P.P^b$	$R.C^b$	$R.S^b$	S.S ^b	$W.A^b$
1	26±1	12±1	6±1	7±2	14±1	27±1	25±1	7±2	14±1	28±1	13±2	12±1	14±2	18±1
2	30±1	19±2	18±1	11±1	22±1	50±1	21±1	52±1	38±1	69±1	42±1	46±2	24±1	33±1
3	35±2	15±2	15±1	11±1	17±1	35±2	25±1	52±1	38±1	19±1	41±1	25±1	19±1	37±2
4	30±1	19±2	15±1	11±1	14±1	31±2	21±2	45±1	19±1	28±1	18±1	12±1	29±2	18±1
5	22±1	20±2	18±1	7±2	22±1	12±2	4±1	24±1	28±2	33±1	34±2	12±1	29±2	37±1
6	30±2	29±1	18±1	15±1	25±1	15±1	8±1	20±1	24±2	58±1	25±1	12±1	24±1	30±1
7	43±1	32±1	15±1	18±1	25±1	12±1	17±2	62±1	14±1	33±2	35±1	46±1	29±1	18±2
8	26±1	7±1	18±1	11±1	22±1	11±2	12±2	17±1	14±1	25±1	63±1	8±1	33±1	26±1
9	30±1	15±1	21±1	18±1	19±2	8±1	8±1	41±1	24±1	58±1	32±1	33±1	33±1	26±2
10	26±1	12±1	18±1	4±1	19±2	19±1	17±1	24±2	14±2	44±1	32±1	21±2	29±2	15±1
11	39±1	12±1	18±1	18±1	22±1	27±1	12±1	62±1	28±2	33±1	41±2	8±1	33±1	19±2
12	43±2	37±2	21±1	33±1	30±1	15±1	25±1	62±2	28±2	69±1	41±1	37±1	33±1	26±2
13	22±2	20±1	21±1	15±1	28±1	8±2	4±1	41±1	24±1	56±2	32±2	4±1	24±1	22±2
14	26±1	12±1	21±1	30±2	25±1	15±1	12±1	17±1	24±1	28±1	35±2	33±1	19±1	33±1
15	13±2	12±1	24±1	18±2	22±1	4±1	12±1	24±1	24±1	53±1	25±1	4±1	14±1	30±2
16	52±1	49±1	33±2	33±1	42±1	38±1	12±1	55±1	47±2	64±1	42±1	46±2	12±1	33±1
17	61±2	58±2	27±2	37±1	39±1	46±1	29±1	45±1	47±2	92±1	35±2	58±1	38±1	30±2

18	35±2	42±1	24±1	30±1	28±2	15±2	29±1	62±1	14±1	36±1	31±1	42±1	24±1	26±1
19	17±2	32±1	24±1	18±1	22±1	11±2	12±1	27±1	14±1	50±1	17±2	12±2	14±1	26±1
20	56±2	44±1	36±2	18±1	28±1	39±1	12±1	58±2	62±1	58±1	31±1	46±1	29±1	33±1
21	43±1	37±1	33±2	15±1	25±1	11±1	12±2	42±1	38±1	36±2	21±1	42±1	24±2	30±2
22	35±2	44±1	30±1	19±2	25±2	15±1	13±2	58±1	40±2	64±2	25±1	43±2	33±2	35±1
23	62±2	50±2	37±1	36±2	45±1	38±2	32±2	82±2	53±1	86±2	42±2	43±1	32±2	37±2
24	55±2	46±1	32±2	28±2	35±1	29±2	26±1	75±2	42±1	74±2	38±1	35±1	28±1	29±2
25	16±1	25±2	30±1	14±2	24±2	10±2	12±1	52±2	15±1	53±2	25±1	30±2	22±2	26±2
26	19±2	33±2	28±2	34±2	42±2	19±2	28±2	62±2	28±2	67±1	38±2	42±2	33±2	30±2
27	11±1	16±2	22±1	15±2	26±2	10±1	13±2	58±2	16±1	56±2	21±1	13±2	19±1	26±2
28	23±2	25±1	21±2	19±2	22±1	9±2	11±2	55±1	24±2	46±1	23±1	31±1	11±2	9±1
29	18±2	32±2	25±1	31±2	42±2	18±2	22±1	51±2	26±2	55±2	26±2	34±2	10±1	25±2
30	51±1	45±1	39±2	33±1	42±2	20±1	23±2	92±2	41±1	90±1	30±1	32±2	37±1	39±2
31	10±2	9±1	15±2	33±2	24±2	8±1	15±2	42±2	20±2	38±1	12±2	11±2	23±2	12±2
32	31±1	25±2	28±2	34±1	51±2	21±2	12±2	72±1	32±2	68±2	24±1	23±1	8±2	11±1
33	21±1	15±2	32±2	23±1	31±2	9±2	11±2	62±1	26±2	63±2	21±1	16±2	13±2	14±1
34	26±2	24±1	30±1	25±2	21±1	14±1	13±1	65±2	32±1	59±2	22±1	17±2	9±1	10±2
35	32±2	22±1	32±2	29±2	22±1	16±2	19±2	76±1	38±2	72±2	26±1	19±2	24±2	26±1
Chlorothalonil ^c	73±2	100	91±1	73±2	100	<50	100	100	86±1	100	100	100	<50	86±1

^{*a*}Average of three replicates; All results are expressed as mean \pm SD. ^{*b*}A.S, Alternaria solani; B.C, Botrytis cinerea.;

B.M, Bipolaris maydis; C.H, Cercospora arachidicola Hori; F.C, Fusarium oxysporium f. sp. cucumeris; F.G, Fusarium graminearum; F.M, Fusarium moniliforme; P.C, Phytophthora capsici; P.I, Phytophthora infestans; P.P, Physalospora piricola; R.C, Rhizoctonia cerealis; R.S, Rhizoctonia solani; S.S, Sclerotinia sclerotiorum; W.A,

watermelon anthracnose.^c The commercial agricultural fungicide was used for comparison of antifungal activity.

_

_

Table 4. In Vivo Fungicidal Activ	ities of Compounds 1-35 a	and Azoxystrobin against 6
Kinds of Fungi.		

1	Inhibition rate (%) ^b / 200 µg/mL							
compa	S.S ^a	R.C	B.C	<i>P.C</i>	C.C	B.G		
1	20±2	22±1	28±2	26±2	32±1	0		
2	18±2	22±2	11±2	21±1	25±2	0		
3	16±1	19±2	23±2	15±2	37±2	0		
4	16±2	15±2	16±2	27±1	13±2	0		
5	15±2	18±1	13±2	31±2	28±2	0		
6	16±2	22±2	19±1	23±2	35±1	0		
7	11±1	30±2	16±2	17±2	36±2	0		
8	9±2	13±1	19±2	16±2	18±1	0		
9	9±2	12±2	28±2	23±1	16±2	0		
10	11±2	16±1	25±2	17±2	15±2	0		
11	29±2	22±2	8±1	35±2	12±2	0		
12	26±1	19±2	20±1	39±2	40±2	0		
13	12±2	8±2	12±2	11±1	16±2	0		
14	28±1	8±2	23±1	9±2	28±2	0		
15	25±2	27±2	19±2	15±2	17±1	0		
16	9±2	32±1	27±2	35±2	41±2	0		
17	18±2	21±2	19±2	45±2	41±2	0		
18	29±2	27±1	28±2	11±1	12±2	0		
19	11±1	12±2	19±1	21±2	28±1	0		
20	18±2	23±1	19±2	11±1	15±2	0		
21	9±1	11±2	19±1	13±2	21±1	0		
22	20±2	15±1	19±2	20±1	12±2	0		
23	27±1	33±2	20±1	43±2	35±1	0		
24	11±2	22±1	15±2	26±1	26±2	0		
25	25±1	22±2	17±1	25±2	26±1	0		
26	21±2	32±1	25±2	36±1	39±2	0		
27	15±1	22±2	13±1	15±2	22±1	0		

28	11±2	20±1	25±2	22±1	21±2	0
29	26±1	12±2	27±1	23±2	16±1	0
30	21±2	12±1	25±2	36±1	46±2	0
31	9±1	12±2	17±1	15±2	16±1	0
32	21±2	29±1	25±2	36±1	36±2	0
33	25±1	23±2	27±1	35±2	38±1	0
34	16±2	22±1	18±2	26±1	16±2	0
35	15±1	22±2	19±1	15±2	29±1	0
azoxystrobin ^c	100	100	100	85±2	80±1	81±2

^a S.S, Sclerotinia sclerotiorum (rape-protection); R.C, Rhizoctonia cerealis; B.C, Botrytis cinerea. (cucumber-protection); P.C, Phytophthora capsici; C.C, Corynespora cassiicola (cucumber-protection); B. G, Blum eria graminis f. sp.tritici (wheat-protection). ^b Average of five replicates. ^c The dilution of azoxystrobin is 1000 times.

Table 5. Larvacidal Activities of Compounds 1–35 and Rotenone against Oriental
Armyworm (Mythimna Separate), Cotton Bollworm (Helicoverpa Armigera), Corn Borer
(Ostrinia Nubilalis) and Mosquito (Culex Pipiens Pallens).

Larvacidal activities (motality %) at concn ($\mu g/mL$)						
compd	M. Separat	H. armigera	O. Nubilalis	C. Pipiens Pallens		
	600	600	600	10		
1	0	0	0	0		
2	0	0	0	0		
3	0	5	20	20		
4	20	35	35	40		
5	20	15	25	20		
6	0	20	25	80		
7	0	10	25	40		
8	15	15	30	20		
9	0	0	0	20		
10	0	20	20	60		
11	0	0	5	20		
12	20	20	10	20		
13	30	45	50	80		
14	0	15	10	40		

15	0	5	0	20
16	10	15	15	20
17	0	10	10	40
18	20	10	15	20
19	0	5	0	20
20	20	10	25	20
21	0	5	10	30
22	20	30	35	35
23	30	15	25	40
24	15	10	15	30
25	0	0	0	20
26	0	30	10	30
27	20	10	15	35
28	10	15	15	30
29	0	0	0	10
30	20	30	45	60
31	10	20	30	45
32	30	45	30	60
33	20	10	0	0
34	0	0	0	0

Journal of Agricultural and Food Chemistry

35	20	30	10	50
Rotenone	100	75	60	100

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

TOC graphic

31 ACS Paragon Plus Environment

Agrochemical Bioregulators

