
Inorganic Chemistry Cite This: Inorg. Chem. XXXX, XXX, XXX-XXX

Hydrosilane Synthesis by Catalytic Hydrogenolysis of Chlorosilanes and Silvl Triflates

Arne Glüer, Julia I. Schweizer, Uhut S. Karaca, Christian Würtele, Martin Diefenbach, Max C. Holthausen,*,[‡] and Sven Schneider*,[†]

Supporting Information

ABSTRACT: Hydrogenolysis of the chlorosilanes and silyl triflates (triflate = trifluoromethanesulfonate, OTf^-) $Me_{3-n}SiX_{1+n}$ (X = Cl, OTf; n = 0, 1) to hydrosilanes at mild conditions (4 bar of H₂, room temperature) is reported using low loadings (1 mol %) of the bifunctional catalyst $[Ru(H)_2CO(HPNP^{iPr})]$ $(HPNP^{iPr} = HN-P^{iPr})$ (CH₂CH₂P(iPr)₂)₂). Endergonic chlorosilane hydrogenolysis can be driven by chloride removal, e.g., with NaBAr $_4^F$ [BAr $_4^F$] = B(C₆H₃-3,5- $(CF_3)_2)_4$. Alternatively, conversion to silyl triflates enables facile hydrogenolysis with NEt₃ as the base, giving Me₃SiH, Me₂SiH₂, and Me₂SiHOTf, respectively, in high yields. An outer-sphere mechanism for silyl triflate hydrogenolysis is supported by density functional theory

computations. These protocols provide key steps for synthesis of the valuable hydrochlorosilane Me₂SiClH, which can also be directly obtained in yields of over 50% by hydrogenolysis of chlorosilane/silyl triflate mixtures.

■ INTRODUCTION

Organohydrosilanes are important reagents for olefin hydrosilylation and other applications such as C-H bond silylation, desulfurization of fuels, or dehydrogenative oligo/polysilane formation. (Organo) hydrochlorosilane building blocks SiH, Cl, R, enable the orthogonal synthesis of branched polysiloxanes and self-healing silicones by sequential polycondensation and cross-linking via hydrosilylation as used, e.g., for the fabrication of release coatings, moldings, and adhesives.5

Some of these precursors, like MeSiCl₂H, are conveniently obtained as byproducts of the Müller-Rochow process. In contrast, Me2SiClH synthesis suffers from low crude yields (0.01-0.5%, Scheme 1a) and challenging separation procedures, necessitating alternative synthetic routes to hydro-(chloro)silanes from chlorosilanes. Hydrosilanes can be prepared by salt metathesis from chlorosilanes with LiAlH₄ (Scheme 1b). Besides the low atom economy that is associated with the use of complex hydride reagents, this approach is not commonly applicable for the synthesis of hydrochlorosilanes because of overreduction. Alternatively, partial chlorination of hydrosilanes, e.g., selective B(C₆F₅)₃-catalyzed hydrosilane acidolysis, serves as a versatile route to organohydrochlorosilanes (Scheme 1c).8 However, direct organochlorosilane hydrogenolysis as a source of hydrosilanes remains elusive because of the unfavorable thermochemistry (Me₃SiCl + H₂ \rightarrow $Me_3SiH + HCl; \Delta G^{\circ} = +22.2 \text{ kcal mol}^{-1}$.

Very recently, Shimada and co-workers pioneered9 the hydrogenolysis of silyl triflates and halides $R_{3-n}SiX_{n+1}$ with

Scheme 1. Synthetic Routes to Hydro(chloro)silanes

iridium catalysts (Scheme 1d,e). With relatively high catalyst loadings (5-10 mol %) and long reaction times (2-7 days), moderate yields of around 50-60% in Me₂SiH₂ and Me₂SiHCl could be obtained upon hydrogenolysis of Me₂SiOTf₂ [OTf⁻ = triflate trifluoromethanesulfonate (O₃SCF₃⁻)] or in situ prepared Me₂SiI₂ and Me₂SiICl, respectively. Guided by our recent work on de/hydrogenation with bifunctional catalysts,

Received: August 17, 2018

[†]Institute for Inorganic Chemistry, University of Göttingen, Tammannstraße 4, 37077 Göttingen, Germany

^{*}Institut für Anorganische und Analytische Chemie, Goethe-Universität, Max-von-Laue-Strasse 7, 60438 Frankfurt am Main, Germany

we here report ruthenium-catalyzed hydrogenolysis of chlorosilanes and silyl triflates with low catalyst loadings.

■ RESULTS AND DISCUSSION

The considerably higher Si–Cl (~100 kcal mol⁻¹) versus Si–H (~69 kcal mol⁻¹) bond dissociation energy renders hydride versus chloride metathesis a thermochemically challenging step. Therefore, a transition-metal catalyst with low M–H hydridicity^{13,14} was targeted, as indicated, e.g., by its capability of catalyzing the hydrogenation of CO₂ to formate $[\Delta G^{\circ}_{H^{-}}(HCO_{2}^{-})]$ = 44 kcal mol⁻¹ in MeCN]. Ruthenium MACHO-type catalysts, i.e., $[RuCl(H)CO(HPNP^{R})]$ [HPNP^R = HN(CH₂CH₂PR₂)₂], show high activities in CO₂ hydrogenation. A stoichiometric control experiment confirmed that the *trans*-dihydride complex $[Ru(H)_{2}(CO)(HPNP^{iPr})]$ (1) readily reacts with Me₃SiCl to the corresponding hydrosilane in almost quantitative spectroscopic yield (Scheme 2). This observation also demonstrates favorable kinetics for

Scheme 2. Stoichiometric Hydride Transfer of 1 with Me₃SiCl

$$\begin{array}{c|c} H & CI \\ \hline N-R \dot{u}-CO + Me_3SiCI \\ \hline P & I \\ \hline P_1 & Pr_2 \\ \hline \end{array}$$

hydride transfer to chlorosilanes with this catalyst class. However, HCl elimination and H_2 heterolysis from the resulting ruthenium chloro complex **2** requires strong bases like alkaline-metal hydroxides, alkoxides, or amides, which all proved to be incompatible with chlorosilane substrates. Accordingly, attempts for the catalytic hydrogenolysis of Me_3SiCl in tetrahydrofuran (THF) with NEt_3 as the base were unsuccessful. Computational evaluation confirmed endergonic hydrogenolysis with the model base NMe_3 ($Me_3SiCl + H_2 + NMe_3 \rightarrow Me_3SiH + [HNMe_3]Cl; <math>\Delta G^\circ = 11.9$ kcal mol^{-1}), suggesting the requirement of an additional driving force to achieve turnover.

In situ chloride precipitation was therefore evaluated as a synthetic strategy. The addition of NaBAr $^{\rm F}_4$ [BAr $^{\rm F}_4$ = B(C₆H₃-3,5-(CF₃)₂)₄] to complex **2** in PhF as the solvent results in the formation of new species by NMR spectroscopy accompanied by NaCl precipitation (see the Supporting Information, SI). The 31 P and 1 H NMR spectroscopic and mass (MS) spectrometric data closely resemble the reported values for [Ru(H)CO(HPNPi^Pr)]BF₄. Exchange of the solvent with THF- d_8 restores **2**, indicating a strong solvent dependence of the chloride abstraction equilibrium.

Chlorosilane hydrogenolysis (4 bar of H₂, room temperature) with 1 (1 mol %) as the catalyst was therefore examined in the presence of stoichiometric amounts of NaBAr^F₄ and excess NEt₃ as the base in PhF. Trimethylchlorosilane as the substrate (Table 1, entry 1) requires relatively long reaction times, giving spectroscopic yields in Me₃SiH around 50% after about 1 week. In contrast, hydrogenolysis of Me₂SiCl₂ (with 2 equiv of NaBAr^F₄) to Me₂SiH₂ proceeds at a much faster rate within 1 day in yields up to around 80%¹⁷ under otherwise identical conditions (entry 2), presumably because of the higher electrophilicity of the substrate. With only 1 equiv of NaBAr^F₄ (entry 3), Me₂SiH₂ remains the preferred product, leaving almost half of the substrate unreacted. Replacing NEt₃

Table 1. Hydrogenolysis of Chlorosilanes with Catalyst 1^a

$$\begin{aligned} &\text{Me}_{3\text{-n}}\text{SiCl}_{\text{n+1}} + (\text{n+1}) \; \text{NaBAr}^{\text{F}}_{4} & \xrightarrow{r.t., \; [1] \; (1 \; \text{mol} \; \%)} \\ &\text{n = 0, 1} & \xrightarrow{\text{NaCl}} & \text{Me}_{3\text{-n}}\text{SiH}_{\text{n+1}} \end{aligned}$$

entry	substrate	NaBAr ^F ₄ (equiv)	convn ^b (%)	$\begin{array}{c} \text{product} \\ (\text{yield}^b) \end{array}$	reaction time (h)
1	Me ₃ SiCl	1.1	77 ^c	Me ₃ SiH (51%)	195
2	Me ₂ SiCl ₂	2.0	100	$\begin{array}{c} \text{Me}_2\text{SiH}_2\\ (75\%) \end{array}$	24
3	Me_2SiCl_2	1.1	59	Me_2SiH_2 (37%)	20

^aGeneral conditions: 0.027 mmol of chlorosilane, 0.03 or 0.054 mmol of NaBAr^F₄, 0.26 μmol of 1, 0.36 mmol of NEt₃, 0.5 mL of PhF, 4 bar of H₂, room temperature. ^bConversions/yields were determined by ¹H NMR integration of all signals in the Me_xSi region around 0 ppm versus an internal standard (1,2,4,5-tetramethylbenzene). ^cThe conversion of [Me₃SiNEt₃][BAr^F₄] is given.

by 2,6-lutidine as the base did not give any hydrogenolysis product even after several days under otherwise identical conditions.

Catalytic attempts with other alkaline-metal salts of weakly coordinating anions (WCAs), such as NaOTf, KPF₆, NaBPh₄, NaSbF₆, or NaBF₄, only gave (sub)stoichiometric hydrosilane yields with respect to catalyst loading even at high substrate conversion (see the SI). To clarify the role of the WCAs, the catalytic reaction with NaBArF4 was monitored by NMR spectroscopy. The experiment revealed the presence of an intermediate with a ²⁹Si resonance of 47.4 ppm, i.e., characteristic for base-stabilized silyl cations. ¹⁸ The same species was obtained upon mixing Me₃SiCl with NaBAr^F₄ and NEt₃ in PhF in the absence of catalyst. Furthermore, NEt₃ coordination to silicon is evidenced by a cross peak of the amine methylene protons with the ²⁹Si resonance in the ¹H-²⁹Si HMBC NMR spectrum (Figure 1). These results suggest that in situ formed [Me₃SiNEt₃]⁺ is the actual substrate, which is sufficiently stabilized by the BArF₄ anion under catalytic conditions. 19

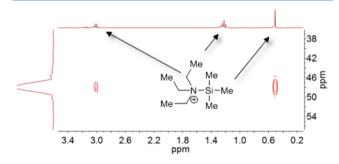
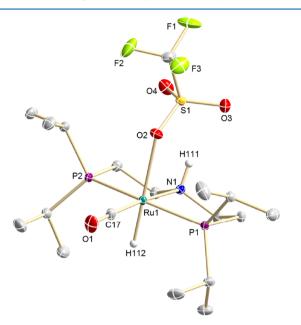



Figure 1. $^{1}H-^{29}Si$ HMBC NMR spectrum of the product from the reaction of Me₃SiCl with NaBAr $^{F}_{4}$ and NEt₃.

Alternative hydrogenolysis strategies were examined to avoid the stoichiometric use of expensive NaBAr $^{\rm F}_4$ as the chloride scavenger. Silyl triflates can be easily obtained from organochlorosilanes and HOTf with HCl as the only byproduct, possibly providing a better leaving group for catalysis. The reaction of 1 with Me₃SiOTf (1 equiv) in C₆D₆ selectively gives Me₃SiH and [RuH(OTf)CO(HPNP^{iP})] (3) by NMR spectroscopy. Complex 3 was independently prepared from 1

with HOTf and fully characterized including single-crystal X-ray diffraction (Figure 2). Importantly, Me₃SiOTf is hydro-

Figure 2. Molecular structure of **3** from single-crystal X-ray diffraction (ellipsoids set at 30% probability; hydrogen atoms, except H111 and H112, omitted for clarity). Selected bond lengths [Å] and angles [deg]: Ru1–C17 1.8320(16), Ru1–N1 2.1969(13), Ru1–O2 2.2957(11), Ru1–P1 2.3195(4), Ru1–P2 2.3276(5), Ru1–H112 1.52(2); C17–Ru1–N1 175.11(6), N1–Ru1–O2 90.82(4), P1–Ru1–P2 164.903(14), O2–Ru1–H112 178.3(8).

genated (1–4 bar of H_2 , room temperature) to trimethylsilane in benzene with high yield (>80%) using NEt₃ as the base (Table 2, entries 1–3). Full conversion is obtained overnight with 4 bar of H_2 and 1 mol % catalyst. Almost the same yield is achieved after 46 h with loadings as low as 0.1 mol % 1 (entry 2). A reduction of the H_2 pressure (1.2 bar) gives the same

Table 2. Hydrogenolysis of Silyl Triflates with Catalyst 1^a

M- COT	H ₂ (1-4 bar), NEt ₃ , C ₆ D ₆ , r.t., [1] (0.1 - 1 mol-%)	M- CIL
$Me_{3-n}SiOTf_{n+1}$ n = 0 1	- [HNEt ₃][OTf]	Me _{3-n} SiH _{n+1}

entry	substrate	base (equiv)	convn ^b (%)	product (yield b)	reaction time
1	Me ₃ SiOTf	NEt ₃ (1.1)	99	Me ₃ SiH (85%)	18 h
2 ^c	Me ₃ SiOTf	NEt ₃ (1.1)	92	Me ₃ SiH (82%)	46 h
3 ^d	Me ₃ SiOTf	NEt ₃ (1.0)	90	Me ₃ SiH (85%)	26 h
4 ^d	<i>t</i> BuMe ₂ SiOTf	NEt ₃ (1.1)	3	<1%	7 days
5	Me ₂ SiOTf ₂	NEt ₃ (2.2)	100	Me_2SiH_2 (82%)	1 h
6	Me ₂ SiOTf ₂	NEt ₃ (1.0)	99	Me ₂ SiHOTf (82%), Me ₂ SiH ₂ (4%)	1 h

"General conditions: 0.1 mmol of substrate, 1 μ mol of 1, 4 bar of H₂, 0.5 mL of C₆D₆, room temperature. ^bConversions/yields were determined by ¹H NMR integration of all signals in the Me_xSi region around 0 ppm versus an internal standard (1,2,4,5-tetramethylbenzene). ^c0.1 μ mol of 1 (0.1 mol %). ^d1.2 bar of H₂ was used.

yield with only slighty longer reaction times (entry 3). Hydrogenolysis of tBuMe₂SiOTf was not successful (entry 4) presumably because of steric shielding.

In comparison, double hydrogenolysis of the bistriflate substrate Me₂SiOTf₂ to Me₂SiH₂ is remarkably facile and far more rapid than that with the previously reported iridium catalyst (5 mol % [Ir], 7 days, 53% yield).¹⁰ Full conversion and 82% yield in dihydrosilane is obtained within only 1 h (1 mol % 1, entry 5). Furthermore, highly selective semi-hydrogenolysis is obtained within the same time (entry 6) using 1 equiv of base to give Me₂SiHOTf in 82% yield.

During the course of catalysis, 3 is the only ruthenium species observed by ¹H and ³¹P NMR spectroscopy. After some time, the conjugate acid [HNEt₃][OTf] forms a separate ionic liquid phase, which might be beneficial to driving the reaction (see below). Importantly, the substrate, base, and catalyst remain dissolved in the benzene layer.

Density functional theory calculations were performed for the PMe₂-truncated model system 1^{Me} with NMe₃ as the model base to obtain further insight into the hydrogenolysis mechanism (Scheme 3). Geometry optimizations were performed at the RI-PBE-D3/def2-SVP level of theory. Improved energies were obtained from subsequent SMD-PBE0-D3/def2-TZVP single-point calculations validated against explicitly correlated coupled-cluster energies. 21 The lowest-energy pathway commences with a barrierless endergonic adduct formation between 1^{Me} and Me₃SiOTf to yield intermediate I1^{Me}. Si-O-bond heterolysis proceeds via ts1^{Me} as the turnover-limiting transition state of the overall process. This leads to exergonic formation of I2Me, which is stabilized by hydrogen bonding of the OTf⁻ anion to the HPNP ligand. Subsequent displacement of Me₃SiH by the triflate anion exhibits a small activation barrier (10 kcal mol⁻¹ via ts2^{Me}). The resulting triflate complex 3^{Me} represents the thermodynamic resting state ($\Delta G^{\circ} = -10.4 \text{ kcal mol}^{-1}$), in line with the experimental observations (see above). Regeneration of 1^{Me} proceeds without significant barriers and involves H2 binding to I3^{Me}, followed by base-assisted heterolysis via ts4^{Me}. Overall, hydrogenolysis of Me₃SiOTf and regeneration of the catalyst is computed to be slightly endergonic. This result suggests that the reaction is partially driven by the [HNMe₃]OTf ionic liquid phase separation, which was approximated as an isolated contact ion pair in the computational approach. The effective activation barrier of 25 kcal mol⁻¹ is therefore estimated from the energy interval between the resting state 3^{Me} and the ratelimiting ts1^{Me}. This value is in agreement with a reaction that proceeds at room temperature.2

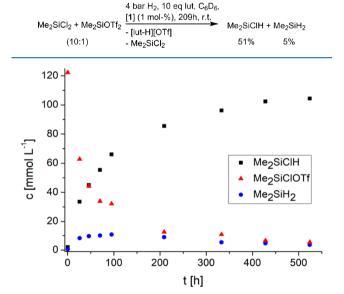
The resting state 3^{Me} is stabilized by N–H···OTf hydrogen bonding, as confirmed by the experimental structure of 3 (Figure 2). The N-methylated catalyst [RuH(OTf)CO-(MePNPi^{Pr})] [4; MePNPi^{Pr} = MeN(CH₂CH₂PiPr₂)₂] was therefore employed to probe for rate acceleration by resting-state destabilization. The hydrogenolysis rate of Me₃SiOTf with NEt₃ as the base is, in fact, slightly increased (91% conversion after 130 min) with respect to 3 (81% conversion after 135 min) under identical conditions.

The hydrogenolysis protocols outlined above provide key precursors for facile organohydrochlorosilane synthesis in high yield at mild conditions with low catalyst loadings. Chlorosilyl triflate semihydrogenolysis could be an alternative route for direct synthesis. Me₂SiClOTf can be obtained from Me₂SiCl₂ with 1 equiv of HOTf as the main product according to in situ NMR examination. However, isolation attempts by distillation

Scheme 3. Computed Pathway for Hydrogenolysis of Me₃SiOTf Using 1^{Me} [ΔG° in kcal mol⁻¹ (SMD-PBE0-D3/def2-TZVP//RI-PBE-D3/def2-SVP)]

lead to chloride/triflate dismutation (Scheme 4). At room temperature, equilibration is slow (ca. 4 days) but considerably

Scheme 4. Redistribution of Chlorosilanes and Silyl Triflates


2 Me₂SiClOTf
$$\frac{K_{eq} = 0.07}{Me_2SiCl_2 + Me_2SiOTf_2}$$

accelerated upon the addition of amines (e.g., NEt₃ or 2,6-lutidine) or 1 (ca. 1 h). ²³ Consequently, mixtures of Me₂SiCl₂ and Me₂SiOTf₂ might be directly used after equilibration under catalytic conditions. Rapid (<5 h) full conversion with respect to triflate is obtained with NEt₃ as the base (1 mol % 1). However, Me₂SiH₂ is the main hydrogenolysis product (36%). ²⁴ The desirable hydrochlorosilane Me₂SiClH is observed only in $5\%^{24}$ spectroscopic yield, which could be increased only to 12% using a Me₂SiCl₂/Me₂SiOTf₂ ratio of 5:1 to reduce the Me₂SiOTf₂ equilibrium concentration.

Screening of other ruthenium, iron, and iridium pincer catalysts (see the SI) gave slightly varying dihydrosilane yields. We therefore anticipate kinetic control of the selectivity. Computational evaluation of the Me₂SiCl₂/Me₂SiH₂ dismutation equilibrium, in fact, suggests much higher Me₂SiClH yields under thermodynamic control (Me₂SiCl₂ + Me₂SiH₂ \rightarrow 2Me₂SiClH; $\Delta G^{\circ} = -0.7$ kcal mol $^{-1}$). In fact, catalytic R₂SiH₂/R₂SiCl₂ dismutation to hydrochlorosilanes has been reported in the literature, and the experimentally derived equilibrium constant for R = Me ($\Delta G^{\circ}_{\rm exp} \approx -1.3$ kcal mol $^{-1}$) is in close agreement with our computational estimate. 25

As a strategy to maintain thermodynamic control, weaker bases than NEt₃ (p $K_{\rm a,MeCN}=18.8$)²⁶ were screened. With 2,6-lutidine (p $K_{\rm a,MeCN}=14.1$)²⁷ excess base is required for full conversion (97%). Furthermore, Me₂SiClH and 2,6-lutidinium triflate eliminate H₂ under argon, suggesting approximately thermoneutral hydrogenolysis with the conjugate base. High selectivities in Me₂SiClH versus Me₂SiH₂ (>10:1) are obtained for hydrogenolysis of a Me₂SiCl₂/Me₂SiOTf₂ (10:1)²⁸ mixture with 2,6-lutidine (10 equiv) as the base (Scheme 5). Following the reaction by ¹H NMR (Figure 3) reveals that the reaction is considerably slower than bistriflate hydrogenolysis. Further-

Scheme 5. Hydrogenolysis of a Mixture of Me₂SiCl₂ and Me₂SiOTf₂ with Catalyst 1²⁴

Figure 3. Time-dependent concentration profiles of the reaction depicted in Scheme 5.

more, the selectivity slightly changes over time in favor of Me₂SiClH. Therefore, high substrate conversion (>90%) and Me₂SiClH yields over $50\%^{24}$ require about 1 week under these conditions.

In summary, several catalytic hydrogenolysis routes to organohydro- and halohydrosilanes are reported. Mild reaction conditions (1–4 bar of H₂, room temperature) at low catalyst loadings (0.1–1 mol %) and reaction times could be obtained. Especially, bistriflate (semi)hydrogenolysis rapidly affords the organohydrosilane building blocks Me₂SiH₂ and Me₂SiHOTf in excellent yields. Experimental and computational evaluations support a catalytic cycle via outer-sphere hydride transfer and H₂ heterolysis. Chlorosilane hydrogenolysis is enabled by chloride precipitation with NaBAr^F₄, presumably via base-stabilized silyl cations as key intermediates. In combination,

the hydrogenolysis of chlorosilane/silyl triflate mixtures can be optimized to directly give the hydrochlorosilane Me₂SiClH in moderate yields.

EXPERIMENTAL DETAILS

General Information. All experiments were carried out under an argon atmosphere (Linde, 5.0) using Schlenk or glovebox techniques (O₂ and H₂O below 0.1 ppm). NMR tubes were silanized with Me₂SiCl₂, and all glassware was heated in a vacuum prior to use. C₆H₆, Et₂O (stabilized with 2,6-di-tert-butyl-4-methylphenol), and pentane (HPLC-grade; Roth, VWR, or Sigma-Aldrich) were degassed and dried by passing through columns packed with activated alumina. Fluorobenzene was degassed and dried over molecular sieves (4 Å). Deuterated solvents were purchased from Deutero GmbH and dried over CaH₂ (CD₂Cl₂) or Na/K (THF-d₈ and C₆D₆) and trap-to-trap transfer in vacuo. NEt3 was dried over KOH, distilled, and stored over molecular sieves (4 Å). 2,6-Lutidine was dried over AlCl₃, distilled, and stored over molecular sieves (4 Å). Me₃SiCl, Me₂SiCl₂, Me₂SiHCl, Me₃SiOTf, tBuMe₂SiOTf, and MeOTf were degassed and distilled prior to use. 1,2,4,5-Tetramethylbenzene and KOtBu were sublimed prior to use. NaBPh4, NaBF4, NaSbF6, KPF6, and NaOTf were dried in vacuo prior to use. HOTf (ABCR) was used without further purification. H2 (Linde, 6.0) was dried by passing through a spiral cooling system, which was immersed in $N_2(l)$. NaBAr $^F_{4,2}$ 2,6-lutidinium triflate, 30 1, 31 and 2^{32} were prepared following published procedures.

NMR spectra were recorded on Bruker Avance III HD 300, 400, or 500 (with broadband cryoprobe) spectrometers and calibrated to the residual proton resonance of the solvent (C_6D_6 , δ_H = 7.16 ppm, δ_C = 128.06 ppm; THF- d_8 , $\delta_H = 1.72$ ppm/3.58 ppm, $\delta_C = 25.31$ ppm/ 67.21 ppm; CD_2Cl_2 , δ_H = 5.32 ppm, δ_C = 53.84 ppm). ³¹P and ²⁹Si NMR chemical shifts are reported relative to phosphoric acid ($\delta_{\rm p}$ = 0.0 ppm) and SiMe₄ (δ_{Si} = 0.0 ppm), respectively. Signal multiplicities were abbreviated as s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), sept (septet), m (multiplet), and br (broad). Liquid injection field desorption ionization MS (LIFDI-MS) spectra were measured under inert conditions. Elemental analyses were obtained with an Elementar Vario EL 3 analyzer. IR spectra were recorded as powder samples on a Bruker ALPHA FT-IR spectrometer with a platinum ATR module.

Catalytic Protocols. Hydrogenolysis of Silyl Chlorides. NaBAr^F₄, 1, and the base were dissolved in PhF in a J. Young NMR tube, and the solution was frozen in N2(l). Chlorosilane was condensed onto the mixture in a static vacuum, and the headspace was refilled with H₂ (1.2 bar). The sample was thawed and immediately shaken. For reactions at 4 bar, the NMR tube was nearly completely immersed in $N_2(1)$ for 1 min during the addition of H_2 before the tube was closed. The products were identified by ¹H and ¹H-²⁹Si HMBC NMR spectroscopy and quantified by relative integration of the Me_xSi signals versus an internal standard (1,2,4,5-tetramethylbenzene).

Hydrogenolysis of Pure Silyl Triflates. Silyl triflate, 1, and the base were dissolved in C₆D₆ in a J. Young NMR tube. The mixture was frozen in N2(l), and the headspace was evacuated, refilled with H2 (1.2 bar), and sealed. For reactions at 4 bar, the NMR tube was nearly completely immersed in N₂(1) for 1 min during the addition of H₂ before the tube was closed. The products were identified by ¹H and ¹H-²⁹Si HMBC NMR spectroscopy and quantified by relative integration of the Me, Si signals versus an internal standard (1,2,4,5tetramethylbenzene).

Hydrogenolysis of Mixtures of Silyl Triflates and Chlorides. Me₂SiOTf₂, Me₂SiCl₂, and the catalyst were dissolved in C₆D₆ in a J. Young NMR tube and shaken for 1.5 h. The base was added, and the NMR tube was frozen in $N_2(1)$. The headspace was evacuated, refilled with H₂ (1.2 bar), and cooled for 1 min. After sealing, the tube was warmed to room temperature, giving a pressure of about 4 bar. The products were identified by 1H and 1H-29Si HMBC NMR spectroscopy and quantified by relative integration of the Me_xSi signals versus an internal standard (1,2,4,5-tetramethylbenzene).

Synthetic Procedures. Synthesis of Me₂SiOTf₂. Me₂SiCl₂ (6.0 mL, 0.05 mol, 1.0 equiv) was stirred at 0 °C and HOTf (12.5 mL, 0.14 mol, 2.8 equiv) added via syringe. The mixture was heated to 60 °C for 2 days with occasional removal of the HCl atmosphere by a stream of argon. Excess acid was neutralized by the careful addition of NEt₃ (8 mL, 0.07 mol, 1.4 equiv) at 0 °C. The removal of volatiles in vacuo and distillation (0.3 mbar, 37 °C) gave Me₂SiOTf₂ as a colorless oil (9 mL, 0.04 mol, 79%) in 97% purity according to ¹H and ¹⁹F NMR. ¹H NMR (300.13 MHz, C_6D_6 , 300 K): δ -0.01 (s, CH₃). ¹⁹F NMR (282.37 MHz, C₆D₆, 298 K): δ –76.66 (s, CF₃). ²⁹Si NMR (59.63 MHz, C_6D_6 , 298 K): $\delta - 14.6$ (determined by ${}^1H - {}^{29}Si$ HMBC).

Synthesis of $[RuH(OTf)CO(HPNP^{iPr})]$ (3). $[Ru(H)_2CO(HPNP^{iPr})]$ (1; 100 mg, 0.23 mmol, 1.0 equiv) was dissolved in Et₂O (6 mL) in a J. Young flask, and HOTf (20 μ L, 0.23 mmol, 1.0 equiv) was added. The solution was evaporated to 5 mL in vacuo and the precipitated product decanted off. After washing with pentane (3 × 3 mL) and drying in vacuo, crude (99.5% purity) 3 (80 mg, 0.14 mmol, 60%) was obtained as a white solid. After lyophilization, a suspension in Et₂O (0.5 mL) was stirred overnight, decanted off, and dried in vacuo to give 3 as a white solid (75 mg, 0.13 mmol, 56%). Crystals suitable for X-ray crystallography were grown by cooling a saturated Et₂O solution to -40 °C. $^{1}H\{^{31}P\}$ NMR (500.25 MHz, C_6D_6 , 298 K): δ $4.52 \text{ (t (br), }^{3}J_{HH} = 11.3 \text{ Hz, 1H, N}H), 2.68 \text{ (hept, }^{3}J_{HH} = 7.3 \text{ Hz, 2H,}$ CH^{syn}), 2.44 (m, 2H, NCH_2), 1.88 (m, 2H, PCH_2), 1.78 (hept, $^3J_{\text{HH}} =$ 6.9 Hz, 2H, CH), 1.55 (m, 4H, superposition of PCH₂ and NCH₂), 1.52 (d, ${}^{3}J_{HH}$ = 7.3 Hz, 6H, CH₃), 1.03 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 6H, CH₃^{anti}), 1.00 (d, ${}^{3}J_{HH}$ = 7.3 Hz, 6H, CH₃), 0.73 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 6H, CH₃), -20.9 (s, 1H, Ru-H (${}^{2}J_{HP}$ = 18.0 Hz by ${}^{1}H$ NMR)). 13 C{ 1 H} NMR (125.80 MHz, C_6D_6 , 298 K): δ 205.5 (t, $^{2}J_{CP}$ = 11.5 Hz, CO), 120.2 (obtained by 19 F $^{-13}$ C HSQC), 54.0 (vt, N = $|^{1}J_{CP}$ + ${}^{3}J_{CP}| = 8.8 \text{ Hz}, \text{ NCH}_{2}), 29.6 \text{ (vt, N} = |{}^{2}J_{CP} + {}^{3}J_{CP}| = 18.5 \text{ Hz}, \text{ PCH}_{2}),$ 28.1 (vt, N = $|^{1}J_{CP} + {}^{3}J_{CP}|$ = 21.6 Hz, CH), 23.9 (vt, N = $|^{1}J_{CP} + {}^{3}J_{CP}|$ = 26.1 Hz, CH^{anti}), 20.7 (vt, N = $|^2J_{CP} + ^4J_{CP}|$ = 6.5 Hz, CH₃), 20.1 (vt, $N = |^2 J_{CP} + ^4 J_{CP}| = 6.5 \text{ Hz}, CH_3), 18.7 \text{ (vt, br, N} = |^2 J_{CP} + ^4 J_{CP}| = 1.9 \text{ Hz}, CH_3), 16.9 \text{ (vt, N} = |^2 J_{CP} + ^4 J_{CP}| = 3.5 \text{ Hz}, CH_3). Assignments were confirmed by 2D NMR. }^{31}P\{^1H\} \text{ NMR (202.52 MHz, C}_6D_6),$ 298 K): δ 73.8 (s). ¹⁹F NMR (470.67 MHz, C₆D₆, 298 K): δ –77.6 (s). LIFDI-MS: m/z 585.0 (100%; [M]⁺), 436.1 (80%; [M – OTf]⁺). IR: ν (cm⁻¹): 3248 (N–H), 2934, 2871, 2035 (Ru–H), 1920 (C \equiv O), 1879, 1468, 1278, 1231, 1221, 1214, 1188, 1164, 1025, 829, 636, 622. Anal. Calcd for C₁₈H₃₈F₃NO₄P₂RuS: C, 36.98; H, 6.55; N, 2.40. Found: C, 37.13; H, 6.42; N, 2.34.

Synthesis of [RuH(OTf)CO(MePNP^{iPr})] (4). 2 (35.3 mg, 74.3 μ mol, 1.0 equiv) and KOtBu (10.1 mg, 90 µmol, 1.2 equiv) were suspended in Et₂O (2 mL) and stirred for 3 h at room temperature. The mixture was filtered through a fritted funnel and the resulting yellow solution dried in vacuo. After extraction with pentane (4 × 4 mL total), MeOTf (8.4 μ L, 77 μ mol, 1.0 equiv) was added. The precipitated product was filtered off, washed with pentane (3 × 1.5 mL), and extracted with benzene (3 × 0.5 mL). Evaporation of the solvent in vacuo gave 4 as a white powder (33 mg, 74%). Crystals suitable for Xray crystallography were grown from a saturated solution of Et₂O at -40 °C. ${}^{1}H\{{}^{31}P\}$ NMR (500.25 MHz, C_6D_6 , 298 K): δ 2.69 (hept, $^{3}J_{HH} = 7.2 \text{ Hz}, 2H, CH^{\text{syn}}), 2.06 \text{ (s, 3H, NCH}_{3}), 1.91-1.82 \text{ (m, 4H, }$ NCHⁱ superposition), 1.79 (hept, ${}^{3}J_{HH} = 6.9 \text{ Hz}$, 2H, CH^{anti}), 1.60 (d, $^{3}J_{HH} = 7.2 \text{ Hz}, 6H, CH_{3}), 1.59-1.51 (m, 2H, PCH₂^{syn}), 1.43-1.38$ (m, 2H, PC H_2), 1.06 (d, ${}^3J_{HH}$ = 6.9 Hz, 6H, C H_3^{anti}), 0.97 (d, ${}^3J_{HH}$ = 7.2 Hz, 6H, CH₃), 0.73 (d, ${}^{3}J_{HH}$ = 6.9 Hz, 6H, CH₃^{anti}), -20.56 (s, 1H, Ru–H (${}^{2}J_{HP}$ = 19.0 Hz by ${}^{1}H$ NMR)). ${}^{13}C\{{}^{1}H\}$ NMR (125.80 MHz, C_6D_6 , 298 K): δ 205.8 (t, $^2J_{CP}$ = 12.1 Hz, CO), 121.0 (q, $^1J_{CF}$ = 320.1 Hz, CF₃), 65.1 (vt, N = $|^2J_{CP}|^2$ + $^3J_{CP}|^2$ = 9.0 Hz, NCH₂), 45.6 (s, NCH₃), 29.9 (vt, N = $|^1J_{CP}|^2$ + $^3J_{CP}|^2$ = 20.5 Hz, CH^{syn}), 28.1 (vt, N = $|^1J_{CP}|^2$ + $^3J_{CP}|^2$ = 18.0 Hz, PCH₂), 24.3 (vt, N = $|^1J_{CP}|^2$ + $^3J_{CP}|^2$ = 26.6 Hz, C), 20.9 (superposition of two vt), N = $|^2J_{CP}|^2$ + $^4J_{CP}|^2$ = 6.0 Hz, CH₃), 19.2 (s, CH₃), 17.1 (vt, N = $|^2J_{CP} + ^4J_{CP}|$ = 3.5 Hz, CH₃). Assignments were confirmed by 2D NMR. $^{31}P\{^1H\}$ NMR (202.52 MHz, C₆D₆, 298 K): δ 68.8 (s). ^{19}F NMR (470.67 MHz, C₆D₆, 298 K): δ -77.5 (s). LIFDI-MS: m/z 599.1 (4%; [M]⁺), 450.2 (100%; [M – OTf]⁺).

IR: ν (cm⁻¹): 2960, 2932, 2873, 2056 (Ru–H), 1917 (C \equiv O), 1460, 1295, 1235, 1220, 1155, 1032, 882, 821, 695, 633, 518. Anal. Calcd for C₁₉H₄₀F₃NO₄P₂RuS: C, 38.12; H, 6.74; N, 2.34. Found: C, 38.05; H, 6.72; N, 2.33.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.inorg-chem.8b02336.

Detailed experimental procedures, characterization of the products, and computational details (PDF)

Accession Codes

CCDC 1855506–1855507 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request/cif, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Authors

*E-mail: max.holthausen@chemie.uni-frankfurt.de. *E-mail: sven.schneider@chemie.uni-goettingen.de.

ORCID (

Max C. Holthausen: 0000-0001-7283-8329 Sven Schneider: 0000-0002-8432-7830

Author Contributions

A.G. performed all synthetic and spectroscopic work while supervised by S.S., and J.I.S., U.S.K., and M.D. carried out the quantum-chemical studies while supervised by M.C.H. Crystallographic characterization was done by C.W. The manuscript was written by A.G., J.I.S., M.C.H., and S.S. All authors commented on the manuscript and approved the final version.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the European Research Council (Grant 646747) and the Deutsche Forschungsgemeinschaft (CRC 1073, Project C07) for funding and the graduate student program CaSuS (to A.G.). Quantum-chemical calculations were performed at the Center for Scientific Computing (CSC), Frankfurt, Germany, on the FUCHS and LOEWE-CSC high-performance compute clusters. Dr. C. Volkmann is acknowledged for recording parts of the crystallographic data.

DEDICATION

This paper is dedicated to Prof. Dr. Dietmar Stalke on the occasion of his 60th birthday.

■ REFERENCES

(1) (a) Park, S.; Chang, S. Catalytic Dearomatization of N-Heteroarenes with Silicon and Boron Compounds. *Angew. Chem., Int. Ed.* **2017**, *56*, 7720. (b) Lipke, M. C.; Liberman-Martin, A. L.; Tilley, T. D. Electrophilic Activation of Silicon—Hydrogen Bonds in Catalytic Hydrosilations. *Angew. Chem., Int. Ed.* **2017**, *56*, 2260. (c) Obligacion, J. V.; Chirik, P. J. Electrophilic Activation of Silicon—Hydrogen Bonds in Catalytic Hydrosilations. *Nat. Rev. Chem.* **2018**, *2*, 15. (d) Chay, R. S.; Rocha, B. G. M.; Pombeiro, A. J. L.; Kukushkin, V. Y.; Luzyanin, K. V. Platinum Complexes with Chelating Acyclic

Aminocarbene Ligands Work as Catalysts for Hydrosilylation of Alkynes. ACS Omega 2018, 3, 863.

- (2) (a) Cheng, C.; Hartwig, J. F. Catalytic Silylation of Unactivated C–H Bonds. *Chem. Rev.* **2015**, *115*, 8946. (b) Parasram, M.; Gevorgyan, V. Silicon-Tethered Strategies for C–H Functionalization Reactions. *Acc. Chem. Res.* **2017**, *50*, 2038.
- (3) Toutov, A. A.; Salata, M.; Fedorov, A.; Yang, Y.-F.; Liang, Y.; Cariou, R.; Betz, K. N.; Couzijn, E. P. A.; Shabaker, J. W.; Houk, K. N.; Grubbs, R. H. A potassium tert-butoxide and hydrosilane system for ultra-deep desulfurization of fuels. *Nat. Energy* **2017**, *2*, 17008.
- (4) (a) Gauvin, F.; Harrod, J. F.; Woo, H.-G. In Advances in Organometallic Chemistry; West, R., Hill, A., Eds.; Academic Press, 1998; Vol. 42, p 363. (b) Waterman, R. Mechanisms of metalcatalyzed dehydrocoupling reactions. Chem. Soc. Rev. 2013, 42, 5629. (5) (a) Richards, R. D. C.; Hollingshurst, J.; Semlyen, J. A. Cyclic Polysiloxanes: 5. Preparation and Characterization of poly-(hydrogenmethylsiloxane). Polymer 1993, 34, 4965. (b) Li, J.; Ren, P.; Zhan, C.; Qin, J. Synthesis and structural characterization of novel multifunctional polysiloxanes having photo-refractive properties. Polym. Int. 1999, 48, 491. (c) Cancouët, P.; Daudet, E.; Hélary, G.; Moreau, M.; Sauvet, G. Functional polysiloxanes. I. Microstructure of poly(hydrogenmethylsiloxane-co-dimethylsiloxane)s obtained by cationic copolymerization. J. Polym. Sci., Part A: Polym. Chem. 2000, 38, 826. (d) Beckmann, J.; Dakternieks, D.; Duthie, A.; Foitzik, R. C. The use of Pearlman's catalyst for the oxidation of Si-H bonds. Synthesis, structures and acid-catalysed condensation of novel $\alpha_i \omega$ -oligosiloxanediols $HOSiMe_2O(SiPh_2O)_nSiMe_2OH$ (n = 1-4). Silicon Chem. 2003, 2, 27.
- (6) Kalchauer, W.; Pachaly, B. In *Handbook of Heterogeneous Catalysis*; Ertl, G., Knözinger, H., Schüth, F., Weitkamp, J., Eds.; Wiley-VCH, 2008; p 2635.
- (7) (a) Kunai, A.; Ohshita, J. Selective synthesis of halosilanes from hydrosilanes and utilization for organic synthesis. *J. Organomet. Chem.* **2003**, *686*, 3. (b) Wang, W.; Tan, Y.; Xie, Z.; Zhang, Z. An efficient method to synthesize chlorosilanes from hydrosilanes. *J. Organomet. Chem.* **2014**, *769*, 29.
- (8) (a) Chulsky, K.; Dobrovetsky, R. B(C₆F₅)₃-Catalyzed Selective Chlorination of Hydrosilanes. *Angew. Chem., Int. Ed.* **2017**, *56*, 4744. (b) Sturm, A. G.; Schweizer, J. I.; Meyer, L.; Santowski, T.; Auner, N.; Holthausen, M. C. Lewis-base catalyzed selective chlorination of monosilanes. *Chem. Eur. J.* **2018**, DOI: 10.1002/chem.201803921.
- (9) Previously, Hidai and co-workers proposed silyl triflate hydrogenolysis as one step in catalytic trimethylsilyl enol ether hydrogenolysis: Nishibayashi, Y.; Takei, I.; Hidai, M.; Takei, I.; Nishibayashi, Y.; Ishii, Y.; Mizobe, Y.; Uemura, S.; Hidai, M. Novel Catalytic Hydrogenolysis of Trimethylsilyl Enol Ethers by the Use of an Acidic Ruthenium Dihydrogen Complex. *Angew. Chem., Int. Ed.* 1999, 38, 3047. Takei, I.; Nishibayashi, Y.; Ishii, Y.; Mizobe, Y.; Uemura, S.; Hidai, M. Novel catalytic hydrogenolysis of silyl enol ethers by the use of acidic ruthenium dihydrogen complexes. *J. Organomet. Chem.* 2003, 679, 32.
- (10) (a) Tsushima, D.; Igarashi, M.; Sato, K.; Shimada, S. Ir-Catalyzed Hydrogenolysis Reaction of Silyl Triflates and Halides with H₂. Chem. Lett. **2017**, 46, 1532. (b) Beppu, T.; Sakamoto, K.; Nakajima, Y.; Matsumoto, K.; Sato, K.; Shimada, S. Hydrosilane Synthesis via Catalytic Hydrogenolysis of Halosilanes Using a Metal-Ligand Bifunctional Iridium Catalyst. J. Organomet. Chem. **2018**, 869, 75.
- (11) (a) Käß, M.; Friedrich, A.; Drees, M.; Schneider, S. Ruthenium Complexes with Cooperative PNP Ligands: Bifunctional Catalysts for the Dehydrogenation of Ammonia—Borane. Angew. Chem., Int. Ed. 2009, 48, 905. (b) Friedrich, A.; Drees, M.; Schneider, S. Ruthenium catalyzed Dimethylamineborane Dehydrogenation: Stepwise Metal Centered Dehydrocyclization. Chem. Eur. J. 2009, 15, 10339. (c) Staubitz, A.; Sloan, M. E.; Robertson, A. P. M.; Friedrich, A.; Schneider, S.; Gates, P. J.; Manners, I.; Schmedt auf der Günne, J. Catalytic Dehydrocoupling/Dehydrogenation of N-Methylamine-Borane and Ammonia-Borane: Synthesis and Characterization of High Molecular Weight Polyaminoboranes. J. Am. Chem. Soc. 2010,

132, 13332. (d) Marziale, A. N.; Friedrich, A.; Klopsch, I.; Drees, M.; Celinski, V. R.; Schmedt auf der Günne, J.; Schneider, S. The Mechanism of Borane-Amine Dehydrocoupling with Bifunctional Ruthenium Catalysts. J. Am. Chem. Soc. 2013, 135, 13342. (e) Bielinski, E. A.; Lagaditis, P. O.; Zhang, Y.; Mercado, B. Q.; Würtele, C.; Bernskoetter, W. H.; Hazari, N.; Schneider, S. Lewis Acid-Assisted Formic Acid Dehydrogenation Using a Pincer-Supported Iron Catalyst. J. Am. Chem. Soc. 2014, 136, 10234. (f) Chakraborty, S.; Lagaditis, P. O.; Förster, M.; Bielinski, E. A.; Hazari, N.; Holthausen, M. C.; Jones, W. D.; Schneider, S. Well-Defined Iron Catalysts for the Acceptorless Reversible Dehydrogenation-Hydrogenation of Alcohols and Ketones. ACS Catal. 2014, 4, 3994. (g) Glüer, A.; Förster, M.; Celinski, V. R.; Schmedt auf der Günne, J.; Holthausen, M. C.; Schneider, S. Highly Active Iron Catalyst for Ammonia Borane Dehydrocoupling at Room Temperature. ACS Catal. 2015, 5, 7214. (h) Glüer, A.; Schneider, S. Iron Catalyzed Hydrogenation and Electrochemical Reduction of CO2: The Role of Functional Ligands. J. Organomet. Chem. 2018, 861, 159. (12) Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press, 2005.

- (13) The hydridicity ($\Delta G^{\circ}_{H^{-}}$) is defined as the free energy of heterolytic M–H bond dissociation: $L_{n}M-H \rightarrow L_{n}M^{+} + H^{-}$. Better hydride donors are therefore defined by lower hydridicities.
- (14) Wiedner, E. S.; Chambers, M. B.; Pitman, C. L.; Bullock, R. M.; Miller, A. J. M.; Appel, A. M. Thermodynamic Hydricity of Transition Metal Hydrides. *Chem. Rev.* **2016**, *116*, 8655.
- (15) (a) Liu, Q.; Wu, L.; Gülak, S.; Rockstroh, N.; Jackstell, R.; Beller, M. Towards a Sustainable production of formate salts: Combined catalytic methanol dehydrogenation and bicarbonate hydrogenation. *Angew. Chem., Int. Ed.* **2014**, *53*, 7085. (b) Kothandaraman, J.; Czaun, M.; Goeppert, A.; Haiges, R.; Jones, J. P.; May, R. B.; Prakash, G. K. S.; Olah, G. A. Amine-free reversible hydrogen storage in formate salts catalyzed by ruthenium pincer complex without pH control or solvent change. *ChemSusChem* **2015**, *8*, 1442. (c) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Surya Prakash, G. K. CO₂ capture by amines in aqueous media and its subsequent conversion to formate with reusable ruthenium and iron catalysts. *Green Chem.* **2016**, *18*, 5831.
- (16) Alberico, E.; Lennox, A. J. J.; Vogt, L. K.; Jiao, H.; Baumann, W.; Drexler, H.-J.; Nielsen, M.; Spannenberg, A.; Checinski, M. P.; Junge, H.; Beller, M. Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru–PNP Pincer Complexes. J. Am. Chem. Soc. 2016, 138, 14890.
- (17) Besides hydrogenation, hydrolysis products mainly account for the residual conversion.
- (18) Lambert, J. B.; Zhang, S.; Ciro, S. M. Silyl Cations in the Solid and in Solution. *Organometallics* **1994**, *13*, 2430.
- (19) (a) Emde, H.; Simchen, G. Silylation of nitriles with trimethylsilyl trifluoromethanesulfonate (trimethylsilyl triflate). *Synthesis* 1977, 9, 636. (b) Todorova, Z.; Koseva, N.; Troev, K. Sylilation of poly(alkylene H-phosphonate)s Rapid and efficient method for obtaining poly(alkylene trisilylmethylphosphite)s. *Eur. Polym. J.* 2015, 62, 87.
- (20) (a) Corey, E. J.; Cho, H.; Rücker, C.; Hua, D. H. Studies with trialkylsilyltriflates: new syntheses and applications. *Tetrahedron Lett.* **1981**, 22, 3455. (b) Matyjaszewski, K.; Chen, Y. L. Synthesis and reactions of silanes containing two triflate groups. *J. Organomet. Chem.* **1988**, 340, 7.
- (21) See the SI for full computational details.
- (22) The effective activation barrier increases slightly for the full $HPNP^{iPr_2}$ ligands ($\Delta G^{\ddagger} = 27.6$ kcal mol^{-1} ; see the SI for details).
- (23) The ¹⁹F NMR signals for Me₂SiClOTf and Me₂SiOTf₂ collapse to a single resonance upon the addition of a base, evidencing rapid triflate exchange. ¹H and ¹H-²⁹Si HMBC NMR spectroscopy allow for the unequivocal assignment of all equilibrium species.
- (24) Because only Si-OTf bonds are hydrogenated under these conditions, yields and conversions are given with respect to triflate versus 1,2,4,5-tetramethylbenzene as an internal standard.

(25) (a) Stock, A.; Somieski, C. Siliciumwasserstoffe VI. I): Chlorierung und Methylierung des Monosilanes. Ber. Dtsch. Chem. Ges. B 1919, 52, 695. (b) Whitmore, F. C.; Pietrusza, E. W.; Sommer, L. H. Hydrogen-Halogen Exchange Reactions of Triethylsilane. A New Rearrangement of Neopentyl Chloride. J. Am. Chem. Soc. 1947, 69, 2108. (c) Weyenberg, D. R.; Bey, A. E.; Ellison, P. J. The tetraalkylammoniumhalide-catalyzed redistribution of hydrogen and chlorine on silicon. J. Organomet. Chem. 1965, 3, 489. (d) Weyenberg, D. R.; Bey, A.; Stewart, H.; Atwell, W. The redistribution of chlorine, fluorine, or methoxy with hydrogen on silicon. J. Organomet. Chem. 1966, 6, 583.

- (26) Kaljurand, I.; Kütt, A.; Sooväli, L.; Rodima, T.; Mäemets, V.; Leito, I.; Koppel, I. A. Extension of the Self-Consistent Spectrophotometric Basicity Scale in Acetonitrile to a Full Span of 28 pK_a Units: Unification of Different Basicity Scales. *J. Org. Chem.* 2005, 70, 1019. (27) Lõkov, M.; Tshepelevitsh, S.; Heering, A.; Plieger, P. G.; Vianello, R.; Leito, I. On the Basicity of Conjugated Nitrogen Heterocycles in Different Media. *Eur. J. Org. Chem.* 2017, 2017, 4475. (28) Under these conditions, Me₂SiClOTf is the only silyl triflate species detectable by ¹H NMR spectroscopy.
- (29) Yakelis, N. A.; Bergman, R. G. Safe Preparation and Purification of Sodium Tetrakis[(3,5-trifluoromethyl)phenyl]borate (NaBAr^F₂₄): Reliable and Sensitive Analysis of Water in Solutions of Fluorinated Tetraarylborates. *Organometallics* **2005**, *24*, 3579.
- (30) Curley, J. J.; Bergman, R. G.; Tilley, T. D. Preparation and physical properties of early-late heterobimetallic compounds featuring Ir–M bonds (M = Ti, Zr, Hf). *Dalton Trans.* **2012**, *41*, 192.
- (31) Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.; Gusev, D. G. Osmium and Ruthenium Catalysts for Dehydrogenation of Alcohols. *Organometallics* **2011**, *30*, 3479.
- (32) Han, Z.; Rong, L.; Wu, J.; Zhang, L.; Wang, Z.; Ding, K. Catalytic Hydrogenation of Cyclic Carbonates: A Practical Approach from CO₂ and Epoxides to Methanol and Diols. *Angew. Chem., Int. Ed.* **2012**, *51*, 13041.