

Subscriber access provided by Columbia Univ Libraries

FeCl3-6H2O-Catalyzed Alkenylation of Indoles with Aldehydes

Qin Yang, Liandi Wang, Tenglong Guo, and Zhengkun Yu

J. Org. Chem., Just Accepted Manuscript • DOI: 10.1021/jo301416s • Publication Date (Web): 25 Aug 2012 Downloaded from http://pubs.acs.org on August 26, 2012

Just Accepted

Note

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

The Journal of Organic Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

Submitted to J. Org. Chem. for consideration as a note (revised: jo-2012-01416s)

FeCl₃·6H₂O-Catalyzed Alkenylation of Indoles with Aldehydes

Qin Yang,^a Liandi Wang,^a Tenglong Guo^a and Zhengkun Yu*^{,a,b}

^aDalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, Liaoning 116023, China; ^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, China

E-mail: zkyu@dicp.ac.cn

RECEIVED DATE (will be automatically inserted after manuscript is accepted).

Abstract: FeCl₃·6H₂O-catalyzed efficient C3-alkenylation of indoles was realized through the condensation of aldehydes and indole derivatives in the presence of two equivalents of ethanol at ambient temperature, forming 3-vinylindoles in up to 93% yields. Ethanol promoted formation of the desired products. An obvious solvent effect was observed, and bisindoles were identified as the reaction intermediates.

Indole is an important subunit of many bioactive compounds and natural products, and indole derivatives have become more and more attractive for the construction of agriculturally and pharmaceutically useful molecules.¹ Functionalized indoles² such as vinylindoles can be considered as diene equivalents for the synthesis of polyfunctional indole derivatives.³ Friedel-Crafts alkylation⁴ and arylation⁵ of indoles have been extensively explored, but their alkenylation has been received much less attention. Although vinylindoles can be obtained by functional group-directed organic

synthesis,⁶ alkenylation protocols are expected to produce more versatile vinylindoles. Direct alkenylation of the C2-position of indoles bearing a readily removable *N*-pyrimidyl group with alkynes was realized by using a cobalt complex catalyst,^{7a} and 3-cyanoindoles reacted with internal alkynes to form 2-vinylindoles under nickel catalysis.^{7b} Iron(III)-catalyzed hydroarylation of propynoic acids with indoles afforded the corresponding vinylindoles.^{7c} Palladium-catalyzed intramolecular addition of indolyl C-H to alkynes gave fused alkenylated indoles.^{7d} Direct oxidative alkenylation of indoles by an alkene has been demonstrated an applicable potential to access vinylindoles.⁸ Intramolecular alkenylation was also performed for the same purpose.⁹ Both Brønsted^{10a} and Lewis^{10b} acids catalyzed the direct couplings of indoles with 1,3-dicarbonyls to form 3-alkenylated indoles or 2-vinylindoles.¹¹ Under microwave irradiation at 140 °C, treatment of indoles with aldehydes (3 equiv) in the presence of trifluoroacetic acid (3 equiv) formed 3-vinylindoles in 18-76% yields.¹²

In view of practical application, iron catalysis is potentially attractive in organic synthesis.¹³ Iron compounds have been known to promote the alkenylation of arenes.¹⁴ Recently, we disclosed efficient FeCl₃- and FeCl₃·6H₂O-mediated intramolecular cyclization of alkynyl acetals and intermolecular reactions of alkynes and aldehyde acetals.¹⁵ In these cases, acetals exhibited much higher reactivity than their mother aldehydes. Keeping this finding in hand, we envisioned that FeCl₃·xH₂O might also promote the reactions of heteroarene C-H bond with aldehyde acetals. Herein, we report FeCl₃·6H₂O-catalyzed alkenylation of indoles with the *in-situ* generated acetals, i.e., aldehydes in the presence of ethanol.

Initially, the reaction of 1,2-dimethylindole (1a) with phenylacetaldehyde (2a) was carried out in the presence of $FeCl_3 \cdot xH_2O$ (Table 1). The reaction was completed in toluene within 24 h in the presence of 5 mol % $FeCl_3 \cdot 6H_2O$ as catalyst, affording

The Journal of Organic Chemistry

the desired product 3-vinylindole (**3a**) in 80% yield (Table 1, entry 1), and in *p*-xylene a similar result was obtained (entry 3). Shortening the reaction time to 3 h led to a

	(1)											
	1a	2a	3a									
entry	catalyst (mol %)	solvent	additive (equiv)	temp (°C)	time (h)	yield ^b (%)						
1	$FeCl_3 \cdot 6H_2O(5)$	toluene		25	24	80						
2	$FeCl_3 \cdot 6H_2O(5)$	toluene		25	3	44						
3	FeCl ₃ ·6H ₂ O (2.5)	<i>p</i> -xylene		25	24	70						
4	FeCl ₃ ·6H ₂ O (2.5)	<i>p</i> -xylene		25	3	trace ^c						
5	$FeCl_3 \cdot 6H_2O(5)$	CH ₃ CN		25	3	trace						
6	$FeCl_3 \cdot 6H_2O(5)$	EtOH		25	3	trace						
7	$FeCl_3 \cdot 6H_2O(5)$	CH_2Cl_2		25	3	85						
8	$\operatorname{FeCl}_{3}(5)$	CH_2Cl_2		25	3	79						
9	$FeCl_3 \cdot 6H_2O(5)$	CH_2Cl_2		40	3	80						
10	$FeCl_3 \cdot 6H_2O(5)$	CH_2Cl_2		0	3	58						
11	FeCl ₃ ·6H ₂ O (10)	CH_2Cl_2		25	3	79						
12	FeCl ₃ ·6H ₂ O (2.5)	CH_2Cl_2		25	3	87						
13	FeCl ₃ ·6H ₂ O (2.5)	CH_2Cl_2	EtOH (0.2)	25	3	88						
14	FeCl ₃ ·6H ₂ O (2.5)	CH ₂ Cl ₂	EtOH (2.2)	25	3	91						
15	FeCl ₃ ·6H ₂ O (1.0)	CH_2Cl_2	EtOH (2.2)	25	3	71						
16	FeCl ₃ ·6H ₂ O (2.5)	CH_2Cl_2	H ₂ O (2.2)	25	3	trace ^d						

Table 1.	Screening	of	conditions	for	the	reaction	of
1,2-dimeth	ylindole (1a) wi	th phenylace	etalde	ehyde	$(2a)^a$	

^{*a*} Conditions: 1,2-dimethylindole (**1a**), 0.5 mmol; phenylacetaldehyde (**2a**), 0.55 mmol; solvent, 3 mL. ^{*b*} Average yield of two or three experiments. ^{*c*} The major product was bisindole **4c** (93%). ^{*d*} The major product was bisindole **4c** (79%)

lower yield (44%) for **3a** in toluene (entry 2), and resulted in bisindole **4c** (93%) instead of **3a** as the major product in *p*-xylene (entry 4). In CH₃CN and EtOH, the reaction was nearly prohibited (entries 5 and 6). Under the same conditions in CH₂Cl₂, the reaction efficiently proceeded to give **3a** in 85% yield (entry 7), while **3a** was only obtained in 79% yield with 5 mol % anhydrous FeCl₃ as catalyst (entry 8). FeCl₃·6H₂O behaved more efficiently than FeCl₃ as catalyst presumably due to the

coordination of water molecules to the iron atom to stabilize the metal center during the catalytic reaction. Variation of temperature to 40 and 0 °C deteriorated the reaction (entries 9 and 10). Increasing the catalyst loading to 10 mol % did not improve the formation of **3a**, whereas lowering FeCl₃·6H₂O loading to 2.5 mol % increased the yield of **3a** to 87% (entries 7, 11 and 12). Furthermore, addition of ethanol facilitated formation of the desired product and **3a** was isolated in 91% yield in the presence of two equivalents of ethanol (entries 13 and 14), which is presumably attributed to the *in-situ* formation of the more reactive species, i.e., phenylacetaldehyde diethyl acetal (**2a'**). However, further lowering the catalyst loading to 1 mol % led to **3a** in 71% yield (entry 15). By replacing ethanol with water, the reaction only generated a trace amount of **3a** as well as bisindole **4c** (79%) as the major product (entry 16). The sepa-

rate reaction of **1a** with **2a'** in CH₂Cl₂ and *p*-xylene afforded **3a** in 70% and 64% yields over a period of 2 hours, respectively (eq 2), suggesting that the reaction proceeded faster in CH₂Cl₂ than in *p*-xylene. Monitoring by means of TLC analysis revealed that the reaction in CH₂Cl₂ was finished within 2 h and accompanied by unidentified side reactions, while the reaction in *p*-xylene was slower and **3a** could be obtained in 85% yield by extending the reaction time to 3 h, showing an obvious solvent effect (Table 1 and eq 2). It is noteworthy that diethyl acetal **2a'** is not very stable and difficult to be isolated in high purity. Although **2a'** reacted with **1a** more efficiently in *p*-xylene due to the undesired reactions occurring in CH₂Cl₂ (eq 2), CH₂Cl₂ was still chosen as the reaction medium because the reaction of **2a** and **1a**

The Journal of Organic Chemistry

proceeded much faster in CH_2Cl_2 than in *p*-xylene (entries 3, 4 and 14). In all the cases, compound **3a** was obtained in the exclusive (*E*)-configuration.

^{*a*} Conditions: indole (**1**), 0.5 mmol; aldehyde (**2a**), 0.55 mmol; EtOH, 1.1 mmol; CH₂Cl₂, 3 mL; 25 °C, 3 h. ^{*b*} Using 5 mol % FeCl₃·6H₂O. ^{*c*} 10 h. ^{*d*} 36 h, *E*:*Z* > 20:1.

Next, the substrate scope was explored under the optimized conditions (Table 2). With 2-substituted *N*-unprotected indoles as substrates, the desired products **3b-1** were obtained in 43-91% yields, and treatment of *N*-alkyl-2-substituted indoles with **2a** produced **3n-t** in 66-93% yields. Substituent effects of the *N*-, 2- and 5-substituents on the reaction efficiency were observed (Table 2). Based on the proposed mechanism (Scheme 1), when the 2-position of an indole substrate is substituent-free, nucleophilic attack of the 2-C of such an indole at species **B** in path *a* or species **A'** in path *b* can not result in relatively stable intermediates of type **C** or **B'**, leading to the

2-alkenylation product in a poor yield. Thus, with a 1,3-disubstituted indole as substrate, **3u** was only obtained in 7% yield over a period of 36 h. Unexpectedly, the reaction of 2-methyl-5-nitroindole with **2a** afforded compound **4a** in 91% yield (eq 4),

revealing a remarkable electronic effect of 5-NO₂ group. Bisindole **4a** was gradually formed as an insoluble solid in CH₂Cl₂ during the reaction, but it could not undergo further reaction with **2a** to form the desired product. The reaction of simple indole with **2a** also produced the product of type **4**, i.e., **4b** (43%), giving no desired product under the same conditions due to the substituent effect as discussed above (eq 4).

Substituted arylacetaldehydes can not be easily prepared in high purity that crude arylacetaldehydes¹⁶ were directly used for the synthesis of alkenylated indoles. Such a two-step procedure was developed to give the desired products **6a** and **6b** in 69-78% yields (eq 5), which extended the substrate scope. 2-Substituted phenylacetaldehyde (**5c**) also reacted with **1a** to form the desired product **6c** in moderate to good yields

(eq 6). It should be noted that in the presence of EtOH the reaction proceeded to completion within 4 h to give 6c (41%) as well as a considerable amount of unidentified by-products, while in the absence of EtOH the reaction initially generated bisindole 4c as the major product within the first 4 h which was then gradually transformed to 6c (78%) over a period of 10 h. The diethyl acetal intermediate generated in situ from the interaction of sterically hindered aldehyde 5c and ethanol may be susceptible to the reaction condition to undergo side reactions and form undesired products. These results suggest the possible role of ethanol during the reaction of 1 with 2: (1) as an additive to form the more reactive diethyl acetal inter-

mediate in situ and thus accelerate the reaction; (2) as a medium to help dissolving the bisindole intermediate to promote the reaction; (3) The *in-situ* generated diethyl acetal species may undergo side reactions to form undesired products under the reaction conditions. However, both 3-phenylpropionaldehyde (5d) and butyraldehyde (5e) only exhibited a poor reactivity. By means of 5 mol % catalyst at 40 °C, the reaction of 5d with 1a formed the alkenylation product 6d in 13% yield (eq 7).

Bisindoles 4c and 4d were separately synthesized as the reaction intermediates by quenching the corresponding reactions of 1 and 2 in CH_2Cl_2 at 10 minutes with saturated aqueous NaHCO₃, and 4e was prepared by carrying out the reaction in

p-xylene for 3 h. Monitoring the reaction of **1a** and **2a** by ¹H NMR and TLC analysis revealed that the reaction initially formed bisindole **4c** which was then gradually transformed to vinylindole **3a**. However, these bisindoles (**4c-e**) could not tolerate the reaction conditions in CH₂Cl₂, decomposing into the corresponding free indoles **1a-c** and vinylindoles **3a**, **3b** and **3e**, respectively, as the reaction proceeded (eq 8). Furthermore, in the presence of a phenylacetaldehyde substrate such as **2a**, bisindole **4d** was efficiently transformed to the alkenylation product **3b** (eq 9), further suggesting that bisindole of type **4** is the reaction intermediate in the catalytic cycle.

A plausible mechanism is proposed in Scheme 1. In the presence of ethanol (*path a*), the Lewis acid iron catalyst promotes *in-situ* generation of phenylacetaldehyde diethyl acetal $(2a')^{17}$ which then interacts with FeCl₃ to form oxocarbenium cation **B** and anion **A**.^{15c} Species **B** reacts with indole **1** to form iminium cation **C** which is considered as a relatively stable intermediate in the catalytic cycle due to the substituent effect from the 2-position of the indole backbone. **C** is tautomerized to **D** which loses EtOH to form **E**. Species **E** reacts with **1** to produce bisindole sepecies **F**/4 which interact with anion **A** to afford the desired product **3** and **1**, and regenerate the catalyst.¹² The released **1** can be used in the next catalytic cycle through a convergent way. It is also possible for **E** to interact with **A** to form **3**. Without ethanol as additive (*path b*), Lewis acid FeCl₃ activates the aldehyde substrate (**2a**) through coordination of the carbonyl oxygen to the iron(III) center to form adduct **A'**, i.e., the activated form of **2a**. Species **A'** reacts with indole **1** to generate inonic intermediate **B'** which can be further transformed to adduct **C'**. Dehydration of **C'** affords product **3**

The Journal of Organic Chemistry

and regenerates the catalyst. Adduct C' may also interact with 1 to form bisindole 4 which reacts with A' to afford 3 and regenerate the catalyst. It is noteworthy that one equivalent of BHT (butylated hydroxytoluene) was added as a radical scavenger to the reaction of 1a and 2a, leading to 3a in 71% yield, which excludes a radical pathway.^{4f}

Scheme 1. Proposed mechanism.

In conclusion, efficient FeCl₃·6H₂O-catalyzed C3-alkenylation of 2-substituted indoles has been successfully realized by using phenylacetaldehydes as alkenylating

reagents in the presence of ethanol. Formation of diethyl acetal of the aldehyde substrate and/or adduct of aldehyde with the catalyst is proposed to initiate the catalytic cycle and the reaction proceeds via the bisindole intermediate. The present protocol provides a convenient route to vinylindole derivatives under mild conditions.

Experimental Section

General considerations. ¹H and ¹³C $\{^{1}H\}$ NMR spectra were recorded on a 400 and 100 MHz FT-NMR spectrometer, and all chemical shift values refer to δ_{TMS} = 0.00 ppm or CDCl₃ (δ (¹H), 7.26 ppm; δ (¹³C), 77.16 ppm). The HRMS analysis was obtained on a GC-TOF mass spectrometer. FeCl₃·6H₂O and FeCl₃ (>99.0%) were purchased from the 5th Shengyang Reagent Factory, China. All the other chemical reagents were purchased from commercial sources and used as received unless otherwise indicated. *N*-substituted indoles, 1,2-dimethylindole, i.e.. 1-ethyl-2-methylindole, 1-benzyl-2- methylindole, and 1-methyl-2-phenylindole,¹⁸ 1-allyl-2-methyl-indole,¹⁹ 1-allyl-2-phenyl-1*H*-indole,²⁰ 2-cyclohexylindole and 2-pentylindole,²¹ 1-methyl-2- cyclohexylindole,²² and 1,3-dimethylindole²³ were prepared as reported.

A typical procedure for FeCl₃·6H₂O-catalyzed alkenylation of indoles 1 with aldehyde 2a – synthesis of 3a: To a 25-mL round bottom flask, were successively added FeCl₃·6H₂O (3.4 mg, 0.0125 mmol), CH₂Cl₂ (3 mL), EtOH (51.0 mg, 1.1 mmol), phenylacetaldehyde (2a) (66.0 mg, 0.55 mmol) and 1,2-dimethylindole (1a) (72.5 mg, 0.5 mmol). The mixture was stirred at ambient temperature for 3 h. All the volatiles were removed under reduced pressure, and the resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/CH₂Cl₂ = 8:1, v/v) to afford the target product $3a^{24}$ (112.0 mg, 91%). M.p.: 130-132 °C. ¹H

NMR (400 MHz, CDCl₃): δ 8.01 (d, J = 6.9 Hz, 1 H), 7.55 (d, J = 7.5 Hz, 2 H), 7.40-7.31 (m, 4 H), 7.27-7.21 (m, 3 H), 7.13 (d, J = 16.4 Hz, 1 H), 3.70 and 2.54 (s each, 3:3 H).

(E)-2-Methyl-3-styryl-1H-indole ((E)-3b):^{6c} 95 mg, yield 81%. Yellow solid.
M.p.: 187-188 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 6.9 Hz, 1 H), 7.83 (s, 1 H), 7.64 (d, J = 7.5 Hz, 2 H), 7.47 (t, J = 7.5 Hz, 2 H), 7.39 and 7.21 (d each, J = 16.4 Hz, 1:1 H), 7.34-7.27 (m, 4 H), 2.55 (s, 3 H).

(*E*)-2-Cyclohexyl-3-styryl-1*H*-indole ((*E*)-3c): 121 mg, yield 80%. White solid. M.p.: 64-66 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (br, 2 H), 7.60 (d, *J* = 6.8 Hz, 2 H), 7.45-7.37 (m, 4 H), 7.26 (m, 3 H), 7.20 (d, *J* = 16.4 Hz, 1 H), 3.15 (m, 1 H), 2.04 (m, 2 H), 1.94 (m, 2 H), 1.87 (d, *J* = 13.9 Hz, 1 H), 1.52 (m, 4 H), 1.35 (m, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.8, 139.2, 135.6, 126.55, 109.5, 128.7, 126.51, 125.8, 125.4, 121.8, 121.7, 120.5, 120.2, 110.9, 36.0, 33.1, 26.7, 26.1. HRMS (EI) Calcd for C₂₂H₂₃N: 301.1830; Found: 301.1842.

(*E*)-2-Pentyl-3-styryl-1*H*-indole ((*E*)-3d): 108 mg, yield 75%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 6.9 Hz, 1 H), 7.90 (s, 1 H), 7.60 (d, *J* = 7.7 Hz, 2 H), 7.43 (t, 2 H), 7.34 (m, 2 H), 7.29-7.24 (m, 3 H), 7.20 (d, *J* = 16.4 Hz, 1 H), 2.89 (t, *J* = 7.7 Hz, 2 H), 1.74 (m, 2 H), 1.42 (m, 4 H), 0.96 (t, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.5, 139.2, 135.7, 126.6, 110.7, 128.7, 126.5, 125.8, 125.3, 121.9, 121.8, 120.5, 120.1, 110.8, 31.6, 29.6, 26.6, 22.6, 14.1. HRMS (EI) Calcd for C₂₁H₂₃N: 289.1830; Found: 289.1823.

(*E*)-2-Phenyl-3-styryl-1*H*-indole ((*E*)-3e): 130 mg, yield 88%. White solid.
M.p.: 90-91 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.20 (m, 1 H), 8.12 (s, 1 H), 7.62 (m, 2 H), 7.59-7.54 (m, 4 H), 7.51-7.30 (m, 9 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.9, 137.5, 136.5, 132.5, 126.9, 111.9, 129.0, 128.9, 128.7, 128.3, 127.5, 126.7, 126.0,

123.0, 122.4, 120.91, 120.89, 111.3. HRMS (EI) Calcd for C₂₂H₁₇N: 295.1361; Found: 295.1366.

(*E*)-2-(4-Fluorophenyl)-3-styryl-1*H*-indole ((*E*)-3f): 121 mg, yield 77%. White solid. M.p.: 104-107 °C. ¹H NMR (400 MHz, acetone-d₆) δ 10.69 (s, 1 H), 8.16 (d, *J* = 7.4 Hz, 1 H), 7.75 (m, 2 H), 7.56 (d, *J* = 7.5 Hz, 2 H), 7.52 (d, *J* = 7.5 Hz, 1 H), 7.46 (d, *J* = 16.5 Hz, 1 H), 7.33 (m, 5 H), 7.23 (m, 3 H). ¹³C{¹H} NMR (100 MHz, acetone-d₆) δ 163.4 (d, *J* = 244.9 Hz), 139.7, 137.8, 137.7, 127.5, 111.9, 129.9 (d, *J* = 3.2 Hz), 131.8 (d, *J* = 8.6 Hz), 116.5 (d, *J* = 21.6 Hz), 129.4, 126.5, 127.4, 127.3, 123.4, 123.1, 121.4, 121.2, 112.4. HRMS (EI) Calcd for C₂₂H₁₆FN: 313.1267; Found: 313.1277.

(*E*)-2-(4-Chlorophenyl)-3-styryl-1*H*-indole ((*E*)-3g): 134 mg, yield 81%. White solid. M.p.: 129-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (m, 2 H), 7.54-7.48 (m, 6 H), 7.40 (t, 3 H), 7.34-7.26 (m, 5 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.6, 136.5, 136.0, 134.3, 131.0, 126.9, 112.4, 130.0, 129.3, 128.8, 128.1, 127.0, 126.0, 123.3, 121.8, 121.1, 121.0, 111.4. HRMS (EI) Calcd for C₂₂H₁₆ClN: 329.0971; Found: 329.0970.

(*E*)-2-(Naphthalen-2-yl)-3-styryl-1*H*-indole ((*E*)-3h): 157 mg, yield 91%. White solid. M.p.: 85-88 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.19 (m, 2 H), 8.03 (s, 1 H), 7.96-7.89 (m, 3 H), 7.72 (d, *J* = 8.4 Hz, 1 H), 7.59-7.48 (m, 5 H), 7.41-7.26 (m, 6 H), 7.28 (t, 1 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.9, 137.5, 136.7, 133.5, 132.9, 130.0, 127.0, 112.3, 128.8, 128.7, 128.3, 128.0, 127.9, 127.7, 126.84, 126.78, 126.7, 126.5, 126.0, 123.1, 122.3, 121.0, 120.9, 111.4. HRMS (EI) Calcd for C₂₆H₁₉N: 345.1517; Found: 345.1528.

(*E*)-2,5-Dimethyl-3-styryl-1*H*-indole ((*E*)-3i): 91 mg, yield 73%. White solid. M.p.: 165-167 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (s, 1 H), 7.71 (br, 1 H), 7.59 (d,

J = 7.4 Hz, 2 H), 7.41 and 7.26 (t each, 2:1 H), 7.32 (d, J = 16.4 Hz, 1 H), 7.18-7.11 (m, 2 H), 7.05 (d, J = 8.1 Hz, 1 H), 2.55 and 2.49 (s each, 3:3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.2, 134.9, 133.9, 129.8, 126.9, 110.7, 128.7, 126.5, 125.8, 125.0, 123.3, 122.0, 119.6, 110.3, 21.8, 12.5. HRMS (EI) Calcd for C₁₈H₁₇N: 247.1361; Found: 247.1363.

(E)-5-Methoxy-2-methyl-3-styryl-1*H*-indole ((*E*)-3j): 57 mg, yield 43%. White solid. M.p.: 115-117 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (br, 1 H), 7.54 (d, *J* = 7.5 Hz, 2 H), 7.44 (s, 1 H), 7.38 and 7.23 (t each, 2:1 H), 7.29 (d, *J* = 16.4 Hz, 1), 7.04 (d, *J* = 16.4 Hz, 1 H), 7.19 (d, *J* = 8.7 Hz, 1 H), 6.85 (dd, *J* = 8.7 and 2.3 Hz, 1 H), 3.92 and 2.51 (s each, 3:3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 154.8, 139.1, 135.5, 130.7, 127.3, 111.0, 128.6, 126.5, 125.8, 125.1, 121.9, 111.2, 110.9, 102.9, 56.2, 12.7. HRMS (EI) Calcd for C₁₈H₁₇NO: 263.1310; Found: 263.1320.

(*E*)-5-Fluoro-2-methyl-3-styryl-1*H*-indole ((*E*)-3k): 82 mg, yield 66%. White solid. M.p.: 126-129 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (br, 1 H), 7.66 (d, *J* = 8.6 Hz, 1 H), 7.57 (d, *J* = 7.7 Hz, 2 H), 7.42 (t, 2 H), 7.30-7.25 (m, 2 H), 7.16 (dd, *J* = 8.7 and 4.5 Hz, 1 H), 7.05 (d, *J* = 16.5 Hz, 1 H), 6.96 (dt, *J* = 9.0 and 2.2 Hz, 1 H), 2.48 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.5, 138.8, 136.5, 132.0, 127.0, 111.3, 128.8, 125.8, 126.7, 125.4, 121.3, 111.1, 109.7 (d, *J* = 25.8 Hz), 105.1 (d, *J* = 24.1 Hz), 12.5. HRMS (EI) Calcd for C₁₇H₁₄NF: 251.1110; Found: 251.1119.

(*E*)-5-Chloro-2-methyl-3-styryl-1*H*-indole ((*E*)-3l): 107 mg, yield 80%. White solid. M.p.: 128-130 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (s, 1 H), 7.93 (br, 1 H), 7.63 (d, *J* = 7.4 Hz, 2 H), 7.47 (t, 2 H), 7.35-7.28 (m, 2 H), 7.23 (m, 2 H), 7.11 (d, *J* = 16.5 Hz, 1 H), 2.55 (s, 3 H). ¹³C{¹H} NMR (100 MHz,CDCl₃) δ 138.7, 136.0, 133.9, 127.7, 126.1, 110.9, 128.8, 126.8, 125.9, 125.8, 121.9, 121.0, 119.3, 111.6, 12.5. HRMS (EI) Calcd for C₁₇H₁₄NCl: 267.0815; Found: 267.0822.

(*E*)-6-Phenyl-7-styryl-5*H*-[1,3]dioxolo[4,5-f]indole ((*E*)-3m): 156mg, yield 92%. White solid. M.p.: 149-150 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (s, 1 H), 7.63-7.54 (m, 7 H), 7.50-7.40 (m, 4 H), 7.34 (t, 1 H), 7.23 (d, *J* = 16.5 Hz, 1 H), 6.90 (s, 1 H), 6.07 (s, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 145.3, 143.7, 138.8, 136.3, 132.6, 131.5, 120.8, 112.2, 129.0, 128.7, 128.5, 127.8, 127.0, 126.7, 125.9, 122.4, 100.9, 99.6, 92.2. HRMS (EI) Calcd for C₂₃H₁₇NO₂: 339.1259; Found: 339.1267.

(*E*)-1-Ethyl-2-methyl-3-styryl-1*H*-indole ((*E*)-3n): 121 mg, yield 93%. White solid. M.p.: 105-107 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (br, 1 H), 7.66, 7.48-7.43, 7.34, and 7.26-7.20 (m each, 2:4:3:1 H), 4.24 (q, 2 H), 2.63 (s, 3 H), 1.46 (t, 3 H). ¹³C {¹H} NMR (CDCl₃, 100 MHz) δ 139.4, 136.2, 135.8, 126.1, 110.6, 128.7, 126.4, 125.7, 124.9, 122.2, 121.5, 120.2, 120.0, 109.1, 38.0, 15.3, 10.6. HRMS (EI) Calcd for C₁₉H₁₉N: 261.1517; Found: 261.1525.

(*E*)-1-Benzyl-2-methyl-3-styryl-1*H*-indole ((*E*)-30): 107 mg, yield 66%. White solid. M.p.: 123-125 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.6 Hz, 1 H), 7.60 (d, *J* = 7.4 Hz, 2 H), 7.42 and 7.32-7.25 (m each, 3:8 H), 7.03 (d, *J* = 7.0 Hz, 2 H), 5.35 (s, 2 H), 2.50 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.2, 137.4, 137.2, 136.4, 126.1, 111.1, 128.9, 128.7, 127.5, 126.5, 126.0, 125.8, 125.4, 122.0, 121.8, 120.5, 120.0, 109.5, 46.7, 10.9. HRMS (EI) Calcd for C₂₄H₂₁N: 323.1674; Found: 323.1678.

(*E*)-1-Allyl-2-methyl-3-styryl-1*H*-indole ((*E*)-3p): 95 mg, yield 69%. White solid. M.p.: 76-78 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (br, 1 H), 7.62 (d, *J* = 7.2 Hz, 2 H), 7.42 and 7.27 (m each, 3:4 H), 7.21 (d, *J* = 16.4 Hz, 1 H), 5.97 (m, 1 H), 5.19 (d, *J* = 10.2 Hz, 1 H), 4.90 (d, *J* = 17.1 Hz, 1 H), 4.71 (t, 2 H), 2.53 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 139.2, 136.8, 136.3, 126.0, 110.8, 132.9, 128.7,

The Journal of Organic Chemistry

126.4, 125.7, 125.1, 122.1, 121.6, 120.4, 119.9, 116.5, 109.4, 45.4, 10.6. HRMS (EI) Calcd for C₂₀H₁₉N: 273.1517; Found: 273.1520.

(*E*)-1-Methyl-2-phenyl-3-styryl-1*H*-indole ((*E*)-3q): 107 mg, yield 69%. White solid. M.p.: 142-144 °C.¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.1 Hz, 1 H), 7.48, 7.35, and 7.19 (m each, 7:5:3 H), 3.62 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.0, 139.1, 138.0, 131.4, 125.7, 112.1, 131.2, 128.64, 128.59, 126.4, 125.8, 122.8, 122.6, 120.8, 109.9, 31.1. HRMS (EI) Calcd for C₂₃H₁₉N: 309.1517; Found: 309.1518.

(*E*)-1-Ethyl-2-phenyl-3-styryl-1*H*-indole ((*E*)-3r): 127mg, yield 79%. White solid. M.p.: 113-115 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.35 (m, 1 H), 7.65, 7.57, 7.47, and 7.30 (m each, 5:3:4:2 H), 7.38 (d, *J* = 16.5 Hz, 1 H), 4.21 (q, 2 H), 1.39 (t, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.5, 139.1, 136.7, 131.6, 126.0, 112.3, 131.0, 128.64, 128.59, 128.58, 126.3, 125.7, 125.5, 122.8, 122.4, 120.8, 120.7, 110.6, 38.8, 15.3. HRMS (EI) Calcd for C₂₄H₂₁N: 323.1674; Found: 323.1676.

(*E*)-1-Allyl-2-phenyl-3-styryl-1*H*-indole ((*E*)-3s): 125 mg, yield 74%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (br, 1 H), 7.48, 7.41, 7.29, and 7.15 (m each, 5:2:5:3 H), 5.89 (m, 1 H), 5.15 (d, *J* = 10.3 Hz, 1 H), 4.94 (d, *J* = 17.1 Hz, 1 H), 4.59 (br, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 140.9, 139.1, 137.4, 131.3, 112.4, 133.5, 131.0, 128.7, 128.6, 128.5, 126.4, 125.9, 125.8, 122.8, 122.6, 120.9, 120.8, 116.7, 110.7, 46.6. HRMS (EI) Calcd for C₂₅H₂₁N: 335.1674; Found: 335.1678.

(*E*)-2-Cyclohexyl-1-methyl-3-styryl-1*H*-indole ((*E*)-3t): 97 mg, yield 62%.
White solid. M.p.: 117-120 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.5 Hz, 1 H), 7.70 (m, 3 H), 7.55 (t, 2 H), 7.40 (m, 4 H), 7.26 (d, *J* = 16.3 Hz, 1 H), 3.91 (s, 3 H), 3.23 (m, 1 H), 2.10, 2.01, 1.64-1.46 (m each, 6:1:3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 143.9, 139.2, 137.4, 126.2, 110.1, 128.7, 126.5, 126.2, 125.8, 122.7, 121.6,

120.2, 120.1, 109.2, 37.2, 32.1, 27.3, 26.2, 30.7. HRMS (EI) Calcd for $C_{23}H_{25}N$: 315.1987; Found: 315.1990.

(*E*)-1,3-Dimethyl-2-styryl-1*H*-indole ((*E*)-3u): E/Z = 30:1.8 mg, yield 7%. White solid. M.p.: 79-82 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, J = 7.6 Hz, 1 H), 7.68 (d, J = 7.3 Hz, 2 H), 7.53 (t, 2 H), 7.38 (m, 4 H), 7.28 (m, 1 H), 7.08 (d, J = 16.4Hz, 1 H), 3.90 (s, 3 H), 2.63 (s, 3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 137.7, 137.6, 134.3, 128.7, 110.2, 132.2, 128.9, 127.8, 126.4, 122.3, 119.2, 118.9, 117.9, 109.0, 30.7, 10.4. HRMS (EI) Calcd for C₁₈H₁₇N: 247.1361; Found: 247.1370.

3,3'-(2-Phenylethane-1,1-diyl)bis(2-methyl-5-nitro-1*H***-indole) (4a): 150 mg, yield 91%. Yellow solid. M.P.: 265-268 °C. ¹H NMR (400 MHz, acetone-d₆) \delta 10.59 (s, 2 H), 8.47 (s, 2 H), 7.90 and 7.39 (d each, J = 8.9 Hz, 2:2 H), 7.16 (m, 3 H), 7.04 (d, J = 7.4 Hz, 2 H), 4.85 (t, 1 H), 3.81 (d, J = 7.9 Hz, 2 H), 2.35 (s, 6 H). ¹³C{¹H} NMR (100 MHz, acetone-d₆) \delta 141.9, 141.7, 139.8, 136.7, 128.2, 116.2, 130.0, 128.8, 126.8, 116.6, 116.3, 111.4, 41.4, 38.0, 12.6. HRMS (EI) Calcd for C₁₉H₁₅N₄O₄ [M-C₇H₇]⁺: 363.1093; Found: 363.1087.**

3,3'-(2-Phenylethane-1,1-diyl)bis(1*H***-indole)** (**4b**):²⁵ 36 mg, yield 43%. Colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (s, 2 H), 7.58 (d, *J* = 7.9 Hz, 2 H), 7.32 (d, *J* = 8.1 Hz, 2 H), 7.14 (m, 7 H), 7.03 (t, 2 H), 6.94 (s, 2 H), 4.81 (t, 1 H), 3.55 (d, *J* = 7.4 Hz, 2 H).

3,3'-(2-Phenylethane-1,1-diyl)bis(1,2-dimethyl-1*H***-indole) (4c): Compound 1a (363 mg, 2.5 mmol) was added to a stirred solution of FeCl₃·6H₂O (17 mg, 0.0625 mmol), EtOH (255 mg, 5.5 mmol), and 2a** (330 mg, 2.75 mmol) in CH₂Cl₂ (15 mL), and stirring was continued for 10 min. To the resultant mixture was added 15 mL saturated aqueous NaHCO₃ and extraction was performed with CH₂Cl₂ (3×15 mL). The combined organic phase was washed with brine (10 mL), dried over anhydrous

The Journal of Organic Chemistry

Na₂SO₄, evaporated all the volatiles under reduced pressure. Purification of the resulting residue by flash silica gel column chromatography (petroleum ether (60-90 $^{\circ}$ C)/CH₂Cl₂ = 10:1, v/v) afforded **4c** as a white solid (363 mg, 37%). M.p.: 268-270 $^{\circ}$ C. ¹H NMR (400 MHz, acetone-d₆) δ 7.72, 7.20, 7.08, 6.98, 6.88 (m each, 2:2:3:2:4 H), 4.63 and 3.76 (m each, 1:2 H), 3.50 and 2.05 (s each, 6:6 H). ¹³C{¹H} NMR (100 MHz, acetone-d₆) δ 142.9, 137.7, 133.9, 128.1, 114.3, 129.9, 128.5, 126.4, 120.6, 120.3, 119.1, 109.5, 42.1, 39.4, 29.5, 10.5. HRMS (EI) Calcd for C₂₁H₂₁N₂ [M-C₇H₇]⁺: 301.1704; Found: 301.1690.

3,3'-(2-Phenylethane-1,1-diyl)bis(2-methyl-1*H***-indole) (4d): In a fashion similar to the preparation of 4c, bisindole 4d was obtained from the reaction of 1b and 2a as a yellow solid (402 mg, 44%). M.p.: >264 °C, sublimated. ¹H NMR (400 MHz, acetone-d₆) \delta 9.67 (s, 2 H), 7.62 (d,** *J* **= 7.9 Hz, 2H), 7.21 (d,** *J* **= 8.0 Hz, 2 H), 7.11 (m, 3 H), 6.96-6.91 (m, 4 H), 6.84 (t, 2 H), 4.63 (t, 1 H), 3.75 (d,** *J* **= 7.8 Hz, 2 H), 2.15 (s, 6 H). ¹³C{¹H} NMR (100 MHz, acetone-d₆) \delta 142.1, 135.8, 131.3, 128.3, 113.5, 129.1, 127.6, 125.4, 119.7, 119.1, 118.2, 110.2, 40.9, 37.8, 11.5. HRMS (EI) Calcd for C₁₉H₁₇N₂ [M-C₇H₇]⁺: 273.1391; Found: 273.1380.**

3,3'-(2-Phenylethane-1,1-diyl)bis(2-phenyl-1*H***-indole) ((***E***)-4e): The mixture of 2-phenyl-1***H***- indole (483 mg, 2.5 mmol), FeCl₃·6H₂O (17 mg, 0.0625 mmol) and 2a** (330 mg, 2.75 mmol) in *p*-xylene (15 mL) was stirred at room temperature for 3 h. All the volatiles were evaporated under reduced pressure and the resultant residue was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/ethyl acetate = 2:1, v/v) to afford **4e** as a white solid (311 mg, 51%). M.p: 241-245 °C. ¹H NMR (400 MHz, acetone-d₆) δ 10.10 (br, 2 H), 7.71 and 7.36 (d each, J = 8.1 Hz, 2:2 H), 7.25-7.22 (m, 10 H), 7.04 (t, 2 H), 7.01-6.93 (m, 3 H), 6.91-6.79 (m, 4 H), 5.26 (t, 1 H), 3.73 (d, J = 7.9 Hz, 2 H). ¹³C{¹H} NMR (100 MHz,

acetone-d₆) δ 142.3, 137.4, 136.5, 135.1, 129.3, 115.8, 129.9, 129.7, 129.0, 128.5, 128.2, 126.4, 122.2, 121.9, 119.5, 111.9, 37.7. HRMS (EI) Calcd for C₂₉H₂₁N₂ [M-C₇H₇]⁺: 397.1704; Found:397.1703.

(E)-1,2-Dimethyl-3-(4-methylstyryl)-1H-indole ((E)-6a): Preheated-to-85 °C tBuOH (5 mL) was added to a mixture of $Pd(MeCN)_2Cl_2$ (5.2 mg, 0.02 mg) and *p*-benzoquinone (100 mg, 0.92 mmol). Water (16 μ L, 0.88 mmol) and 1-methyl-4vinylbenzene (95 mg, 0.8 mmol) were then added with stirring. After being stirred at 85 °C for 60 min the mixture was allowed to cool to room temperature. The resulting mixture was filtered through a short path of celite, eluting with ethyl acetate. All the volatiles were removed under reduced pressure to give crude 2-p-tolylacetaldehyde¹⁶ and its solution in 3 mL CH₂Cl₂ was added to the mixture of FeCl₃·6H₂O (3.4 mg, 0.0125 mmol), EtOH (51.0 mg, 1.1 mmol) and 1a (72.5 mg, 0.5 mmol), and was stirred at ambient temperature for 3 h. All the volatiles were removed under reduced pressure, and the resultant mixture was purified by silica gel column chromatography (eluent: petroleum ether (60-90 °C)/CH₂Cl₂ = 8:1, v/v) to afford **6a** as a white solid (102 mg, 78%). M.p.: 117-118 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 7.5 Hz, 1 H), 7.48 (d, J = 7.8 Hz, 2 H), 7.34-7.24 (m, 4 H), 7.21 (d, J = 7.9 Hz, 2 H), 7.13 (d, J = 16.4 Hz, 1 H), 3.68, 2.53, and 2.41 (s each, 3:3:3 H). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 137.3, 136.5, 136.3, 136.1, 125.9, 110.6, 129.4, 125.6, 125.0, 121.4, 121.2, 120.2, 119.9, 109.0, 29.7, 21.3, 10.8. HRMS (EI) Calcd for C19H19N: 261.1517; Found: 261.1514.

(*E*)-3-(4-Bromostyryl)-1,2-dimethyl-1*H*-indole ((*E*)-6b): In a fashion similar to the preparation of **6a**, **6b** was obtained as a yellow solid (113 mg, yield 69%). M.p.: 168-170 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01-7.98 (m, 1 H), 7.48 (d, *J* = 8.4 Hz, 2 H), 7.40 (d, *J* = 8.4 Hz, 2 H), 7.34-7.22 (m, 4 H), 7.05 (d, *J* = 16.3 Hz, 1 H), 3.67 and

The Journal of Organic Chemistry

2.51 (s each, 3:3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.3, 137.4, 137.0, 125.8, 119.7, 110.3, 131.7, 127.1, 123.4, 122.9, 121.6, 120.4, 119.8, 109.2), 29.8, 10.8. HRMS (EI) Calcd for C₁₈H₁₆BrN: 325.0466; Found: 325.0463.

(*E*)-1,2-Dimethyl-3-(2-phenylprop-1-enyl)-1*H*-indole ((*E*/*Z*)-6c): *E*/*Z* = 7:1, 101 mg, yield 78%. White solid. M.p.: 98-100 °C. ¹H NMR (400 MHz, CDCl₃) δ for (*E*/*Z*)-6c: 7.69 (d, *J* = 7.2 Hz, 2 H), 7.56 (d, *J* = 7.7 Hz, 1 H), 7.46 (t, 2 H), 7.35, 7.26 and 7.19 (m each, 2:1:1 H), 7.03 (s, 1 H); for (*E*)-6c: 3.75, 2.42, and 2.20 (s each, 3:3:3 H); for (*Z*)-6c: 3.59, 2.40, and 1.95 (s each, 3:3:3 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ for (*E*/*Z*)-6c: 143.5, 136.8, 136.7, 134.4, 119.2, 110.7; for (*E*)-6c: 128.4, 126.9, 125.9, 120.9, 120.0, 119.4, 119.3, 108.8, 29.7, 18.1, 11.7; for (*Z*)-6c: 128.2, 127.3, 126.2, 120.6, 119.2, 119.0, 108.4, 29.6, 25.6, 11.1. HRMS (EI) Calcd for C₁₉H₁₉N: 261.1517; Found: 261.1532.

(*E*)-1,2-Dimethyl-3-(3-phenylprop-1-enyl)-1*H*-indole ((*E*)-6d): 17 mg, yield 13%. Yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.9 Hz, 1 H), 7.32 and 7.24 (m each, 4:2 H), 7.17 (d, *J* = 7.2 Hz, 1 H), and 7.12 (t, 1 H), 6.67 (d, *J* = 15.8 Hz, 1 H), 6.30 (dt, *J* = 15.8 and 6.9 Hz, 1 H), 3.66 and 2.45 (s each, 3:3 H), 3.64 (d, *J* = 6.7 Hz, 2 H). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 141.5, 137.2, 135.0, 126.1, 110.2, 128.7, 128.5, 126.0, 125.8, 124.0, 121.2, 119.8, 119.6, 108.8, 40.5, 29.6, 10.7. HRMS (EI) Calcd for C₁₉H₁₉N: 261.1517; Found: 261.1526.

Acknowledgements. We are grateful to the National Basic Research Program of China (2009CB825300) and the National Natural Science Foundation of China (21272232) for support of this research.

Supporting Information Available: Copies of NMR spectra. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>.

References

- (1) Finefield, J. M.; Frisvad, J. C.; Sherman, D. H.; Williams, R. M. J. Nat. Prod.
 2012, 75, 812.
- (2) For selected recent reviews, see: (a) Platon, M.; Amardeil, R.; Djakovith, L.; Hierso, J. *Chem. Soc. Rev.* 2012, *41*, 3929. (b) Vicente, R. *Org. Biomol. Chem.* 2011, *9*, 6469. (c) Cacchi, S.; Fabrizi, G. *Chem. Rev.* 2011, *111*, PR215.
- (3) Liu, Y.; Nappi, M.; Escudero-Adán, E. C.; Melchiorre, P. Org. Lett. 2012, 14, 1310.
- (4) (a) Leskinen, M. V.; Yip, K. T.; Valkonen, A.; Pihko, P. M. J. Am. Chem. Soc. 2012, 134, 5750. (b) Jiao, L.; Bach, T. J. Am. Chem. Soc. 2011, 133, 12990. (c) Rueping, M.; Nachtsheim, B. J. Beilstein J. Org. Chem. 2010, 6, 6. (d) Zeng, M.; You, S. L. Synlett 2010, 9, 1289. (e) Guo, X. W.; Pan, S. G; Liu, J. H.; Li, Z. P. J. Org. Chem. 2009, 74, 8848; (f) Jiang, Z. Y.; Wu, J. R.; Li, L.; Chen, X. H.; Lai, G Q.; Jiang, J. X.; Lu, Y. X.; Xu, L. W. Cent. Eur. J. Chem. 2010, 8, 669.
- (5) Ackermann L.; Lygin, A. V. Org. Lett. 2011, 13, 3332.
- (6) (a) García-Rubia, A.; Urones, B.; Arrayás, R. G.; Carretero, J. C. Chem. Eur. J.
 2010, 16, 9676. (b) García-Rubia, A.; Arrayás, R. G.; Carretero, J. C. Angew.
 Chem. Int. Ed. 2009, 48, 6511. (c) Low, K. H.; Magomedov, N. A. Org. Lett. 2005, 7, 2003.
- (7) (a) Ding, Z. H.; Yoshikai, N. Angew. Chem. Int. Ed. 2012, 51, 4698. (b) Nakao,
 Y.; Kanyiva, K. S.; Oda, S.; Hiyama, T. J. Am. Chem. Soc. 2006, 128, 8146. (c)
 Kutubi, M. S.; Kitamura, T. Tetrahedron 2011, 67, 8140. (d) Suarez, L. L.;
 Greaney, M. F. Chem. Commun. 2011, 47, 7992.
- (8) For selected recent reports on direct alkenylation of indoles, see: (a) Wang, L.;
 Guo, W.; Zhang, X. X.; Xia, X. D.; Xiao, W. J. Org. Lett. 2012, 14, 740; (b) Xiang,
 S. K.; Zhang, B.; Zhang, L. H.; Cui, Y. X.; Jiao, N. Chem. Commun. 2011, 47,

- 8097. (c) Grimster, N. P.; Gauntlett, C.; Godfrey, C. R. A.; Gaunt, M. J. Angew. Chem. Int. Ed. 2005, 44, 3125.
- (9) Kandukuri, S. R.; Schiffner, J. A.; Oestreich, M. Angew. Chem. Int. Ed. 2012, 51, 1265.
- (10) (a) Arcadi, A.; Alfonsi, M.; Bianchi, G.; D'Annicalle, G.; Marinelli, F. Adv. Synth. *Catal.* 2006, 348, 331. (b) Santra, S.; Majee, A.; Hajra, A. Tetrahedron Lett. 2011, 52, 3825.
- (11) Wang, W. Q.; Ikemoto, T. Tetrahedron Lett. 2005, 46, 3875.
- (12) Fridkin, G.; Boutard, N.; Lubeel, W. D. J. Org. Chem. 2009, 74, 5603.
- (13) For selected recent reviews on iron catalysis, see: (a) Sun, C. L.; Li, B. J.; Shi, Z. J. Chem. Rev. 2011, 111, 1293. (b) Sarhan, A. A. O.; Bolm, C. Chem. Soc. Rev. 2009, 38, 2730. (c) Czaplik, W. M.; Mayer, M.; Cvengroš, J.; Jacobi von Wangelin, J. ChemSusChem 2009, 2, 396. (d) Correa, A.; Mancheño, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108. (e) Sherry, B. D.; Fürstner, A. Acc. Chem. Res. 2008, 41, 1500. (f) Plietker, B. Iron Catalysis in Organic Chemistry: Reactions and Applications. Plietker, B. Eds; Wiley-VCH; Weinheim, 2008. (g) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217. For selected recent reports on iron-catalyzed Friedel-Crafts alkylation, see: (h) Iovel, I.; Mertins, K.;. Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 3913. (i) Jana, U.; Maiti, S.; Biswas, S. Tetrahedron Lett. 2007, 48, 7160.
- (14) Qian, B.; Xie, P.; Xie, Y. J.; Huang, H. M. Org. Lett. 2011, 13, 2580.
- (15) (a) Xu, T. Y.; Yu, Z. K. Wang, L. D. Org. Lett. 2009, 11, 2113. (b) Xu, T. Y.;
 Yang, Q.; Li, D. P.; Dong, J. H.; Yu, Z. K.; Li, Y. X. Chem. Eur. J. 2010, 16, 9264. (c) Xu, T. Y.; Yang, Q.; Ye, W. J.; Jiang, Q. B.; Xu, Z. Q.; Chen, J. P.; Yu, Z. K. Chem. Eur. J. 2011, 17, 10547.

- (16) Teo, P.; Wichenes, Z. K.; Dong, G. B.; Grubbs, R. H. Org. Lett. 2012, 14, 3237.
 - (17) Miranda, P. O.; Díaz, D. D.; Padrón, J. I.; Ramírez, M. A.; Martín, V. S. J. Org.
 Chem. 2005, 70, 57.
 - (18) Yan, G. B.; Kuang, C. X.; Zhang, Y.; Wang, J. B. Org. Lett. 2010, 12, 1052.
- (19) Yip, K.-T.; Yang, D. Chem. Asian J. 2011, 6, 2166.
- (20) Obinochny, A. A.; Anisimov, B. N.; Sergeeva, N. D.; Prostakov, N. S. Chem. Heterocycl. Compd. 1993, 29, 553.
- (21) Wang, D. S.; Chen, Q. A.; Li, W.; Yu, C. B.; Zhou, Y. G.; Zhang, X. M. J. Am. Chem. Soc. 2010, 132, 8909.
- (22) Adkins, H.; Coonradt. H. L. J. Am. Chem. Soc. 1941, 63, 1563.
- (23) Kikugawa, Y.; Miyake, Y. Synthesis 1981, 461.
- (24) Adam, W.; Takayama, K. J. Org. Chem. 1980, 45, 447.
- (25) Noguchi-Yachide, T.; Tetsuhashi, M.; Aoyama, H.; Hashimoto, Y. Chem. Pharm. Bull. 2009, 57, 536.