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Abstract: Palladium(II) complexes catalyse the amide-directed
displacement of an aryl–Si group and its replacement by an electro-
philic alkene at ambient temperature, analogous to an oxidative
Heck reaction. A palladacyclic intermediate is involved, and the re-
action enables substitution to occur specifically in the electron-poor
ring of benzanilides. The procedure described provides a formal
link between directed lithiation and the Heck reaction.
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The use of arylsilanes as the nucleophilic component in
palladium coupling reactions is well-established through
the pioneering work of Hiyama1 and Denmark.2 In these
cases the C–Si bond is activated by external fluoride ion
or by a silanol; alternatively an alkoxide group can bind to
silicon,3 so that activation of the transferred group occurs
exocyclic to the dative-bonded ring. In a similar vein we
have demonstrated the exocyclic activation of Si–Me
groups by a neighbouring urea or amide group, enabling
catalytic intermolecular methyl transfer from silicon to an
electrophilic alkene.4 It was observed that an alternative
course of reaction occurred in some cases leading to en-
docyclic aryl–methyl coupling, but with only modest effi-
ciency. The present paper describes development of an
effective endocyclic coupling through intermediate palla-
dacycle formation from silane precursors (Scheme 1).5

Scheme 1 Contrasting pathways for directed C–Si activation lea-
ding to distinct palladium intermediates in catalysis.

Many aryl C–H activation reactions are effected by anil-
ide directing groups, as was first observed stoichiometri-
cally by Horino6 and then catalytically by DeVries and co-
workers.7,8 There have been several subsequent develop-
ments based on this theme.9,10 The reaction is likely to in-
volve an intermediate palladacycle formed by
electrophilic substitution directed by the anilide carbonyl
group.11 The anilide ring (sp 0.00, sm 0.21) is more elec-
tron rich than the carboxamide ring (sp 0.36, sm 0.35),12

and for this reason the directed Heck reaction of benzanil-
ide occurs in the ring adjacent to nitrogen (six-membered
palladacycle) rather than that adjacent to the carbonyl
group (five-membered palladacycle), since the more elec-
tron-rich site is favoured. Palladacycles formed by CH ac-
tivation ortho to an arene-bound carbonyl group are less
common,13 as would be expected on electronic grounds,
since an electrophilic attack is disfavoured at that posi-
tion. The ortho-carbonyl position is the preferred site for
lithiation of benzanilide 1 and its relatives, however.14

Coupled to the fact that C–Si is intrinsically more reactive
to electrophilic substitution than C–H,15 we wondered
whether this offered the possibility of an alternative regio-
isomeric product in the benzanilide case. There are early
examples of stoichiometric Pd activation of an aryl–Si
bond.16 In our own work (Scheme 2), palladadesilylation
has been used to control the regiochemistry of palladacy-
cle formation and enabled a demonstration of catalytic
turnover through an anilide directing group, albeit accom-
panied by competing protodesilylation resulting in forma-
tion of the alternative regioisomer.4,17

This encouraged further efforts to use the known silane 2a
(ref. 14) as the reactant in catalytic alkenylation, thus di-
recting the new bond into the less reactive ring of benza-
nilide. The outcome of the first reaction attempted was
partially successful, and a 49% yield of the desired prod-
uct 3 was obtained (Table 1, entry 1). Formation of the de-
sired product was accompanied by protodesilylation,
which ultimately led to CH alkenylation of the anilide
ring. A systematic effort was made to optimize the C–C
bond-forming process as indicated in Table 1, avoiding
acid as far as possible.18 After considerable trial and error,
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Scheme 2 A prior example of alkenylation via palladadesilylation17
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with the more informative experiments collated in
Table 1, a moderately high-yielding procedure was dis-
covered. For some of the test reactions methyl transfer to
the arene or alkene, the latter giving (E)-butyl crotonate,
were significant side reactions.4 The optimum conditions
involved the use of the weaker acid PhPO3H2, although
this occurred at an impractically slow rate.

Two structural variants were prepared. Firstly, the
PhMe2Si analogue 5 provided a convenient test of exo- vs.
endocyclic C–Si activation. In acetone [5 mol%
Pd(OAc)2, p-BQ, PTSA] the two processes occurred at
comparable rates yielding product 3 and (E)-
PhCH=CHCO2Bu in a 45:55 ratio (Scheme 3). Many oth-
er products were formed in AcOH, including those de-
rived by Me transfer.

At this point it was surmised that avoidance of direct
C=O–silyl bonding would direct Pd attack to the ipso-car-
bon and suppress the side reactions. The bulkier TBDMS
derivative 6a was prepared and reacted with butyl acrylate
under Pd(OAc)2 catalysis with added PTSA and oxidant.
Clean formation of product 3 was observed, now without
competing protodesilylation. The X-ray structure of silane
6a shows an absence of C=O….Si contact,19 consistent
with the endocyclic activation observed. Intermediacy of
isolable palladacycles 7a,b was demonstrated in stoichio-
metric reactions starting from silylbenzanilide 6a or silyl-
acetanilide 2b4 (Scheme 4). At 70 °C in the absence of
strong acid, the palladacyclic acetate 7c was formed.

Scheme 4 Five-membered palladacycle formation from silylamides

These initial results encouraged the synthesis of a range of
TBDMS-substituted benzanilides substituted in the amide
ring. For the 3-F analogue 1f, only one product was isolat-
ed derived from the substituent-flanked ArLi isomer and
in low yield.

The same alkenylation methodology that had been used
for the formation of alkene 3 from the parent TBDMS de-
rivative 6a was applied to the preparation of a range of
ring-substituted variants of compound 6a (Scheme 5).
The reaction worked smoothly for the range of benzanil-
ides tested. For entry 3 (9c as product, Table 2), compet-
ing desilylation was observed with 5 mol% Pd(OAc)2, and
hence 10 mol% of catalyst was employed. The higher cat-
alyst ratio was also used for the slower examples of entries
6–8 leading to 9f,g, and 10.

Only in the case of entry 3 was arene methylation ob-
served as a side reaction. In the general case, neither the
reactant nor the product is susceptible to cyclopalladation
and ensuing reaction in the ortho-anilide ring. This sug-
gests that steric pressure from a 2-substituent adjacent to
the carbonyl group inhibits formation of the six-mem-
bered palladacyclic intermediate. In the X-ray structure of
compound 6a described above, the silane-bearing ring is
twisted out of the plane of the amide by 55° and 72°, re-
spectively, in two independent molecules.20,21 In accord
with acetanilide CH activation experiments,10b the elec-
tron-poor 4-Cl analogue 6g reacts slowly (entry 7). The
electron-rich furylsilane 8 was only sluggishly reactive,
however, perhaps because a five-membered ring pallada-
cycle fused to a five-membered aromatic ring is more
strained.

Catalytic palladadesilylation as described here requires a
directing group, and efficient reaction is limited at this
stage to silanes with a neighbouring carboxamido group.
Thus 2-(trimethylsilyl)benzofuran is inert to our standard

Table 1 Preliminary Reactions with Silane 2a

Entrya Oxidant Solvent Temp (°C) Time (h) Results

1b p-BQ Me2CO 20 24 3 49%; see text

2c Cu(OAc)2 DMF 90 3 3 2%, 1a 33%

3b p-BQ CDCl3 20 1 1a only; fast

4 p-BQ AcOH/C7H8 20 60 very slow, 3 + 4

5 p-BQ AcOH 70 2 3 55%, 4 30%

6d p-BQ Me2CO 20 50 3 80%

a Pd(OAc)2 (5 mol%) used unless otherwise stated, p-BQ is p-benzo-
quinone.
b PTSA (1 equiv).
c No reaction in THF.
d Pd(OAc)2 (10 mol%), PhPO3H2 (1 equiv) added, faster but with more 
side reactions at 50 °C, but very slow with PhCO2H as acid.
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reaction conditions, albeit electron rich. Success depends
critically on the role of the TBDMS group, whose steric
bulk inhibits competing reactions requiring direct silyl ac-
tivation. In turn, this encourages the formation of silyl-sta-
bilized intermediates related to cationic intermediate 11
(Figure 1), with the amide associated with Pd rather than
Si. An interesting feature of this chemistry is the absence
of competition from the ‘conventional’ pathway involv-
ing substitution in the anilide ring.

Figure 1 Proposed reactive intermediate in palladadesilylation

The chemistry described here provides access to novel
palladacyclic intermediates under mild and readily acces-
sible conditions via displacement of an aromatic silyl
group, and has potential in catalysis beyond the oxidative
Heck reactions described here.22 The principles involved
ought not to be limited to anilides. At present it is less ef-
fective for electron-rich aromatic systems where protode-
silylation pathways compete more effectively.

Supporting Information for this article is available online at
http://www.thieme-connect.com/ejournals/toc/synlett.
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Table 2 Alkenylation of TBDMS-Benzanilides

Entry Producta Time (h) Yield (%, conversion)
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