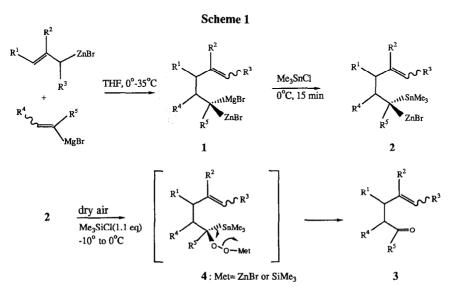
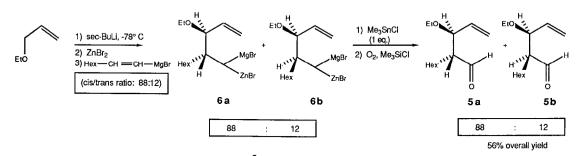
A Mild Oxidation of 1,1-Diorganometallics to Ketones and Aldehydes.

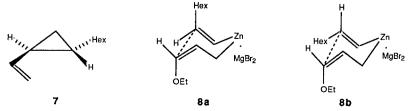

A New Stereoselective Approach to Aldol Products Part I

Paul Knochel*, Chaodong Xiao, Ming Chang P. Yeh


Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109

<u>Summary</u>: The 1,1-diorganometallics of magnesium and zinc 1 are converted by the reaction with Me₃SnCl to the 1,1-diorganometallics of tin and zinc 2 which are readily oxidized by dry air at -10° to 0° C to afford the corresponding aldehydes and ketones 3 in 57-91% yield. This mild oxidation reaction allows a new stereoselective approach to aldol products. An extension of the reaction to 1,1-diorganometallics of silicon and zinc is described.

The 1,1-diorganometallics of magnesium (or lithium) and zinc 1 are readily available by the carbometallation reaction¹ of alkenyl magnesium or -lithium derivatives with allylic zinc bromides and react with various electrophiles². We report now that the α -trimethylstannyl, zinc compounds 2 obtained by the reaction of the diorganometallics 1 with Me₃SnCl (1.1 eq.; 15 min.; 0°C) are oxidized under very mild conditions³ in the presence of Me₃SiCl by dry air to afford the corresponding ketones or aldehydes 3 in fair to good yields (see Scheme 1 and Table). The reaction proceeds by an insertion of oxygen into the carbon-zinc bond⁴ to afford the intermediate 4 which then decomposes to the carbonyl compound 3.



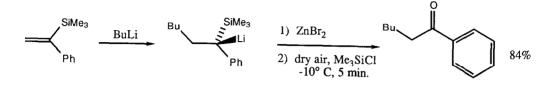
The oxidation to aryl ketones ($R^5 = Ph$) is especially fast (30 min. - 4hr.; 0°C) whereas the oxidation reaction to aldehydes requires longer reaction times (4 hr. - 10 hr., 0°C). The rate of the reaction is enhanced by the addition of Me₃SiCl (1.1-1.5 eq.) and retarded by the presence of co-solvents like DMF or Me₂S. This oxidation procedure can be used to prepare aldol compounds of type **5** with high stereoselectivity (see Scheme 2).

Scheme 2

Thus the addition of 3-ethoxyallylzinc bromide⁵ to 1-octenylmagnesium bromide (cis/trans ratio: 88:12) leads to a 88:12 mixture of two diastereoisomeric diorganometallics **6a** and **6b** which was oxidized under our standard conditions (6 hrs.; -15°C) to furnish the two aldehydes **5a** and **5b** in a ratio of 88:12 and in 56% overall yield. This indicates an almost complete transfer of the stereochemistry of the alkenyl magnesium derivatives to the aldehydes **5**. The relative configuration of the diorganometallics **6a** and **6b** has been determined by heating a THF solution of **6a** and **6b** at 45° C which leads to the formation of trans-2-hexyl-1-vinylcyclopropane **7** in 48% yield (cis/trans ratio 5:95)⁶.

If we assume that **7** has been formed by an internal S_N^2 substitution with inversion of configuration, we can assign the 2R*, 3R* configuration to **6a** and consequently the 2S*, 3R* configuration to **6b**. Thus the metalloclaisen⁷ rearrangement leading to **6a** and **6b** seems to proceed via the chain transition state **8a** and **8b** respectively in which the configuration of both starting organometallics is maintained⁸. The oxidation reaction could furthermore be extended to α -trimethylsilyl, zinc diorganometallics. Thus the addition at -30°C of butyllithium (1.1 eq.) to a THF solution of 1-trimethylsilylstyrene⁹, followed by the addition of zinc bromide and a very fast oxidation (5 min.; -20°C) with dry air affords 1-phenyl hexanone in 84% yield (see Scheme 3).

	Products of T	Reaction Time				
31	R ²	R ³	R ⁴	R5	of the oxidation	yield (%)
-1	Н	Н	Ph		30 min.	89
ł	Me	н	Н	Ph	1 hr.	85
ł	4-methylcyclohexen-3-yl-	Н	Н	Ph	3 hrs.	65
Лe	Н	Н	Н	Ph	4 hrs.	57
ł	Bu	н	н	Ph	2 hrs.	91
I	Bu	н	Hexb	Н	4 hrs.	66
I	4-methylcyclohexen-3-yl	н	Hexb	Н	4 hrs.	60
ł	Н	н	Hexb	Н	10 hrs.	81
I	Me	н	Hexb	Н	5 hrs.	87
⁄le	Н	н	Hexb,c	Н	5 hrs.	78
[Н	Me3Si	Hexb,d	Н	5 hrs.	77


Table. Aldehydes and Ketones 3 Formed by the Air Oxidation of the 1,1-Diorganometallics 1 (via 2).

Isolated yield which includes the formation of the 1,1-diorganometallic, its stannylation and subsequent oxidation. Satisfactory spectral data (IR, ¹H, ¹³C-NMR, high resolution mass spectra) were obtained. A 88:12 cis/trans mixture of 1-octenylmagnesium bromide has been used. A 75:25 ratio of two diastereoisomers was obtained. The addition of 1-trimethylsilylallylzinc bromide is regiospecific, but leads to the formation of cis/trans isomers (cis/trans ratio: 88:12) а

b

c d

Further extensions of this methodology are currently being investigated in our laboratory. (See also the following publication).

References

- (a) Gaudemar, M., <u>C.R. Acad. Sci. Paris, Ser. C.</u> 1971, <u>273</u>, 1669. (b) Frangin, Y.;Gaudemar, M. <u>C.R. Acad. Sci. Paris, Ser. C.</u> 1974, <u>278</u>, 885. (c) Bellasoued, M.; Frangin, Y.; Gaudemar, M. <u>Synthesis</u> 1977, 205. (d) Knochel, P.; Normant, J.F. <u>Tetrahedron Lett.</u> 1986, <u>27</u>, 1039.
- 2. Knochel, P.; Normant, J.F. <u>Tetrahedron Lett.</u> 1986, 27, 1043, 4427, 4431, 5727.
- 3. Typical procedure.

5.4 ml ($\hat{8}.5$ mmol) of a THF solution of allylzinc bromide (1.57N) was added under argon to 12.5 ml (8 mmol) of a THF solution of 1-octenylmagnesium bromide (0.64N). The reaction mixture was stirred at 35°C for 45 minutes to complete the formation of the diorganometallic. After the addition of 15 ml of dry THF, the reaction mixture was cooled to -20°C and 1.79g (9 mmol) of Me₃SnCl in 5 ml of THF was added. After 15 minutes of stirring at 0°C, 10 ml of dry THF was added to the resulting milky solution which was cooled to -10°C. The argon inlet was replaced by a balloon filled with dry air. GC monitoring of the reaction indicated that the oxidation was complete after 10 hours at -5°C. After the usual work-up, the resulting residue was purified by flash-chromatography (solvent: hexane/cther (95:5)) to afford 1.09g ($\hat{8}1\%$) of 2-allyl octanal.

- (a) Sosnovsky, G.; Brown, J.H. <u>Chem. Rev.</u> 1966, <u>66</u>, 529. (b) Czernecki, S.; Georgoulis, C.; Gross, B.; Prevost, C. <u>C.R. Acad. Sci. Paris, Ser. C</u> 1968, <u>226</u>, 1677.
- (a) Evans, D.A.; Andrews, G.C.; Buckwalter, B. J. Am. Chem. Soc. 1974, <u>96</u>, 5560; (b) Still, W.C.; MacDonald, T.L. J. Am. Chem. Soc. 1974, <u>96</u>, 5561.
- 6. The diastereoisomer 6a undergoes the ring closure far more readily then 6b; this explains the high cis/trans ratio observed. If allyl tetrahydropyranyl ether is used instead of allyl ether, then both diastereoisomers cyclize readily at 25° C and afford the vinylcyclopropane 7 in 65%. The cis/trans ratio (12:88) is now identical with the cis/trans ratio of the starting octenylmagnesium bromide. The assignment of the stereochemistry of 7 is based ¹H-NMR data; see Roth, W.R.; Konig, J. Liebigs Ann Chem. 1965, 688, 28.
- 7. Dewar, M.J.S.; Mertz, K.M. J. Am. Chem. Soc. 1987, 109, 6553.
- 8. The more stable cis configuration of the metallated allylic ether is maintained during the [3,3]-sigmatropic shift; see ref. 5.
- 9. Reetz, M.T.; Schinzer, D. Angew. Chem. 1977, 89, 46.

(Received in USA 31 August 1988)