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Aminobisphosphinic Acids via Diastereomeric Salt Formation
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ABSTRACT C2-symmetric N,N-bis(phosphinomethyl)amines were prepared by the thermal
reaction of aromatic aldehydes with ammonia and hypophosphorus acid as previously described.
Both enantiomers of C2-symmetricN,N-bis(phosphinomethyl)amine were obtained in a high enan-
tiomeric purity through the diastereomeric salt formation with (–)-quinine, and subsequent frac-
tional crystallization. X-ray crystallographic analysis of one of the diastereomeric salts clearly
revealed that (–)-quinine could be an efficient resolving agent for obtaining the single enantiomer
(R,R)-N,N-bis(phosphinomethyl)amine. Chirality 27:71–74, 2015. © 2014 Wiley Periodicals, Inc.
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INTRODUCTION
α-Aminoalkylphosphinic acids are considered structural

analogs of α-amino acids and possess potential biological activ-
ities applicable to antibiotics, enzyme inhibitors, pharmacologi-
cal agents, antiviral agents, and herbicides (Figure 1).1–14 Since
the structure of the phosphinic functional group mimics the
unstable tetrahedral intermediates formed in enzyme-mediated
peptide bond cleavage, some pseudo-peptides derived from
α-aminophosphinic acids are known to act as inhibitors of
proteolytic enzymes such asmetallo- and serine-proteases.15–36

In our continuous efforts to introduce novel methods for
the synthesis of α-aminophosphinic derivatives, we re-
cently found a new method for the synthesis of homodi-
meric α-aminophosphinic acid derivatives (HODAPAs) 2
(Scheme 1).37–40 HODAPAs 2 were obtained as a diastereo-
meric mixture of (±)-2 and meso-2 from readily available
diimines and hypophosphorus acid. Diastereomerically pure
(±)-2 and meso-2 were readily isolated by washing with polar
solvents, as described in our previous article.37–40 The symmet-
ric features of 2would be applied to an important component of
phosphinic pseudo-peptides, which are expected to be of
benefit in their binding to the homodimeric proteases, having
C2-axis symmetry such as HIV-protease.15 To incorporate
HODAPAs 2 to pseudo-peptides, it is necessary to obtain them
in high enantiomeric purities. In this article, we disclose that
racemic HODAPAs can be resolved to their individual enantio-
mers by application of diastereomeric salt formation with
(–)-quinine. Now we describe the results of our resolutions.

EXPERIMENTAL
Materials and Methods

All chemicals were commercial products and distilled or recrystallized
before use. All melting points were obtained by a Yanagimoto micro-
melting point apparatus and are uncorrected. Optical rotations were re-
corded on a Perkin-Elmer (Norwalk, CT) 341 with a pathlength 0.1 dm
using the 589.3 nm D-line of sodium. Solutions were prepared using
spectroscopic-grade solvents and concentrations (c) are quoted in
g/100mL. NMR spectra were taken with a 400 Bruker (Billerica, MA)
Avance III instrument with the chemical shifts being reported as δ ppm
and couplings expressed in Hertz. Thin-layer chromatography (TLC)
was carried out with Merck (Darmstadt, Germany) plates precoated with
silica gel 60 F254 (0.25mm thick).
dicals, Inc.
X-ray crystal data of (–)-quinine salt of 3 were collected by a Bruker
SMART APEX II diffractometer. The structure was solved by a direct
method using SHLEXS-97 (Scheldrik, 1997) and refined with a full
matrix laser-squares method. Molecular formula = 2(C20H25N2O2) ·
C14H15NO4P2 ·C3H6O (including: 2 quinine + 1 molecule of compound (R,
R)-2a + 1 acetone), MW=1032.13, monoclinic, space group =C 1 2 1,
a = 16.1193(19) Å, b = 103736(12) Å, c = 17.060(2) Å, V = 2622.6(5) Å3,
T = 90K, Z = 2, Dx = 1.307Mg/m3, (Mo-Kα) = 0.71073Å, R = 0.0247 over
independent reflections. Crystallographic data (excluding structure factors)
for the X-ray crystal structure analysis reported in this article have been
deposited with the Cambridge Crystallographic Data Center (CCDC) as
supplementary publication No. CCDC 986045. Copies of these data can be
obtained, free of charge, on application to CCDC, 12 Union Road,
Cambridge CB2 1EZ, UK.

((1R*,1’R*)-Azanediylbis(phenylmethylene))bis(phosphinic acid)
((±)-2a). This compound (0.8 g) was obtained as a white solid
(mp: 222–224 °C) from benzaldehyde (3mL), ammonium
hydroxide (15mL of 30% aqueous solution), and anhydrous
hypophosphorus acid (3.3 g) in an analogous manner to those
described in our previous article.37–40 The physical data were
identical to those described previously.37–40

Preparation of (+)-(R,R)-2a. Racemic bisphosphinic acid (±)-
2a (0.650 g, 2mmol) was dissolved in refluxing ethanol
(10mL) to give a milky suspension. A solution of (–)-quinine
(4mmol, 1.3 g) in ethanol (2mL) was added dropwise to the
milky suspension. The reaction was terminated after being
stirred at reflux for 5 h. The solvent was removed from the re-
action mixture by evaporation and acetone (10mL) was
added to the reaction mixture. The flask was left to gradually
cool and kept for 1 d at an ambient temperature. The resulting
white solid was collected by filtration and the mother liquor
kept for the separation of other diastereomeric salts. The
white solids were recrystallized from acetone to yield quinine
salt 5 (0.3 g, 32% yield) as white crystals: mp: decomposed at
210 °C; [α]D20 = –3.3 (c 0.6, MeOH); 1H NMR (CD3SOCD3,



Scheme 2. Preparation of racemic and meso HODAPAs 2a.

Scheme 3. Diastereomeric salts formation of (I)-2a with one equivalent
of (-)-quinine.

Scheme 1. Synthesis of HODAPAs 2.

Fig. 1. Structures of α-amino acids and α-aminophosphinic acids.
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400MHz): 1.19 (1H, t, J = 7.2Hz), 1.40 (2H, m), 1.83 (2H, m),
1.94-2.10 (12H, m), 2.69 (2H, broad), 3.09-3.18 (4H, m), 3.56
(2H, broad), 3.91 (6H, S), 4.02-4.12(2H, m), 4.98 (2H, d,
J = 10.4Hz), 5.08 (2H, d, J = 17.2Hz), 5.76-5.85 (2H, m), 5.93
(1H, S), 6.42 (2H, broad), 6.65 (2H, S), 6.91-6.93 (6H, m),
7.18 (2H, S), 7.48 (2H, dd, J = 2.0Hz, J = 9.2Hz), 7.67 (4H, S),
8.03 (2H, d, J = 9.2Hz), 8.76 (2H, d, J = 4.4Hz); 31P NMR
(CD3SOCD3-H3PO4, 162.0MHz): 20.94 ppm. The compound
5 (0.24 g, 0.25mmol) was suspended in ethyl acetate
(50mL) and 5% aqueous HCl (50mL) was added. The biphasic
mixture was stirred rapidly until all the solid had dissolved.
The organic layer was separated and the aqueous layer was
re-extracted with ethyl acetate (3 × 30mL). The combined
organic layers were washed with water (100mL), dried over
MgSO4, and concentrated to give (R,R)-2a (0.076 g,
quantitative) as a white crystalline solid: mp: 222–224 °C;
[α]D20 = +56.6 (c 0.73, MeOH). Other spectral data are identical
to those of (±)-2a.

Preparation of (–)-(S,S)-2a. The crude 6 was isolated by
fractional crystallization from the mother liquor as described
in the previous section. The solvent was removed from the
mother liquor by evaporation and acetone (10mL) was
added to the crude 6 and the solution was allowed to warm
to ~60 °C. The flask was left to gradually cool and kept for 1
d at an ambient temperature. The white solids were recrys-
tallized from acetone and gave diastereomerically pure 6
(purity of the salt 6 was checked by 31P NMR) in 30% yield
(0.28 g) as a white crystalline solid: mp: decomposed at
210 °C; [α]D20 =–80.0 (c 0.1, MeOH); 31P NMR (CD3SOCD3-
H3PO4, 162.0MHz): 21.26 ppm. 1H NMR (D2O, 400MHz):
1.36-1.40 (2H, m), 1.80-2.07 (14H, m), 2.63 (2H, broad), 3.06-
3.43 (4H, m), 3.54 (2H, broad), 3.88 (6H, S), 4-4.15 (2H, m),
4.95 (2H, d, J = 10.4Hz), 5.04 (2H, d, J = 17.2Hz), 5.68-5.83
(4H, m), 6.40-6.50 (2H, m), 6.57-6.59 (2H, m), 6.85-6.87 (5H,
m), 7.15 (1H, S), 7.35 (1H, S), 7.44 (2H, d, J = 9.2Hz), 7.6-7.7
(5H, m), 8.00 (2H, d, J = 9.2Hz), 8.70 (2H, d, J = 4.4Hz).
The salt 6 (0.24 g, 0.25mmol) was suspended in ethyl

acetate (50mL) and 5% aqueous HCl (50mL) was added.
The biphasic mixture was stirred rapidly until all the solid
had dissolved. The organic layer was separated and aqueous
layer was re-extracted with ethyl acetate (3x30 mL). The
combined organic layers were washed with water (100mL),
dried over MgSO4 and concentrated to give (S,S)-2a
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(0.069 g, quantitative) as a white crystalline solid: mp:
222–224 °C; [α]D20 = –57.1 (c 0.45, MeOH). Other spectral
data are identical to those of (±)-2a.

RESULTS AND DISCUSSION
Among HODAPAs previously synthesized, we focused on

(±)-2a having two phenyl groups as substituents. Compound
(±)-2a was prepared in a diastereomerically pure state ac-
cording to the protocols described in our previous article
(Scheme 2).37–40

After synthesis of diastereomerically pure (±)-2a, first its
resolution with (R)-2-phenylethylamine was examined. How-
ever, all of our efforts to prepare the crystalline diastereo-
meric salts failed using a variety of reaction media (EtOH,
MeOH, i-PrOH, and these solvents containing water).
In an effort to resolve (±)-2a, we next examined the diaste-

reomeric salts formation with one equivalent of (–)-quinine in
a variety of solvents, as it was expected that one of the diaste-
reomeric salts 3 and 4 would be preferably crystallized
(Scheme 3). However, due to their high polarity, salts ob-
tained under the conditions were found to be not soluble in
any representative organic solvents and inconvenient for the
purpose of our fractional recrystallization.
To increase the lipophilicity of the diastereomeric salts, (±)-

2a was reacted with two equivalents of (–)-quinine in
refluxing ethanol for 5 h to give a 1:1 mixture of 5 and 6 in
quantitative yield (Scheme 4). As expected, the salts obtained
by this method were found to be soluble to a representative
organic solvent and suitable for fractional recrystallization.
The 31P-NMR spectrum for the mixture of 5 and 6 in
DMSO-d6 exhibited two singlet peaks at 20.94 and
21.21 ppm, respectively. We were pleased to find solubility
of the diastereomeric salts in acetone, which is desirable for
the fractional recrystallization. When the mixture of 5 and 6
was dissolved in acetone, only diastereomeric salt 5 was pref-
erably crystallized from the solvent in 32% yield at an ambient
temperature. The mother liquor was kept to isolate another
diastereomeric salt 6. The 31P-NMR spectrum of crystallized
salt 5 exhibited a singlet at δ 20.94 ppm. The diastereomeric
purity of salt 5 can be readily assessed by 31P-NMR spectros-
copy. In this case, the salt 5 is produced in >98% purity. The



Scheme 4. Diastereomeric salts formation of (±)-2a with two equivalent of (–)-quinine.

Fig. 2. ORTEP drawing of salt 5: one of (–)-quinine is omitted due to the
ORTEP drawing program.

Fig. 3. The structure for crystalline structure unit of salt 5.
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stereostructure of salt 5 was confirmed by X-ray crystallogra-
phy (Figures 2 and 3). In the crystalline structure unit, two
molecules of (–)-quinine binds with one molecule of (R,R)-2a
via hydrogen bond and ionic interactions as shown in Figure 3.
Treatment of salt 5 with conc. HCl gave enantiopure (R,R)-2a
in quantitative yield (Scheme 4).
Crystallization of the mother liquor from acetone at room

temperature gave access to quinine salt 6 of (S,S)-2a in 30%
yield (Scheme 4).

CONCLUSION
We have shown that both enantiomers of HODAPA 2a can

be accessed by resolution of the fractional crystallization of
salts formed from the racemate 2a and enantiopure (–)-qui-
nine. The structure of one of the diastereomeric salts was de-
termined by X-ray crystallographic analysis. Simple
hydrolysis of the individual diastereomeric salts in the usual
manner afforded (R,R)- and (S,S)-2a. The features of the
present method are easy, rapid, and yield good preparation
of both enantiomers of novel HODAPAs. The present resolu-
tion method would open up the possibility to prepare optically
active HODAPAs of interest to their biological activity.
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