
Vol.16 No.2 J. Comput. Sci. &: Technol. Mar. 2001

Efficient Mining of Associat ion Rules by Reduc ing
the Number of Passes over the Database

LI Qingzhong (~ , ~ ,) , WANG Haiyang (i] ~) , YAN Zhongmin (f--]~b~)

and MA Shaohan (~)

Institute of Computing Technology, The Chinese Academy of Sciences, Beijing 100080, P.R. China
Department of Computer Science, Shandong University, Yinan 250100, P.R. China

E-mail: lqz@cs.sdu.edu.cn

Received March 26, 1999; revised February 17, 2000.

Abs t rac t This paper introduces a new algorithm of mining association rules.
The algorithm RP counts the itemsets with different sizes in the same pass of scan-
ning over the database by dividing the database into m partitions. The total number
of passes over the database is only (k + 2m - 2)/m, where k is the longest size in the
itemsets. It is much less than k.

Keywords data mining, association rule, itemset, large itemset

1 I n t r o d u c t i o n

Mining for association rules is a form of data mining introduced in [1]. The prototypical
example is based on a list of purchases in a store. An association rule for this list is a
rule such as "85% of all customers who buy products A and B also buy products C and
D". Discovering such customer buying patterns is useful for customer segmentation, cross-
marketing, catalog design and product placement.

We give a problem description which follows [2]. The support of an itemset (a set of
items) in a transaction sequence is the fraction of all transactions containing the itemset.
An itemset is called large if its support is greater than or equal to a user-specified support
threshold, otherwise it is called small. An association rule is an expression X =:~ Y where
X and Y are disjoint itemsets. The support of this rule is the support of X =~ Y. The
confidence of this rule is the fraction of all transactions containing X, that also contain Y,
i.e., the support of X =~ Y divided by the support of X. In the example above, "85~"is
the confidence of the rule {A, B} =:~ {C, D}. For an association rule to hold, it must have a
support > a user-specified confidence threshold.

For an itemset X, its support is defined similarly as the percentage of transactions in DB
which contains X. We also use X. sup to denote its support count, which is the number of
transactions in DB containing X. Given a minimum support threshold minsup, an itemset
X is large if its support is no less than minsup. Moreover, for presentation purpose, we will
call an itemset of size-k k-itemset.

Existing algorithms proceed in two steps to compute association rules:
1) Find all large itemsets.
2) Construct rules which exceed the confidence threshold from the large itemsets in

Step 1). For example, if {A, B, C} is a large itemset, we might check the confidence of
{A, B} ==~ {C}, {A, C} ==~ {B} and {B, C} =:~ {A}.

We will address the first step, since the second step can be easily handled. Existing large
itemset computation algorithms have an offline or batch behavior: given the user-specified
support threshold, the transaction sequence is scanned and rescanned, often several times,
and eventually all large itemsets are produced. However, the user does not know, in general,
an appropriate support threshold in advance. An inappropriate choice yields, after a long

No.2 Efficient Mining of Association Rules 183

wait, either too many or too few large itemsets which often results in useless or misleading
association rules.

We introduce an algorithm RP to count the itemsets with different sizes in the same
pass of scanning over the database by dividing the database into m partitions. The total
number of passes over the database is only (k + 2 m - 2)/m, where k is the longest size in the
itemsets. It is much less than k. As the result it lowers the cost of I / O operations greatly.
Although the algorithm adopted the idea of tidlist in the algorithm Partition [5], the idea is
only used within the first pass and it does not cause overload of memory.

2 R e l a t e d W o r k

Most large itemset computat ion algorithms are related to the Apriori algorithm due
to Agrawal and Srikant [31. See [4] for a survey of large itemset computat ion algorithms.
Apriori exploits the observation that all subsets of a large itemset are large themselves.
It is a mnlti-pass algorithm, where in the k-th pass all large itemsets of cardinality k are
computed. Hence Apriori needs up to c + 1 scans of the database where c is the maximal
cardinality of a large itemset. In [5] a 2-pass algorithm called Part i t ion is introduced. The
general idea is to parti t ion the database into blocks such that each block fits into main-
memory. In the first pass, each block is loaded into memory and all large itemsets, with
respect to that block, are computed using Apriori. Merging all resulted sets of large itemsets
then yields a superset of all large itemsets. In the second pass, the actual support of each
set in the superset is computed. After removing all small itemsets, Part i t ion produces the
set of all large itemsets.

In contrast to Apriori, the DIC (Dynamic I temset Counting) algorithm counts itemsets of
different cardinalities simultaneously[2]. The transaction sequence is part i t ioned into blocks.
The itemsets are stored in a lattice which is initialized by all singleton sets. While a block
is scanned, the count (number of occurrences) of each itemset in the lattice is adjusted.
After a block is processed, an itemset is added to the lattice if and only if all its subsets are
potentially large, i.e., large with respect to the part of the transaction sequence for which its
count was maintained. At the end of the sequence, the algorithm rewinds to the beginning.
It terminates when the count of each itemset in the lattice is determined. Thus after a finite
number of scans, the lattice contains a superset of all large itemsets and their counts. For
suitable block sizes, DIC requires fewer scans than Apriori.

Random sampling algorithms have been suggested in [6, 7]. The general idea is to take
a random sample of suitable size 4 from the transaction sequence and compute the large
itemsets using Apriori or Part i t ion with respect to that sample.. For each itemset, an interval
is computed such that the support lies within the interval with probabili ty greater than or
equal to some threshold.

Several algorithms based on Apriori were proposed to update a previously computed set
of large i temsets after insertion or deletion of transactions is-l~ These algorithms require
a rescan of the full transaction sequence whenever an itemset becomes large due to an
insertion.

In [11] an Online Analytical Processing (OLAP)-style algorithm is proposed to compute
association rules. The general idea is to precompute all large itemsets relative to some sup-
port threshold using a traditional algorithm. The association rules are then generated online
relative to an interactively specified confidence threshold and support threshold greater than
or equal to s.

1) The support threshold s must be specified before the precomputat ion of the large
itemsets;

2) The large itemset computat ion remains off-line; and
3) Only rules with support greater than or equal to s can be generated.

184 LI Qingzhong, WANG Haiyang et al. Vo1.16

3 A l g o r i t h m R P

RP is an algorithm of reducing passes over database. The algorithm uses the function
Apriori-gen of algorithm Apriori. RP introduces a function gen_2Jtemsets by modifying the
function genlargeAtemsets of algorithm Partition. The algorithm introduces a new idea,
that is, counting the itemsets with different lengths in the same scanning. In this way the
passes of scanning can be reduced enormously.

3.1 The Notat ions of Algorithm R P

DB is a partitioned database. A partition P of the database refers to any subset of the
transactions contained in the database DB. Any two different partitions are non-overlapping,
i.e., P ~ n P J = ~, i ~ j. So D B = { p 1 , p 2 . . . , p '~} . Let the size of D B (t h e number of
transactions in DB) be lP (IDBI = D). The size of p i is D i (IPil = Di).

We use C~ to denote the k-itemset generated in p i , that is, the k-candidates in P~. The
itemsets are generated differently according to the size k:

1) We use C~ to denote the locally large 1-itemset. C~ is generated in the first pass
of scanning P~. Every itemset of C~ has a set of "tidlist ' . The "tidlist" records all the
identifiers of transactions which contain the itemset.

2) ~Ve use C~ to denote the locally large 2-itemset. It is generated by gen_2Atemset(C~)
at the end of the first scanning of p i . Refer to Subsection 3.2 about this function.

3) All the C~'s (k > 2) are generated by Apriori_gen(C~_l). C~ is k-candidates in
partit ion P~.

Let A be a counting cache which stores all the items appearing in p i and the correspond-
ing item I 's tidlist (I.tidlist) which records the transaction identifier including item I in P~.
As a counting cache A is only used for generating C~ in the first scanning of the database.
The tidlist in A is cleared to empty before scanning p i . When scanning p i the transaction
identifiers including item I are put into corresponding I.tidlist. The item I satisfying count
(I.tidlist) > minsup �9 IP~I is C~ when the scanning of P~ finishes.

Mk has two attributes: one stores itemset, the other stores the counter of the itemset.
-~[1 stores all the items appearing in the database (item is added to M1 successively when

going through from p1 to pro). / .count records the counting of [in the scanning of database
for each item I. Before scanning p i , / . c o u n t is the sum of numbers of the occurrences of I
in p 1 , . . . , p i -1 . After scanning of p i , / . c o u n t is changed and it becomes the sum of original
value and count (I.tidlist) in A.

/~Ik (k ~ 2) stores U~=IC ~. It is used for counting when scanning database. When
each C~ is generated, it is stored in Mk using union operation. This method can avoid

duplicate counting of the common elements in C~ and C~ (i r j) . When C~ is counted
through one pass over the database, it is pruned away from/~Ik using difference operation.
This guarantees that the candidate itemsets are counted in one pass over the database, and
duplicate counting is avoided.

Lk stores globally large k-itemsets.

3.2 Generat ing Fewer 2-Candidates

The selection of 2-candidates can influence the efficiency of finding large itemsets. Each
C~. is generated from the previous C~_ 1. If C~ is derived from C~ directly, the number
of candidates in the result is very huge and the RP algorithm counts J~Ik+l before Lk
is generated. Then there exists a chain reflection to influence the numbers of items in
candidates generated afterwards. So to generate fewer 2-candidates is very important in our
algorithm.

No.2 Efficient Mining of Association Rules 185

We use the notation rid from the algorithm Part i t ion [5]. Tid stands for transaction
identifier in transaction database. TidList is a list of tid. We assign the tid of the transactions
containing locally large 1-itemset to tidlist. In this way we can compute the counts of all
the combinations of the items in C{. Then we get the locally large 2-itemsets in Pi. So the
2-candidates are reduced. The function is gen_2_itemset(). The input parameter is C{, and
the output is C~. The program is as follows:

1) C2~ =Apnon_gen(Cl" - i);
2) for all c C C~
3) {c.tidlist=c[1].tidlist N c[2].tidlist; / /getting transactions containing both of the two

items in c;
4) if Ic.tidlistl/D ~ < minsup t hen
5) remove c from C~;
6) else c.count=lc.tidlistl}
7) r e t u r n C~ (including c.count).

From the above program, e.count, i.e., the occurrences of every itemset c in C~ in p i ,
is computed using tidlist. C~ is computed by calling the function at the end of scanning
P~. If c.count of the itemset is not computed, we must compute it again in the next pass
over Pi . Using tidlist can reduce the operation on M2, and one only needs to store tidlist
when generating C~ in the scanning of p i . After the function ends, the memory occupied is
released.

Ezample 1. We divide the database into four partitions. DB = { p 1 p 2 p 3 , p4}. Sup-
pose that there are no 4-itemsets. ~Ve can get the following 1-itemsets by scanning the
database. Vii = {A ,B ,C ,D} , C2i = {B ,C ,D ,E} , C a = {A ,C ,E ,F} , C 4 = {B,D,F,G} .
We can get the following 2-itemsets using the function gen_2itemset 0. C~ = {AB, BC, AC,
BD, CD}, C~ = {BC, CD, BD, CE}, C 3 = {AC, CE, EF, CF}, C~ = {BD, DF, GB, DG,
FG}. The RP only generates twelve 2-itemsets, while Apriori will generate eighteen 2-
itemsets. This comparison indicates that the gen_2Atemset function is effective.

3.3 D e s c r i p t i o n o f t h e A l g o r i t h m R P

The following is the description of the algorithm RP.
The first pass over the database (i is from 1 up to ra, rn is the number of partitions).
1) Count non-empty 3/Ik (1 < k < i) and generate C~ and then modify M1 when scanning

P~. After the scanning of P~, C~ is generated by gen_2Atemset(C~) and then is added to
/1/72 by union operation. (7i-k+l is generated by �9 �9 ~-k+l Apnon_gen(C k) and is added to/1/Ik+l V k + I
(i < _< i).

2) When i increases from m to rn + 1, the first pass ends. Tile i temset which satisfies
the condition in M1 is L1. At the moment all the C~'s (1 < k < m) are generated. C~ has
passed the whole da tabase . .~dd the generated large 2-itemset to L2- Remove C21 from ~/I2.

The second pass over the database (i is from I up to m).
1) Scan P~ and count non-empty Mk (k > 1). C~ +i has been counted completely. Add

large 2-itemsets evaluated to L2. Remove C~ +1 from M2. For i > 2, C~ -1, Ci4-2,..., Cr 1
have been counted completely and add large 3-, . . . , i + 1-itemsets evaluated to L 3 , . . . , Li+l

, , . . C 1 f rom/Via, . . . /~/i+t respectively. respectively and then remove C~ -1 C# -2 ", i+1

2) ~ i -k+m+~ (k = i + 1 , k - i + 2 , . k = i+m) is generated by Apriori_gen(C~ -k+m+I)
~k+l ""

before scanning pi and it is added t o / V l k + 1 .

3) Assign the parti t ion number m to j to prepare for the rest passes over the database.
The rest passes over the database.
1) j increases by 1 before the scanning of each partition. Scan each parti t ion and count

non-empty ~u (k > 1). For n and t satisfying n + t - 2 = j and n + t - 2 > m and r~ > 2,

186 LI Qingzhong, WANG Haiyang et al. Vo1.16

each C t has been counted completely. Add large n-itemsets evaluated to L,~. Remove C t
from M,~.

j - - k + m + l 2) (TJ-k+'~+~ (k = j + l , k = j + 2 , , k = j + m) is generated by Apriori_gen (C k)
~ k + l " ' "

before scanning each part i t ion and it is added to Mk+t.
Every pass repeats the operations above until Lk = 9 and Mk-1 = 9. Then the algorithm

stops.
Example 2. Suppose that the database in Example 1 has 200 transactions. Every parti-

tion has 50 transactions. The minsup s = 10~0. First we show C~, C~ and their support in
Tables 1 and 2.

T a b l e 1
c f .

X X.sup 1 X X.sup 2 X X.sup a X X.sup 4
A 7 B 6 A 7 B 6
B 8 C 7 C 6 D 7
C 8 D 7 E 8 F 8
D 9 E 8 F 7 G 10

T a b l e 2

X X.sup 1 X X.sup 2 X X.sup a X X . s u p 4

AB 7 BC 6 AC 6 BD 6
BC 8 CD 7 CE 6 DF 7
AC 5 BD 6 EF 7 BG 6
BD 7 CE 7 CF 6 DG 7
CD 7 FG 8

The algorithm runs as follows:
In the first pass over the database, C~ is generated by scanning p1. Then C~ is generated

by function gen_2Atemset(C}). Scan p s to generate C~. In the mean time /1/I2 is counted.
Then C~ is generated. From C2 ~ we can generate Ca ~ = {ABC, B C D } . Scan p3 to generate
C1 a. In the mean t ime ////2 and l!/Ia are counted. Then C a is generated. From C~ we
can generate Ca 2 = { B C D } . Scan p4 to generate C~ 4. In the mean t ime Ms and Ma
and M4 are counted. Then C24 is generated by gen_2dtemset(Ct4). By Apriori_gen(Ca),
C a = { C E F } is generated. L1 is {A, B, C, D, F, G}. And the globally large 2-itemset in C21
is {AB, BC, CD, B D } . Do M2 = M2 - C~.

In the second pass, scan p1 and count ~Is and ~[3. The global large i temset in C 2 is
9 (because {BC, CO, B D } has appeared in C~, and C E here is not a large itemset). Let
1142 = ~/I2 - C~. Generate C~ = { D F G , B D G } . The large itemset we get in C~ is { C F }
by scanning p2. The large itemset we get in C32 is { B C D } . Then let Ms = l~ls - C 3 and
Ma = Ma - C~. By scanning p3 we know that the large itemset in C24 is (DF, DG, leG}
and the large i temset in C32 is 9 (because { B C D } is already in n3). Then let M2 = M2 - C~
and there is no large itemset in C a.

In the third pass, after scan p1, the large itemset we get in C~ is { D F G } . Here L4 = 9,
Ma = 9 and the algorithm stops.

From the above we can see that the database was scanned 2.25 passes.
The following will prove that the algorithm RP can reduce the number of passes of

database scanning efficiently.
Proof. First we consider C~ (n > 2 and n is a constant). When p i is scanned in the

first pass over the database, C~ is generated, and then another n - 2 parti t ions are scanned
before C~, is generated from C~_ 1. From now on C~ is counted until another m partit ions
are scanned (m is the number of partitions). From the beginning of the algorithm until
then there are (rn + n + i - 2) partitions to be scanned. To generate L,~, count all the
candidates in C~ (i = 1, 2 , . . . , m) by scanning the database. C:~, the n-candidates in P ' ,
must go through a complete pass over the database, then L,~ is computed. So (2m + n - 2)

No.2 Efficient Mining of Association Rules 187

partitions must be scanned. From the above we know if the largest size of an itemset is k,
the algorithm has to scan the database (k + 2rn - 2) /m passes. Obviously (k + 2m - 2)/m
is much less than k. So the algorithm RP reduces the number of passes efficiently.

3.4 T h e P r u n i n g o f C a n d i d a t e s

For the candidate C~ which has gone through the whole database, 2YI,~ = 2~[~ - C~ must
be calculated. We can use some already proved theorem to prune the candidates which are
not counted completely to optimize the algorithm.

From [12] we know any large itemset must be a locally large itemset at least in one of
the partitions, we Call such an itemset heavy itemset, if an itemset is large, all the subsets
of it are also large. If an itemset is heavy in part i t ion P~, all the subsets of it are also heavy
in part i t ion p i .

L1 is generated at the end of the first pass over the database. Now we can prune Mi
(i > 1) by removing all the itemsets that contain some item not in L1. All the heavy k-
itemsets in Pi are generated at the end of counting C { (k > 1). Then we can prune the k

candidates by removing C} (j > k). Notice that the generation of C~ (k > 1) is delayed in
succession in order to prune the candidates based on the theorem above.

Example 3. Following Examples 1 and 2 we illustrate the problem. At the end of the first
pass, L1 is generated. So {CE} in C~, {CE, EF} in C~, {CF, F} in C33, must be removed,
after some large itemsets are generated from C~. We know that {AC} is not a large itemset.
So {ABC} in Ca 1 can be removed. After scanning pa in the second pass over the database
we know {BG} is not large. So {BDG} in C~ can be removed.

Using this method only in the first pass, the redundant candidates are counted. We
postpone the generating of C~ (k > 1) to reduce unnecessary operations. If we don' t do
so, that is, generating C~ at the same time, before the end of the first pass there exists
unnecessary count of the candidates which are pruned in the example and this costs a lot of
memory. The algorithm prunes candidates by postponing the generation of C~.

4 C o n c l u s i o n

The algorithm RP reduces the number of passes of scanning the database. As a result
it lowers the cost of I /O operations greatly. Although the algorithm adopted the idea of
ddlist in the algorithm Parti t ion [5], the idea is only used within the first pass and it does
not cause overload of memory. Because the number of candidates in algorithm RP is too
large, the result of pruning candidates in Subsection 3.4 is not very good.

We did a simple test about this algorithm. The tested transaction database has 100,000
transactions in which there are about 200 items. We implemented the algorithm in power-
builder.

We tested the number of partitions. For a transaction database the number of partitions
is determined by the size of the partitions (that is the number of transactions in one parti-
tion). We tried the sizes of i00, 500, I000 and I0,000. The test shows that the middle sizes
of 500 and i000 work the best. The size of i00 shows slower operation. The size of i0,000
was the worst due to more passes over the databases and much heavier overhead.

We also implemented the algorithm Apriori in power-builder. The result shows that if
the support threshold is very high (for example 0.02), Apriori is 10% faster than RP; and
if the support threshold is not very high (we tried 0.002), RP runs about 20% faster than
Apriori. Because the possiblity of too high support level is very low, so the RP algorithm is
practical.

188 LI Qingzhong, "WANG Haiyang et al. Vol.16

References

[1] Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large databases. In
Proc. the A C M SIGMOD Conference on Management of Data, Washington D.C., May 1993, pp.207-
216.

[2] Sergey Brin, Rajeev Motwani, Jerry D Ullman et al. Dynamic itemset counting and implication rules
for market basket data. In Proceeding of the A C M SIGMOD International Conference on Management
of Data, Volume 26, 2 of SIGMOD 28 Record, New York, May 13-15 1997, ACM Press, pp.255-264..

[3] Agrawal R, Srikant R. Fast algorithms for mining association rules. In Proc. the 20th Int. Conf. Very
Large Databases, Santiago, Chile, Sept. 1994, pp.487-499.

[4] Charu C Agrawal, Philip S Yu. Mining large itemsets for association rules. In Bulletin of the IEEE
Computer Society Technical Committee on Data Engineering, March 1998, pp.23-31.

[5] Savasere A, Omiecinski E, Navathe S. An effcient algorithm for mining association rules in large database.
In Proceedings of the Very Large Data Base Conference, Zurich, September 1995, pp.432-444.

[6] Hannu Toivonen. Sampling large databases for association rules. In Proceedings of 22nd International
Conference on Very Large Data Bases, Mumbai, India, Sept. 1996, Morgan Kaufmann, pp.134-145.

[71 Mohammed Javeed Zaki, Srinivasan Parthasarathy, Wei Li et al. Evaluation of sampling for data mining
of association rules. Technical Report 617, Computer Science Dept., U. Rochester, May 1996.

[8] Cheung D, Han J, Ng V e t al. Maintenance of discovered association rules in large databases: An
incremental updating technique. In Proc. 1996 Int. Conf. Data Engineering, New Orleans, Lousiana,
USA, Feb. 1996, http://www.cs.hku.hk/~deheungs/publication/icde96.ps

[9] David W L Cheung, Lee S D, Benjamin Kao. A general incremental technique for maintaining discov-
ered association rules. In Proceedings of the Fifth International Conference on Database Systems for
Advanced Applications, Melbourne, Australia, March 1997, pp.185-194.

[10] Shiby Thomas, Sreenath Bodagala, Khaled Alsabti et al. An efficient algorithm for the incremental
updating of association rules in large database. In Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining, 1997, pp.134-145.

[11] Charu C Agrawal, Philip S Yu. Online generation of association rules. Technical Report RC 20899
(926090), IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY. June 1997.

[12] Cheung D, Ng V, Fu Aet al. Efficient mining of association rules in distributed database. IEEE Trans.
Knowledge and Data Eng., 1996, 8(6): 911-922.

LI Q i n g z h o n g received his B.S. degree in computer software form Shandong University in 1989
and his Ph.D. degree in computer science and technology from Insti tute of Computing Technology,
The Chinese Academy of Sciences in 2000. He is now an associate professor of Shandong University.
His research interests include database systems, data mining.

W A N G H a i y a n g received his B.S. degree in computer software from Shandong University
in 1988 and his Ph.D. degree in computer science and technology from Institute of Computing
Technology, The Chinese Academy of Sciences in 1999. He is now a professor of Shandong University.
His research interests include database systems, data flow system.

Y A N Z h o n g m i n is now a B.S. candidate of Department of Computer Science of Shandong
University. Her research interests include database systems, data mining.

M A S h a o h a n is now a professor of Shandong University. He is also a Supervisor of Ph.D.
candidates. His research interests include algorithm analysis, artificial intelligence.

