The Acid Catalyzed Decomposition of Diazo Compounds. I. Synthesis of Oxazoles in the BF₃ Catalyzed Reaction of Diazo Carbonyl Compounds with Nitriles

Toshikazu IBATA* and Ryohei SATO

Institute of Chemistry, College of General Education, Osaka University, Toyonaka, Osaka 560 (Received April 23, 1979)

The BF₃-catalyzed decomposition of diazo carbonyl compounds in nitriles have afforded the corresponding oxazoles in high yields. This method is applicable to diazo carbonyl compounds such as m- and p-substituted diazoacetophenones, ethyl diazoacetate, 1,2-diphenyl-2-diazoethanone, dibenzoyldiazomethane, and dimethyl diazomalonate. Bis(diazo ketone)s such as terminal bis(diazoacetylated) alkanes (III₁₋₄: n=6, 8, 10, 12) and m-and p-bis(diazoacetyl)benzenes also gave the corresponding bisoxazoles in a similar reaction. The reaction has been interpreted in terms of a stepwise mechanism via betaine intermediates initiated by the attack of BF₃ on the carbonyl oxygen of diazo carbonyl compounds. The emission spectra of oxazoles are described.

The synthesis of oxazoles has been the subject of numerous studies in connection with the pharmaceutical properties of oxazole derivatives.¹⁾ Most of the methods reported however are not satisfactory as a general method for the synthesis of oxazoles because of the low yield of oxazoles and the difficulties in obtaining the starting materials.

$$\begin{array}{c} R^2 \\ R^1-C-C=N_2 + N \equiv C-R^3 \xrightarrow{-N_2} \begin{array}{c} R^2 \\ N \\ R^1 \nearrow O \end{array} \begin{array}{c} N \\ R^3 \end{array}$$

$$(II)$$

The 1,3-dipolar cycloaddition of carbonylcarbene to the carbon-nitrogen triple bond of the cyano group was first proposed by Huisgen et al. to give oxazoles (II) having arbitrary substituents on C-2, C-4, and C-5 positions.²⁾ In accordance with this working hypothesis, the thermal,^{2,3)} phtochemical,⁴⁾ and transition metal catalyzed^{2,3)} decomposition of diazo carbonyl compounds in nitriles were studied. The yields of oxazoles were not high even though the use of copper^{2,3a)} and π -allylic palladium⁵⁾ catalysts which were employed to prevent the Wolff rearrangement of the diazo carbonyl compound. Nozaki et al. improved the yield (up to 66%) using WCl₆ as a catalyst.⁶⁾ The by-product formation of α -chlorinated ketones was not inevitable in this reaction. Recently Doyle et al. reported the AlCl₃catalyzed reaction of a-unsubstituted diazo ketones and nitriles giving oxazoles in high yields.7) In a previous paper in this series the BF₃-catalyzed decomposition of diazo carbonyl compounds in nitriles to give oxazoles in high yields was reported.8) In this paper this method has been employed to the synthesis of several substituted oxazoles.

Results and Discussion

The BF₃-catalyzed decomposition of α -diazoacetophenone in an excess of acetonitrile proceeded with vigorous evolution of nitrogen and gave 2-methyl-5-phenyloxazole (II₁) in 94% yield. This method is applicable to other nitriles. Propionitrile, isobutyronitrile, phenylacetonitrile, benzonitrile, p-methoxybenzonitrile, cinnamonitrile, and chloroacetonitrile gave oxazoles in high yields. (Phenylthio)acetonitrile afforded

N-phenacyl- α -(phenylthio)acetamide (12%) together with 2-phenylthiomethyl-5-phenyloxazole (II9). Under these circumstances neither the expected cyanomethyl-phenylsulfonium phenacylide nor the (cyanomethyl)-phenacylphenyl sulfonium salt was obtained despite a detailed inspection of the reaction mixture by column chromatography. This indicates the higher reactivity of the cyano group towards the diazonium type intermediate (VII) than that of the sulfur atom. Methyl cyanoacetate yielded oxazole (II10) in moderate yields with accompanying intractable oily products. The electron attracting substituent on the nitrile lowered the yield of oxazole, e.g., p-nitrobenzonitrile gave the oxazole (II7) in lower yield than in the cases of benzonitrile and p-methoxybenzonitrile.

The m- and p-substituted α -diazoacetophenones, 12cyano-1-diazo-2-dodecan-2-one, ethyl diazoacetate, and 1,2-diphenyl-2-diazoethanone also gave 5-aryl-2-methyloxazoles (II_{12-23}), 5-(p-methoxyphenyl)-2-ethyloxazole (II_{24}) , 5- $(\omega$ -cyanodecyl)-2-methyloxazole (II_{25}) , 5-ethoxy-2-methyloxazole (II₂₆), and 3,5-diphenyl-2-methyloxazole (II₂₇) respectively. Both the electron-attracting and electron-releasing substituents on a benzene ring of diazoacetophenones do not effect the yield of the oxazoles and the rate of the reaction. A benzoyl group or a methoxycarbonyl group attached to a diazomethyl carbon atom however suppressed the reaction and consequently elevated temperatures were necessary for completion of the reaction. Some dimethyl diazomalonate was recovered even after prolonged heating of the reaction mixture (80 °C, 50 h) and caused a low yield of oxazole (II_{29}) .

The NMR data shows that the chemical shift of the oxazole ring proton (C_4 –H) is effected by the substituent on C_5 rather than that on C_2 (Table 1). Electronattracting groups on the benzene ring attached to C_5 deshielded the C_4 –H and an alkyl group on C_5 shielded the C_4 –H.

Bis(diazo ketone)s such as α,ω -bis(diazoacetyl)alkanes (III₁₋₄: n=6, 8, 10, 12) and m- and p-bis(diazoacetyl)-benzenes (V_{1,2}) gave bisoxazolyl compounds (IV₁₋₄) and (VI_{1,2}: R=CH₃; VI₃: R=Ph) in the reaction with acetonitrile or benzonitrile.

In the experimental work conducted here an excess of BF₃ was used although a catalytic amount of BF₃ is

Table 1. Yields, melting points, and NMR data of oxazoles (II)

Compd	R ¹	R ²	R ³	Reaction	Yield	M /961	$NMR(\delta/ppm,~CDCl_3)$			
Compo	1 K ²	K-	K	temp/°C	%	- Mp/°C	$\widetilde{\mathbf{C_4-H}}$	C_2 – C $oldsymbol{H}_3$	Others ^{a)}	
II_1	$\mathrm{C_6H_5}$	Н	CH_3	5	94	5859	7.15	2.48		
II_2	$\mathrm{C_6H_5}$	H	CH_3CH_2	5	99	oil	7.13		$1.33(t), 2.80(q) C_2H_5$	
II_3	$\mathrm{C_6H_5}$	H	$(CH_3)_2CH$	5	82	oil	7.15		1.35(d), 3.12(sep) <i>i</i> -Pr	
II_4	$\mathrm{C_6H_5}$	H	$C_6H_5CH_2$	5	77	91—92	7.20		$4.10~\mathrm{CH_2}$	
II_5	$\mathrm{C_{6}H_{5}}$	H	C_6H_5	5	92	7475	b)			
II_6	$\mathbf{C_6^c}\mathbf{H_5}$	H	$p\text{-CH}_3\text{OC}_6\text{H}_4$	₁ e) 5	82	104105	b)		3.85 OCH_3	
II_7	$\mathrm{C_6H_5}$	\mathbf{H}	p-NO ₂ C ₆ H ₄ ^{c)}		17	215—216	$\mathbf{b})$			
II_8	$\mathrm{C_6H_5}$	H	$C_6H_5CH=CH$		76	103—104	7.05		d)	
II_9	$\mathrm{C_6H_5}$	H	$C_6H_5SCH_2$	10	44	48—49	b)		$4.20~\mathrm{SCH_2}$	
II_{10}	$\mathrm{C_6H_5}$	H	CH3OOCCH		46	oil	7.24		3.90 CH ₂ , 3.73 OCH ₃	
II_{11}	$\mathrm{C_6H_5}$	H	$ClCH_2$	5	86	74—75	7.30		$4.65 \text{ CH}_2\text{Cl}$	
II_{12}	p-CH ₃ OC ₆ H ₄	H	$\mathrm{CH_3}$	5	95	107—108	7.08	2.50	3.83 OCH ₃	
	$p ext{-} ext{CH}_3 ext{C}_6 ext{H}_4$	H	CH_3	5	96	5657	7.08	2.45	$2.30~\mathrm{CH_3}$	
	$p ext{-}\mathrm{ClC_6H_4}$	H	CH_3	5	83	86—87	7.17	2.47		
	$p ext{-}\mathrm{BrC_6H_4}$	H	CH_3	5	88	98—100	7.18	2.52		
II_{16}	$p ext{-} ext{CNC}_6 ext{H}_4$	H	CH_3	5	76	125—126	7.33	2.53		
II_{17}	$p ext{-} ext{NO}_2 ext{C}_6 ext{H}_4$	H	CH_3	5	84	167—168	7.45	2.42		
II_{18}	m-CH ₃ OC ₆ H	4 H	CH_3	5	94	oil	7.12	2.40	$3.77 \mathrm{OCH_3}$	
II_{19}	m -CH $_3$ C $_6$ H $_4$	H	CH_3	5	93	oil	7.13	2.45	$2.32~\mathrm{CH_3}$	
$\mathbf{II_{20}}$	$m\text{-}\mathrm{ClC_6H_4}$	H	CH_3	5	91	oil	7.20	2.48		
II_{21}	$m ext{-}\mathrm{BrC}_6\mathrm{H}_4$	H	CH_3	5	83	oil	7.20	2.43		
$\mathbf{II_{22}}$	$m\text{-}\mathrm{CNC_6H_4}$	H	CH_3	5	95	9596	7.28	2.55		
II_{23}	$m\text{-NO}_2\mathrm{C}_6\mathrm{H}_4$	H	CH_3	5	89	100-101	7.35	2.50		
II_{24}	$p\text{-CH}_3\text{OC}_6\text{H}_4$	H	C_2H_5	5	87	61—62	7.12		$3.83\mathrm{OCH_3}$	
									$1.37(t)$, $2.84(q)$ C_2H_5	
II_{25}	$NC(CH_2)_{10}$	H	CH_3	5	83	oil	6.58	2.38	d)	
II_{26}	C_2H_5O	Н	CH_3	20	62	oil	5.95	2.02	$1.40(t), 4.08(q) C_2H_5$	
II_{27}	C_6H_5	C_6H_5	CH_3	5	68	oil		2.55		
II_{28}	C_6H_5	C_6H_5CO		80	79	oil		2.50		
II ₂₉	CH ₃	CH ₃ OOC	CH_3	80	32	oil		2.35	3.85, 4.13 OCH ₃	

a) The signals of aromatic protons are omitted, and the signal patterns are singlet unless otherwise indicated. b) The signal of C_4 -H was not distinguishable from those of the aromatic protons. c) Five molar amount of nitrile was reacted in benzene solution. d) The signals of vinyl and polymethylene protons are omitted.

TABLE 2. YIELDS, MELTING POINTS, AND NMR DATA OF BISOXAZOLYL COMPOUNDS

Oxazole	Diazocarbonyl	R-CN	Reaction	Yield	Mp/°C	NMR (δ/ppm, CDCl	
Oxazoic	Compound	K-GIV	temp/°C	%	Mp/ C	$\widetilde{\mathrm{C_4-H}}$	C_2 - C $oldsymbol{H}_3$
IV_1	N_2 CHCO(CH $_2$) $_6$ COCHN $_2$	CH ₃ CN	5	95	6061	6.58	2.40
IV_2	$N_2CHCO(CH_2)_8COCHN_2$	$\mathrm{CH_{3}CN}$	5	96	70—71	6.55	2.38
IV_3	$N_2CHCO(CH_2)_{10}COCHN_2$	$\mathrm{CH_{3}CN}$	5	95	7071	6.57	2.37
IV_4	$N_2CHCO(CH_2)_{12}COCHN_2$	$\mathrm{CH_{3}CN}$	5	95	73—75	6.55	2.40
IV_1	m - N_2 CHCOC $_6$ H $_4$ COCH N_2	CH_3CN	5	98	103-104	7.27	2.53
VI_2^-	p-N ₂ CHCOC ₆ H ₄ COCHN ₂	$\mathrm{CH_{3}CN}$	60	78	233—234	7.28	2.55
VI_3	p-N ₂ CHCOC ₆ H ₄ COCHN ₂	C_6H_5CN	60	80	236237	b)	

a) Signals of aromatic and polymethylene protons are omitted. b) Signal of C_4 -H was not distinguishable from those of the aromatic protons.

sufficient for completion of the reaction. The reaction is reasonably explained by a stepwise mechanism *via* betaine intermediates, unlike the 1,3-dipolar cycloaddition of carbonylcarbene towards the carbon-nitrogen triple bond of nitrile proposed for the thermal and transition metal catalyzed reactions.^{2,3)} The reaction is initiated by the attack of BF₃ on the carbonyl-oxygen of the diazo carbonyl compound affording a diazonium type intermediate (VII).⁹⁾ The intermediacy of VII

was supported by the facts that α -hydroxy or α -ethoxy ketones (IX, X) were obtained when the reaction was conducted in the presence of water or diethyl ether. ^{10,11)} The electrophilic attack of the intermediate (VII) on the nitrogen atom of the nitrile may form a betaine intermediate (VIII) with the elimination of nitrogen. The electron-attracting substituent on the nitrile may retard this step and subsequently lower the yield of oxazole (Table 1 run 7). The reaction conducted in

Scheme 1.

$$\begin{array}{c} \text{N}_2\text{CHCO-}(\text{CH}_2)_n\text{-COCHN}_2 + 2\text{CH}_3\text{CN} \\ (\text{III: } n = 6, 8, 10, 12) \\ & \xrightarrow{\text{BF}_3} & \text{N} & \text{N} & \text{N} \\ & & & \text{CH}_3 & \text{O} & (\text{CH}_2)_n & \text{O} & \text{CH}_3 \\ & & & & & \text{(IV)} \\ \\ \text{N}_2\text{CHCO-} & & & & & \text{COCHN}_2 \\ & & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & &$$

acetonitrile containing a trace amount of H_2O gave N-(aroylmethyl)acetamide (XII: R^1 =Ar, R^2 =H, R^3 = CH_3) together with oxazole and α -hydroxyacetophenone (IX). The formation of XII supports the existence of an intermediate (VIII) as shown in Scheme 1. The attack of VIII on a water molecule competes with the intramolecular cyclization of VIII which gives the oxazole.

Several oxazole derivatives have been found to exhibit fluorescence properties and have been used as liquid scintillators. The bisoxazolyl compound, 1,4-bis(5-phenyl-2-oxazolyl)benzene (VI₃), is an isomer of the well known scintillator POPOP, 1,4-bis(2-phenyl-5-oxazolyl)benzene, and shows strong emission bands at 405 nm. The UV and fluorescence spectral data of oxazoles are listed in Table 3.

Experimental

All melting points were taken with a Yanagimoto Melting Point Apparatus and are uncorrected. The IR spectra were measured on a Hitachi Infrared Spectrometer model 215. The $^1\text{H-NMR}$ spectra were recorded in CDCl₃ solution at 60 MHz on a Varian Spectrometer model EM-360 using TMS as an internal standard. UV spectra were measured on a Hitachi Spectrometer model 323 in ethanol solution. Emission spectra were recorded on Hitachi Emission Spectrometer model MPE-2A in ethanol solution $(1-5\times10^{-6}\,\text{mol}/1)$.

Materials. Diazoacetophenones, 12) ethyl diazoacetate, 13) 1,2-diphenyl-2-diazoethanone, 14) dibenzoyldiazomethane, 15) and dimethyl diazomalonate 16) were synthesized by the

Table 3. UV and emission data of oxazoles

Oxazole	Ţ	Emission	
Oxazoic	$\widetilde{\lambda_{\mathrm{max}}}/\mathrm{n}$	m $\log \varepsilon$	λ/nm
N——N	$\left\{\begin{array}{c} 341\\ 353 \end{array}\right.$	4.67 4.74	405
C_6H_5 O C_6H_5	346	4.68	417
C_6H_5 O C_6H_5	$\begin{cases} 360 \\ 369 \end{cases}$	$4.74 \\ 4.52$	
N—N	(298	4.61	348
$CH_3 \stackrel{\wedge}{\searrow} O \stackrel{\wedge}{\swarrow} CH_3$	$ \begin{cases} 310 \\ 325 \end{cases} $	$\frac{4.70}{4.56}$	
C_6H_5 O $CH=CH-C_6H_5$	$\left\{\begin{array}{c} 261\\ 338 \end{array}\right.$	$\frac{3.75}{4.22}$	405
	(305	4.41	360
$\mathbf{C_6H_5}$ \mathbf{O} $\mathbf{C_6H_5}$	316	4.38	315
$\mathrm{C_6H_5} \overset{ extstyle N}{\overset{ extstyle N}{\overset{ extstyle C}{\overset{ extstyle N}{\overset{ extstyle C}{\overset{ extstyle N}{\overset{ extstyle C}{\overset{ extstyle C}{ extsty$	$\left\{\begin{array}{c} 265 \\ 272 \end{array}\right.$	$\begin{array}{c} 4.29 \\ 4.29 \end{array}$	313
$p\text{-BrC}_{e}H_{4} \stackrel{\text{N}}{\circlearrowleft} CH_{3}$	$\left\{\begin{array}{c} 273\\279\end{array}\right.$	$4.33 \\ 4.35$	320
1 0 1	(279	4.36	326
p-ClC ₆ H ₄ OCH ₃	{ 280	4.37	
$m\text{-CNC}_6 ext{H}_4$ O CH_3	274	4.29	342
p-CH ₃ OC ₆ H ₄ OCH ₃	275	4.32	332
$p ext{-CH}_3 ext{OC}_6 ext{H}_4 ext{O} extstyle ext{C}_2 ext{H}_5$	275	4.36	332
$p ext{-NO}_2 ext{C}_6 ext{H}_4$ O $\overset{\square}{ ext{CH}}_3$	$\left\{\begin{array}{c}233\\327\end{array}\right.$	$\begin{array}{c} 4.02 \\ 4.26 \end{array}$	a)
$m ext{-NO}_2 ext{C}_6 ext{H}_4$ O $C ext{CH}_3$	262	4.42	a)

a) Emission spectrum was not measured.

methods described in the literature. Liquid nitriles were purified by distillation of commercial reagents after refluxing over P_2O_5 . p-Methoxybenzonitrile and p-nitrobenzonitrile were purified by recrystallization.

General Procedure of the BF_3 Catalyzed Reaction of Diazo Carbonyl Compounds in Acetonitrile. A solution of the diazo carbonyl compound (3 mmol) in acetonitrile (3 ml) was added dropwise to acetonitrile (10 ml) containing BF_3 —etherate (1.0 ml) under magnetic stirring at temperatures described in the Tables. After the vigorous evolution of N_2 ceased the reac-

TABLE 4. ANALYTICA DATA OF OXAZOLES

Commid	Molecular		Found (%)		Calcd (%)		
Compd	formula	$\overline{\mathbf{C}}$	Н	N	$\overline{\mathbf{C}}$	Н	N
II ₄	$C_{16}H_{13}ON$	81.58	5.65	5.98	81.68	5.57	5.95
II_6	$\mathrm{C_{16}H_{13}O_{2}N}$	76.43	5.22	5.53	76.47	5.22	5.57
II_7	$C_{15}H_{10}O_3N_2$	67.87	3.86	10.38	67.66	3.79	10.52
II_8	$C_{17}H_{13}ON$	82.52	5.27	5.76	82.57	5.30	5.66
Π_{9}	$C_{16}H_{13}ONS$	72.04	4.89	5.20	71.88	4.90	5.24
II_{11}	$\mathrm{C_{10}H_8ONCl}$	62.06	4.25	7.25	62.03	4.16	7.23
II_{12}	$\mathrm{C_{11}H_{11}O_{2}N}$	69.85	5.90	7.48	69.82	5.86	7.40
II_{13}	$C_{11}H_{11}ON$	76.27	6.34	8.09	76.27	6.40	8.09
II_{14}	$C_{10}H_8ONCl$	62.08	4.16	7.30	62.03	4.17	7.23
II_{15}	$\mathrm{C_{10}H_8ONBr}$	50.60	3.42	5.88	50.44	3.39	5.88
$\mathbf{II_{16}}$	$\mathrm{C_{11}H_8ON_2}$	71.93	4.40	15.31	71.72	4.38	15.21
II_{17}	$\mathrm{C_{10}H_{8}O_{3}N_{2}}$	58.54	3.91	13.75	58.82	3.95	13.72
II_{22}	$\mathrm{C_{11}H_8ON_2}$	71.70	4.44	15.17	71.72	4.38	15.21
II_{23}	$\mathrm{C_{10}H_8O_3N_2}$	59.06	4.05	13.72	58.82	3.95	13.72
II_{24}	$C_{12}H_{13}O_2N$	70.78	6.46	6.97	70.91	6.45	6.89
II_{29}	$C_7H_9O_4N$	49.38	5.45	8.25	49.12	5.30	8.18
IV_1	$C_{14}H_{20}O_2N_2$	67.59	8.00	11.12	67.71	8.12	11.28
IV_2	$C_{16}H_{24}O_2N_2$	69.32	8.74	9.87	69.53	8.75	10.14
IV_3	$\mathrm{C_{18}H_{28}O_{2}N_{2}}$	70.73	9.10	9.11	71.01	9.27	9.20
IV_4	$C_{20}H_{32}O_{2}N_{2}$	71.97	9.58	8.30	72.25	9.70	8.43
VI_1	$C_{14}H_{12}O_2N_2$	70.06	4.97	11.68	69.99	5.03	11.66
VI_2	$C_{14}H_{12}O_2N_2$	70.01	4.95	11.66	69.99	5.03	11.66
VI_3	$\mathrm{C_{24}H_{16}O_2N_2}$	79.10	4.43	7.72	79.10	4.43	7.96

tion mixture was poured into $\rm H_2O$ (50 ml) and ether (50 ml). The ether layer was extracted twice with 3 M HCl and the combined aqueous solution made basic with NaHCO₃. The separated oxazole was extracted with ether and purified by recrystallization.

General Procedure of the BF_3 Catalyzed Reaction of Diazo Carbonyl Compounds in Liquid Nitriles. The Diazo carbonyl compound (3 mmol) was treated in the similar manner described above in an excess of liquid nitrile. The oxazoles $(R^3 \neq CH_3)$ could not be extracted with 3 M HCl and therefore the reaction mixture was treated with H_2O and extracted twice with ether $(2 \times 20 \text{ ml})$ after the solution was made basic with NaHCO₃. The ether extract was dried over Na₂SO₄, the ether evaporated, and column chromatographed over silica gel.

Reaction with Solid Nitriles. A five molar equivalent of the nitrile was reacted with α -diazoacetophenone in dried benzene (20 ml). The reaction mixture was separated by column chromatography after the usual work up.

Reaction of m-Chloro-α-diazoacetophenone in Water Containing Acetonitrile. m-Chloro-α-diazoacetophenone (1 mmol) was decomposed in water containing acetonitrile¹⁷) (20 ml) at 5 °C. Column chromatography of the reaction mixture gave three products: 5-(m-chlorophenyl)-2-methyloxazole (II₂₀, 55%), α-hydroxy-m-chloroacetophenone (12%), and N-(m-chlorophenacyl) acetamide (XII: R¹=m-ClC₆H₄, R²=H, R³=CH₃): colorless crystals; mp 118—119 °C; yield 0.057 g, 27%; IR (KBr) 1690 (C=O), 1650, 3280 cm⁻¹ (amide); NMR (CDCl₃) δ 2.41 (s, 3H, CH₃), 4.97 (d, 2H, CH₂), 6.8 (broad s, 1H, NH), 7.4—8.2 ppm (m, 4H, Ar). Found: C, 56.66; H, 4.80; N, 6.63%. Calcd for C₁₀H₁₀O₂NCl: C, 56.75; H, 4.76; N, 6.62%.

We are indebted to Professor S. Kato and Dr. A. Yoshimura of this Institute for their valuable suggestions and discussion concerning the measurement of emission spectra of the oxazoles.

References

- 1) a) R. H. Wiley, *Chem. Rev.*, **37**, 401 (1945); b) I. J. Turchi and M. J. S. Dewar, *Chem. Rev.*, **75**, 389 (1975).
- 2) R. Huisgen, H. Koenig, G. Binsch, and H. J. Sturm, *Angew. Chem.*, **73**, 368 (1961).
- 3) a) R. Huisgen, G. Binsch, and L. Ghosez, Chem. Ber., 97, 2628 (1964); b) R. Huisgen, H. J. Sturm, and G. Binsch, Chem. Ber., 97, 2864 (1964); c) J. M. Birchall, R. N. Haszeldine, J. Nikokavouras, and E. S. Wilks, J. Chem. Soc., C, 1971, 562; d) R. R. Schmidt, Angew. Chem., 85, 235 (1973).
- 4) a) F. Weygand, Angew. Chem., **73**, 70 (1961); b) N. T. Buu and J. T. Edward, Can. J. Chem., **50**, 3730 (1972).
 - 5) R. K. Armstrong, J. Org. Chem., 31, 618 (1966).
- 6) K. Kitatani, T. Hiyama, and H. Nozaki, Tetrahedron Lett., 1974, 1531.
- 7) M. P. Doyle, M. Oppenhuizen, R. C. Elliott, and M. R. Boelkins, *Tetrahedron Lett.*, **1978**, 2247.
 - 8) T. Ibata and R. Sato, Chem. Lett., 1978, 1129.
- 9) W. T. Flowers, G. Holt, and M. A. Hope, J. Chem. Soc. Perkin Trans. 1, 1974, 1116.
- 10) H. E. Sheffer and J. A. Moore, J. Org. Chem., 28, 130 (1963).
- 11) T. Ibata, K. Miyauchi, and S. Nakata, Bull. Chem. Soc. Jpn., **52**, 3467 (1979).
- 12) M. S. Newman and P. F. Beal, III, J. Am. Chem. Soc., **71**, 1506 (1949).
- 13) E. B. Womack and A. B. Nelson, *Org. Synth.*, Coll. Vol. III, 392 (1955).
- 14) C. D. Nenitzescu and E. Solomonica, Org. Synth., Coll. Vol. II, 496 (1943).
- 15) M. Regitz, Angew. Chem. Int. Ed. Engl., 6, 733 (1967).
- 16) B. W. Peace, F. C. Aarman, and D. S. Wulfman, Synthesis, 1971, 658.
- 17) Acetonitrile used in this experiment was purified by a single distillation without the use of P₂O₅ as a drying reagent.