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Copper-Catalyzed Synthesis of Arylcarboxamides from Aldehyde 

and Isocyanides: Isocyano Group as an N1 Synthon 
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 An interesting radical coupling reaction of aromatic aldehydes 

with isocyanides was disclosed for the synthesis of amides 

catalyzed by copper. According to the experimental results and 

mechanistic study, the isocyano group acted as an N1 synthon 

rather than the carbene-like reactivity, exploiting a new reactivity 

profile of isocyanide. 

C-N bond formation is of utmost importance in organic 

chemistry, biological molecules, pharmaceutical industries and 

materials science.
1
 In the recent past, substantial advances on 

C-N bond formation have been dramatically achieved. To the 

best of our knowledge, three kinds of prominent C-N bond 

formation reactions have been well-established including 

Goldberg reaction,
2 

Chan-Lam coupling
3 

and Buchwald-Hartwig 

aminations.
4
 However, compared to these electrophilic and 

nucleophilic animation reactions, the development of C–N 

bonds related to nitrogen-centred radicals is relatively dilatory 

which is held back by the limited source of nitrogen radicals. 

Thus, exploring suitable and novel type of nitrogen radicals is 

still an important and highly attractive research. 

Isocyanides are very versatile reagents in organic synthesis, 

especially in the field of multi-component reactions (IMCRs)
5
 

and heterocyclic chemistry.
6
 However, most of these reported 

accomplishments are mainly focused on developing them as 

the carbene-like reactivity; or emerging them as a valuable C1 

building block (Figure 1a).
6c

 Additionally, isocyanide insertion 

reactions, polymerization processes and C-H functionalization 

reactions have been well-established by using transition 

metals as the catalysts which are also based on carbene-like 

reactivity of isocyano groups.
7,8

 In contrast, radical isonitrile 

reaction was less intensively investigated. Very recently, we 

skilfully avoided the over insertion of isocyanides and used it 

as a radical coupling/isomerization strategy for the 

construction of β-aminoenones and tricarbonylmethanes.
9
 

Nanni and Curran discovered a method for the synthesis of 

quinoxalines via a radical cascade progress.
10

 Surprisingly, 

these strategies were rapidly developed for the construction of 

important nitrogen heterocycles, such as phenanthridines and 

other N-containing heterocycles.
6d,6e

 Lately, Studer came true 

the synthesis of iodinated alkyl quinoxalines by using ortho-

diisocyanoarenes as radical acceptors via atom transfer and 

radical addition progress.
11

 However, all these transformations 

were relied on the radicals addition to the isonitrile carbon 

atom leading to the imidoyl radical intermediate, which 

indicated that isonitriles was acted as radical acceptors (Figure 

1b). Herein, we reported a novel radical C-N cross-coupling 

strategy for aromatic aldehyde with isocyanides affording 

amides. In our current work, C-N bond coupling event 

immediately occurs via a radical coupling process with the 

generation of amidogen radical intermediate (Figure 1c). 

Remarkably, isocyano group as the source of N1 synthon was 

less reported formerly.
12

 

Figure 1. Reactivity patterns of isonitriles. 
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We initiated the exploratory reaction between 

benzaldehyde (1a) and p-bromophenyl isonitrile (2a) as a 

model reaction by varying the metal salts, solvents and oxidant 

to optimize the protocol (Table 1). Delightfully, the reaction 

catalysed by CuI in the presence of 2 equiv of KBr and tert-

butyl hydroperoxide (TBHP) afforded 3a in 81% yield (entry 1) 

under nitrogen atmosphere. Compared to CuI, other metal 

catalysts (FeCl2, CuBr2, AgNO3, CuBr, CuCl, and Ag2CO3) 

presented lower catalytic activity or even failed in this 

transformation (entries 2-7). Subsequently, a series of solvents 

including 1,4-dioxane, DCE, CH3CN, benzene (entries 8-11) 

were tested to further improve the result, and toluene was 

more adequate for the reaction than other solvents. 

Encouraged by these finding, we also explored the influence of 

the oxidants, including K2S2O8 and DTBP, regrettably, no 

desired product 3a was formed (entries 12−14). It is worth 

mentioning that no reaction was observed in the absence of 

catalyst (entry 15). Additionally, no desired product was 

obtained under the O2 atmosphere (entry 16). There was no 

doubt that entry 1 was as the optimal reaction conditions.  

Table 1. Optimization of the Reaction Conditions
a
 

 

entry catalyst solvent  oxidant 3a (%)
b
 

1 CuI toluene TBHP 81 

2 FeCl2 toluene TBHP 0 

3 CuBr2 toluene TBHP 23 

4 AgNO3 toluene TBHP 0 

5 CuBr toluene TBHP 43 

6 CuCl toluene TBHP 32 

7 Ag2CO3 toluene TBHP 0 

8 CuI dioxane TBHP 48 

9  CuI DCE TBHP 57 

10  CuI CH3CN TBHP 0 

11  CuI benzene TBHP 65 

12 CuI toluene K2S2O8 0 

13 CuI toluene DTBP 0 

14 CuI toluene Selectfluor 0 

15 -- toluene TBHP 0 

16
c
 CuI toluene TBHP 0 

a 
All reactions were carried out with 1a (1.0 mmol), 2a (0.5 mmol), oxidant (1.5 mmol), 

KBr (1.0 mmol) and catalyst (10 mol%) in solvent (2.0 mL) at 100 °C under N2 

atmosphere for 12 h.
 b 

Isolated yields. 
c 
under O2 atmosphere for 12 h. 

With the optimized reaction in hand, we next investigated 

the scopes and limitations of this transformation (Scheme 1). A 

variety of alkyl and aryl isonitriles underwent the coupling with 

benzaldehyde (1a) smoothly. There was little electronic effect 

on this conversion, which could tolerate compatibly with 

various groups at the position of aromatic ring (such as Br, 

MeO, Me, CF3 and H, etc.) affording the desired products (3a-

3f) in moderate to good yields. To our delight, the bis-

substituted substrates were also well tolerated to give 

products (3g-3i) in 42~76% yields. Additionally, it is worth to 

be noted that the 2-isocyanonaphthalene could react with 

benzaldehyde smoothly, leading to the corresponding product 

3j in 73% yield. Furthermore, a series of alkyl isonitriles was 

also tested, and found in delight that they were all suitable for 

this transform (3k-3n) in appropriate yields, even if the 

substrates with strong steric effect, such as 2-isocyano-2-

methylpropane and (isocyanomethanetriyl)tribenzene, also 

could efficiently react with 1a, affording the corresponding 

products 3m and 3n.  

Scheme 1. The scope of isonitriles
a,b 
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a 
All reactions were carried out with 1a (1.0 mmol), 2 (0.5 mmol), TBHP (1.5 

mmol), KBr (1.0 mmol) and CuI (10 mmol%) in toluene (2.0 mL) at 100 °C under 

N2 atmosphere for 12 h. 
b 

Isolated yields.  

Subsequently, to further expand the scope of substrates, we 

focused our concentration on investigating the influence on 

aldehydes under the standard conditions (Scheme 2). 

Delightfully, a range of aromatic aldehydes reacted with 2a 

stably, furnishing the expected products (4a-4g) in 37~89% 

yields. Among these, the aromatic rings with electron-donating 

(R = OMe or Me) or withdrawing groups (R = Br, NO2 and CN) 

presented high reactivity along with little electronic effect. 

Unfortunately, when 4-pyridinecarboxaldehyde was used as a 

substrate, there was no expected product in a mixture system. 

Besides, as an example of alkyl aldehydes, n-pentanal was also 

tested for this reaction. Regretfully, the experimental results 

showed that it was ineffective substrate, and no reaction took 

place as we expected.  

Scheme 2. The scope of aldehydes
 a,b 
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a 
All reactions were carried out with 1 (1.0 mmol), 2a (0.5 mmol), TBHP (1.5 

mmol), KBr (1.0 mmol) and CuI (10 mmol%) in toluene (2.0 mL) at 100 °C 

under N2 atmosphere for 12 h. 
b 

Isolated yields. 

To probe a plausible mechanistic route for this reaction, 

several experimental investigations were conducted and 

performed under the standard conditions (Scheme 3). Once 

the radical inhibitor 2,2,6,6-tetramethyl-1-piperidinyloxy 

(TEMPO) or 2,6-di-tert-butylhydroxytoluene (BHT) was added 

to the solution of 1a and 2a, the reaction was completely 

suppressed. Despite the adducts were failed to be captured, 

the result predicted that the reaction should go through a free 

radical intermediate [Eq. (1)].
13

 Meanwhile, N-(4-

bromophenyl)formamide was tested the plausible mechanistic 

progress, and there was no desired products [Eq. (2)].
14

 

Further, the possibility of the solvent as the acyl source via 

oxidation process was excluded as no 3a could be isolated 

from the reaction [Eq. (3)].
 
However, we detected the product 

3a’ in 21% yield, suggesting the mechanism route is different 

from that of ref.12. Finally, using [
13

C]-1a as a reactant, 

isotope-labelling study unambiguously confirmed the aromatic 

aldehyde compounds as the source of acyl affording [
13

C]-3a in 

56% yield [Eq. (4)]. 

Scheme 3. Control reactions for Mechanistic 

Investigations
a 

 

a 
Isolated yields. PMP = 4-BrC6H4. 

On the basis of the above experimental results and related 

literature precedents,
9,12,15

 a plausible mechanism was 

tentatively outlined by using 1a and 2a as model substrates in 

Scheme 4. In the radical initiation stage, the low-valent copper 

catalyst transfers an electron to TBHP affording copper species 

B
17

 and tert-butoxyl radical. Then, the complex CuI(RNC)n may 

be formed and reacts with B to give the intermediate C. 

Afterwards, the fate of C, is to donate an electron to X
- 
(X = Br 

or I), generating A, radical D and simple substance X2, thereby 

leading to the regeneration of A catalyst and completing the 

catalytic cycle. Subsequently, the intermediate D then 

eliminates carbon monoxide to form radical E. Meanwhile, 

tert-butoxyl radical abstracts a hydrogen atom from aldehyde 

1a leading to acyl radical F and tertiary butanol. Finally, two 

radicals E and F couple directly to release the product 3a.  

Scheme 4. Plausible Mechanism 

 

In conclusions, we have developed an intriguing and novel 

copper-catalyzed radical coupling reaction of aromatic 

aldehyde with isocyanides, providing a very convenient and 

modular approach to the synthesis of amides. This report 

presented a new fundamental C-N bond forming reaction 

between two basic chemicals with broad range of substrates. 

Importantly, this approach is mechanistically different from 

the classical transition-metal-catalyzed isocyanides chemistry, 

which isocyano group as an N1 synthon rather than the 

carbene-like reactivity was disclosed.  
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