

Indium-Catalyzed Hydroamination/Hydrosilylation of Terminal Alkynes and Aromatic Amines through a One-Pot, Two-Step Protocol

Norio Sakai,*^[a] Nobuaki Takahashi,^[a] and Yohei Ogiwara^[a]

Keywords: Indium / Hydroamination / Hydrosilylation / Alkynes / Reduction

We demonstrated that indium tribromide effectively functioned as a single catalyst for two successive steps in a onepot procedure. First, the hydroamination of alkynes with anilines took place to give the Markovnikov product. Then,

Introduction

Carbon-nitrogen bond formation is important to industrial chemistry because of the various uses of the resulting secondary or tertiary amine. Central to these reactions is the catalytic hydroamination of alkynes and anilines, which shows high atom economy (100%).^[1] Thus far, this molecular transformation has been consistently performed by using a number of early^[2] or late transition metals,^[3] main group metals,^[4] and lanthanides.^[5] Among them, a report by Dove et al. attracted our attention. In this case, a Ti complex functioned as a single catalyst and promoted both hydroamination and hydrosilylation reactions for the addition of terminal alkynes and anilines.^[6] In a typical reductive hydroamination reaction, the second reduction (hydrogenation) step is generally achieved by using either a separate catalyst system, such as ZnCl₂/NaBH₃CN,^[2a] or a strong reducing agent, such as LiAlH₄.^[7] These procedures can create troublesome experimental procedures and require extra chemicals and solvents, and the strong reducing reagents can lead to a decrease in the chemoselectivity toward functional groups that are sensitive to reducing conditions. Therefore, the development of a one-pot method that uses a single catalyst for a reductive hydroamination reaction that occurs under mild reaction conditions would be highly worthwhile.

As an extension of these procedures, Beller et al. reported an efficient method for the reductive hydroamination of anilines and alkynes by using $Zn(OTf)_2$ (OTf = trifluoromethanesulfonate) under hydrogen.^[8] Djukic and co-workers disclosed that a chromium-iridium complex successfully hydrosilylation of the imine intermediates by treatment with a hydrosilane substrate afforded the corresponding secondary amines.

catalyzed the hydroamination/hydrosilylation of terminal aromatic alkynes and anilines by using the mild reducing agent Et₃SiH.^[9] Several groups have reported that iridium complexes in the presence of Et₃SiH will undergo a one-pot hydroamination/hydrosilylation in an inter- or intramolecular manner.^[10] Also reported was the tandem intermolecular hydroamination/transfer hydrogenation of alkynes by using a combination of a gold(I) complex and a Hantzsch ester as the reducing source.^[11] Thus, we began to develop the reductive hydroamination of alkynes by using a single catalyst that contained a group 13 metal, particularly an indium compound, as the combination of indium catalysts and a hydrosilane have shown high functional-group tolerance and interesting functional-group interconversion (FGI).^[12,13] Examples of employing group 13 metals include the breakthrough work of Barluenga et al. who reported the Tl-catalyzed hydroamination of alkynes and reports from the Huang and Loh or Prajapati groups who found that an indium(III) compound could catalyze the hydroamination of either alkenes or alkynes.^[14] The galliumcatalyzed hydroamination of alkynes has also been reported by Li et al.^[7b] Herein, we report the indium-catalyzed onepot hydroamination/hydrosilylation of terminal alkynes and anilines in the presence of a hydrosilane. This is the first example of a one-pot reductive hydroamination by employing a main group metal, an indium(III) compound, which effectively functions as a single catalyst for successive hydroamination and hydrosilylation reactions.

Results and Discussion

Phenylacetylene and *p*-toluidine were initially treated with $InBr_3$ (10 mol-%) in toluene at 110 °C for 3 h followed by the addition of Et₃SiH (Si–H: 4 equiv.) and further heated to produce the expected secondary amine **1** in 97%

[[]a] Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science (RIKADAI), Noda, Chiba 278-8510, Japan E-mail: sakachem@rs.noda.tus.ac.jp http://www.rs.tus.ac.jp/sakaigroup

http://www.rs.tus.ac.jp/sakaigroup Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ejoc.201402544.

yield (see Table 1, Entry 1). This reaction showed a high degree of selectivity for the Markovnikov product. During the series of reactions, it is noteworthy that the indium compound showed high catalytic activity for the two steps, that is, the hydroamination and then the subsequent hydrosilvlation. Of the screened hydrosilanes, 1,1,3,3-tetramethyldisiloxane (TMDS), polymethylhydrosiloxane (PMHS), phenylsilane (PhSiH₃), and methyldiphenylsilane (Ph₂Me-SiH), none had the same effect with regard to the reductive hydroamination (see Table 1, Entries 2-5). In contrast, dimethyl(phenyl)silane (PhMe₂SiH) was an outstanding reducing agent (see Table 1, Entry 6). When the amount of the indium compound or the hydrosilane was decreased to 5 mol-% or 3 equiv. (Si-H), respectively, the product was afforded in low yield (see Table 1, Entries 7 and 8). Although 1 equiv. of the hydrosilane is sufficient stoichiometrically for the reduction of the imine, there is no clear reason for the remarkable decrease in yield. Conducting the hydroamination with InCl₃, In(OTf)₃, and In₂O₃ led to a reduced product yield, but in the case of InI₃, the reaction proceeded in nearly quantitative yield (see Table 1, Entries 9–12). Consequently, the system that employed In(OTf)₃, as reported by Prajapati et al., could not be applied to this sequence.^[14b] Other group 13 metal compounds, such as AlCl₃ and GaCl₃, did not show high catalytic activity (see Table 1, Entries 13 and 14). To compare the results in which Zn(OTf)₂ promoted the reductive hydroamination of alkynes with anilines under hydrogen,^[8] a similar reaction was carried out with Zn(OTf)₂ and PhMe₂SiH. This reducing system, however, required high

Table 1. Optimization	of t	the reaction	conditions. ^[a]
-----------------------	------	--------------	----------------------------

1) Lewis acid (10 mol-%) Ph p-Tol toluene, reflux, 3 h NH 2) silane (*Si-H*: 4 equiv.) toluene, 60 °C, 20 h p-Tol-NH₂ Me Ph 1 (1.5 equiv.) Yield [%][b] Entry Catalyst Hydrosilane 1 InBr₃ Et₃SiH 97 InBr₃ 2 TMDS 64 3 PMHS 26 InBr₃ 4 InBr₃ 76 PhSiH₃ 5 n.d.^[c] InBr₃ Ph2MeSiH 98^[d] 6 InBr₃ PhMe₂SiH 7[e] InBr₃ PhMe₂SiH 20 8^[f] 42 InBr₃ PhMe₂SiH 9 InCl₃ PhMe₂SiH 6 10 PhMe₂SiH 56 In(OTf)₃ 10 11 In_2O_3 PhMe₂SiH 12 PhMe₂SiH 98 InI₃ n.d.^[c] 13 AlCl₃ PhMe₂SiH GaCl₃ 25 14 PhMe₂SiH 15 Zn(OTf)₂ PhMe₂SiH 30 16^[g] 90 PhMe₂SiH Zn(OTf)₂

[a] Alkyne (0.30 mmol), *p*-methylaniline (0.45 mmol), catalyst (0.030 mmol), hydrosilane (1.2 mmol), and toluene (0.60 mL). [b] NMR yield. [c] n.d. = not determined. [d] Isolated yield. [e] InBr₃ (5 mol-%) was employed. [f] PhMe₂SiH (3 equiv.). [g] Temperature of 110 °C in the second step.

temperature (>110 °C) to complete the hydroamination step (see Table 1, Entries 15 and 16).

With optimal conditions, the scope of the reductive hydroamination was examined by using phenylacetylene and a variety of anilines (see Table 2). In most cases, with anilines that had either an electron-donating or weakly electron-withdrawing group, the reductive hydroamination process proceeded cleanly to produce the corresponding secondary aromatic amines 2-10 in good to excellent yields. In addition, the location of the substituent on the benzene ring had almost no effect on the yield of the hydroamination product. The trifluoromethyl, cyano, and nitro groups, which are generally sensitive to conventional reducing conditions, were exceptions and had a high tolerance to the InBr₃/PhMe₂SiH reducing system. Unlike the In(OTf)₃/ Et₃SiH system in *N*,*N*-dimethylformamide (DMF),^[13h] our system in toluene would not reduce the nitro group on a benzene ring. These strong electron-withdrawing substituents required a longer reaction time to consume the alkyne in the first addition step, which may have led to the decreased total yield. Compared with using other metal catalysts such as GaCl₃^[7b] or Zn(OTf)₂,^[4d] the employment of InBr₃ was successfully applied to the reductive hydroamination of an aromatic secondary amine. For example, when the reaction was carried out with N-methylaniline, N,N-diphenylamine, and N-methylbenzylamine, the corresponding

Table 2. Reductive hydroamination of phenylacetylene with a mines. $^{\left[a\right] }$

1) cat. InBr₃

[a] Alkyne (0.30 mmol), amine (0.45 mmol), $InBr_3$ (0.030 mmol), hydrosilane (Si–H: 1.2 mmol), toluene (0.60 mL), 3 h for the first step, 20 h for the second step. [b] InI_3 was employed as the catalyst. [c] 6 h for the first step. [d] 24 h for the first step. [e] 30 h for the second step. [f] n.r. = no reaction.

FULL PAPER

tertiary amines **14–16**, respectively, were obtained in relatively good yields. Unfortunately, the reductive hydroamination with a primary aliphatic amine did not produce the expected secondary amine.

Then, the reductive hydroamination of other alkynes, besides phenylacetylene, with either 4-methylaniline or 4chloroaniline was conducted under the optimal conditions (see Table 3). The employment of a terminal alkyne with an aliphatic substituent, such as 1-octyne and 1-hexyne, produced the corresponding secondary amines 19-22 in relatively good yields. When the reaction was carried out with a chloro-substituted phenylacetylene derivative, the corresponding amine 23 was obtained in good yield. Dimethyl acetylenedicarboxylate (DMAD) was then used in this reductive hydroamination reaction to lead to aspartic acid derivative 24 in a practical yield. Unlike our previous system that involved InBr₃/Et₃SiH in chloroform, this reducing system, which consisted of an indium(III) compound/ PhMe₂SiH in toluene, would not reduce an ester moiety. When the reductive hydroamination method was applied to an alkyne with a monoester moiety, such as ethyl propiolate or ethyl phenylpropiolate, the first hydroamination step did not occur, and the starting amine and alkyne were recovered. Therefore, this reducing system does not have an effect on monoester groups. Unfortunately, this method could not be applied to a terminal alkyne with bulky substituents such as 3,3-dimethyl-1-butyne and internal alkynes such as 5-decyne and diphenylacetylene. On the basis of these results, it seems that the hydroamination step was influenced by the steric factors of the alkyne.

Table 3. Reductive hydroamination of alkynes with anilines.[a]

[a] Alkyne (0.30 mmol), amine (0.45 mmol), $InBr_3$ (0.030 mmol), hydrosilane (Si–H, 1.2 mmol), toluene (0.60 mL), 3 h for the first step, 20 h for the second step. [b] InI_3 was employed as the catalyst.

The hydroamination of phenylacetylene with p-toluidine was then conducted with PhMe₂SiD under the optimal conditions, and amine **25**, which showed a high H/D exchange ratio at the benzyl position, was obtained in a good yield [see Scheme 1, Equation (1)]. When the reaction was carried out with PhND₂, the secondary amine **26**, which incorpo-

rated deuterium atoms into the methyl moiety, was obtained after a common workup [see Scheme 1, Equation (2)]. The ¹H and ²D NMR spectroscopic data of product **26** showed the incorporation of deuterium atoms into the benzene ring as a result of the starting aniline (incorporation ratio of deuterium $D_{ortho}/D_{para}/CD_3$: 2:3:10).^[15]

Scheme 1. Deuterium-labeling experiments with $PhMe_2SiD$ and $PhND_2.$

On the basis of these deuterium-labeling experiments, we suggest a plausible reaction path for the reductive hydroamination (see Scheme 2). First, the alkyne coordinates with the indium compound to form activated alkyne A, which facilitates a subsequent nucleophilic attack of the aniline^[16] to give enamine intermediate **B**. Intermediate **B** can rapidly transform into its more stable tautomer, imine intermediate C. Then, intermediate C, which is activated by the indium compound, is smoothly hydrosilylated to produce the reduced product **D**. Finally, product **D** is hydrolyzed by a common workup procedure to produce the corresponding amine derivative. During the reductive hydroamination series, it has been inferred that the indium compound mainly promotes the initial hydroamination step,^[17] and excess amounts (0.5 equiv.) of the amine do not result in an undesired side reaction.^[18]

Scheme 2. Plausible reaction path for hydroamination and hydrosilylation.

Conclusions

We have demonstrated that indium tribromide effectively catalyzes the reductive hydroamination of terminal alkynes and aromatic amines to produce the corresponding secondary and tertiary amines in good yields. Also, compared with a sequential reaction protocol, this one-pot reductive hydroamination method avoids troublesome experimental procedures and the isolation an intermediate. As a result, there is a reduced need for extra chemicals and solvents.

Experimental Section

General Methods: The ¹H NMR spectroscopic data were recorded at 500 or 300 MHz by using tetramethylsilane (TMS) as the internal standard. The ¹³C NMR spectroscopic data were measured at 125 or 75 MHz by using the resonances of the residual solvent as the internal standard. High-resolution mass spectra (FAB or ESI) were measured by using *p*-nitrobenzyl alcohol (for FAB) as a matrix. Thin-layer chromatography was conducted on silica gel 60 F₂₅₄. Column chromatography was performed with silica gel 60 F₂₅₄. Manipulations were carried out under nitrogen, unless otherwise noted. Toluene was distilled from CaH₂ and then kept dry over molecular sieves (3 Å). The indium compounds, hydrosilanes, alkynes, and anilines were commercially available. The indium compounds and hydrosilanes were used without further purification. The anilines and alkynes were purified by using a common purification procedure.

General Procedure for the Indium-Catalyzed Reductive Hydroamination: In a glove box, InBr₃ (10.6 mg, 0.0300 mmol) was weighed directly into a glass vial with a screw cap. The vial was sealed with a PTFE-sealed (PTFE = polytetrafluoroethylene) screw cap under N2 and then removed from the glove box. Into the vial were successively added distilled toluene (0.6 mL), the alkyne (0.30 mmol), and the aniline (0.45 mmol). The solution was stirred at 110 $^{\circ}\mathrm{C}$ for 3 h. Then, PhMe₂SiH (163.5 mg, 1.200 mmol) was added by syringe, and the resultant mixture was further heated at 60 °C for the appropriate reaction time (see Tables 1 and 2 as well as Scheme 1). The reaction was quenched with aqueous Na₂CO₃ (1 mL), and the aqueous layer was extracted with AcOEt (3×5 mL). The combined organic phases were dried with Na₂CO₃, filtered, and then concentrated under reduced pressure. The crude product was purified by silica gel chromatography (hexane/AcOEt, 9:1) to give the corresponding amine derivative.

N-Benzyl-*N*-(α-phenylethyl)-*p*-toluidine (16): Orange oil (47 mg, 52% yield). ¹H NMR (500 MHz, CDCl₃): δ = 1.56 (d, *J* = 7.0 Hz, 3 H), 2.20 (s, 3 H), 4.36 (d, *J* = 17.5 Hz, 1 H), 4.45 (d, *J* = 17.5 Hz, 1 H), 5.20 (q, *J* = 7.0 Hz, 1 H), 6.67 (d, *J* = 8.0 Hz, 2 H), 6.95 (d, *J* = 8.0 Hz, 2 H), 7.17–7.32 (m, 10 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 16.9, 18.6, 48.8, 55.7, 113.0, 124.6, 124.7, 124.8, 125.1, 125.3, 126.6, 126.8, 127.9, 138.6, 141.4, 145.3 ppm. MS (FAB): m/z = 301 [M]⁺. HRMS (FAB): calcd. for C₂₂H₂₃N 301.1830; found 301.1833.

p-Chloro-*N*-(2-hexyl)aniline (22): Yellow oil (39 mg, 62% yield). ¹H NMR (300 MHz, CDCl₃): $\delta = 0.90$ (t, J = 6.9 Hz, 3 H), 1.15 (d, J = 6.0 Hz, 3 H), 1.29–1.54 (m, 6 H), 3.40 (sept, J = 6.0 Hz, 1 H), 3.43 (br. s, 1 H), 6.48 (d, J = 8.7 Hz, 2 H), 7.09 (d, J = 8.7 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): $\delta = 14.1$, 20.6, 22.7, 28.3, 36.7, 48.6, 114.0, 121.1, 129.0, 146.2 ppm. MS (FAB): *m*/*z* = 212 [M + H]. HRMS (FAB): calcd. for C₁₂H₁₉ClN 212.1206; found 212.1199.

N-(**[***a*-**D**]*a*-**Phenylethyl**)-*p*-toluidine (25): Yellow solid (63 mg, 99% yield); m.p. 68–69 °C. ¹H NMR (300 MHz, CDCl₃): δ = 1.48 (s, 3 H), 2.18 (s, 3 H), 3.88 (br. s, 1 H), 6.42 (d, *J* = 7.5 Hz, 2 H), 6.89 (d, *J* = 7.5 Hz, 2 H), 7.20 (t, *J* = 7.0 Hz, 1 H), 7.28 (t, *J* = 7.0 Hz, 2 H), 7.35 (d, *J* = 7.0 Hz, 2 H) ppm. ¹³C NMR (75 MHz, CDCl₃): δ = 18.6, 23.2, 51.5 (t, *J* = 21.0 Hz), 111.7, 124.1, 124.6, 125.1, 126.9, 127.9, 143.3, 143.6 ppm. HRMS (FAB): calcd. for C₁₅H₁₆DN 212.1424; found 212.1447.

[D₂]*N*-(*α*-**Phenylethyl)aniline (26):** Yellow liquid (59 mg, 99% yield). ¹H NMR (500 MHz, CDCl₃): δ = 1.45 (m, 1.8 H), 4.00 (br. s, 1 H), 4.46 (m, 1 H), 6.49 (d, *J* = 7.5 Hz, 1.6 H), 6.63 (t, *J* = 7.5 Hz, 0.8 H), 7.08 (m, 2 H), 7.20 (t, *J* = 7.5 Hz, 1 H), 7.30 (t, *J* = 7.5 Hz, 2 H), 7.35 (d, *J* = 7.5 Hz, 2 H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 22.9 (q, *J* = 19.1 Hz), 51.6 (q, *J* = 7.6 Hz), 115.6, 115.5, 124.1, 125.1, 126.9, 127.4 (m), 143.5, 145.6 (m) ppm. HRMS (EI): calcd. for C₁₄H₁₃D₂N 199.1330; found 199.1322.

Supporting Information (see footnote on the first page of this article): Detailed experimental procedures and characterization data of the products that were obtained by this method as well as copies of the ¹H and ¹³C NMR spectra of the all products.

Acknowledgments

This work was partially supported by a Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (No. 25410120). The authors deeply thank Shin-Etsu Chemical Co., Ltd. for the gift of the hydrosilanes.

- [2] For selected papers on the hydroamination of alkynes, see: a) for Ti, see: A. Heutling, F. Pohlki, S. Doye, *Chem. Eur. J.* 2004, 10, 3059–3071; b) C. Lorber, R. Choukroun, L. Vendier, *Organometallics* 2004, 23, 1845–1850; c) S. Doye, *Synlett* 2004, 1653–1672, and references cited therein; d) P. L. McGrane, M. Jensen, T. Livinghouse, J. Am. Chem. Soc. 1992, 114, 5459–5460; for Ta, see: e) L. L. Anderson, J. Arnold, R. G. Bergman, Org. Lett. 2004, 6, 2519–2522; for Zr, see: f) K. Born, S. Doye, *Eur. J. Org. Chem.* 2012, 764–771; g) P. J. Walsh, A. M. Baranger, R. G. Bergman, J. Am. Chem. Soc. 1992, 114, 1708–1719.
- [3] For selected papers on the hydroamination of alkynes, see: a) for Ru, see: E. Mizushima, N. Chatani, F. Kakiuchi, J. Organomet. Chem. 2006, 691, 5739-5745; b) D. P. Klein, A. Ellern, R. J. Angelici, Organometallics 2004, 23, 5662-5670; c) M. Tokunaga, M. Eckert, Y. Wakatsuki, Angew. Chem. Int. Ed. 1999, 38, 3222-3225; Angew. Chem. 1999, 111, 3416; for Rh, see: d) Y. Fukumoto, H. Asai, M. Shimizu, N. Chatani, J. Am. Chem. Soc. 2007, 129, 13792-13793; e) C. G. Hartung, A. Tillack, H. Trauthwein, M. Beller, J. Org. Chem. 2001, 66, 6339-6343; for Pd, see: f) T. Shimada, G. B. Bajracharya, Y. Yamamoto, Eur. J. Org. Chem. 2005, 59-62; g) I. Kadota, A. Shibuya, L. M. Lutete, Y. Yamamoto, J. Org. Chem. 1999, 64, 4570-4571; for Ir, see: h) C. M. Wong, K. Q. Vuong, M. R. D. Gatus, C. Hua, M. Bhadbhade, B. A. Messerle, Organometallics 2012, 31, 7500-7510; i) X. Li, A. R. Chianese, T. Vogel, R. H. Crabtree, Org. Lett. 2005, 7, 5437-5440; for Pt, see: j) N. T. Patil, R. D. Kavthe, V. S. Raut, V. V. N. Reddy, J. Org. Chem.

For selected reviews, see: a) T. E. Müller, K. C. Hultzsch, M. Yus, F. Foubelo, M. Tada, *Chem. Rev.* 2008, *108*, 3795–3892;
 b) R. Severin, S. Doye, *Chem. Soc. Rev.* 2007, *36*, 1407–1420;
 c) F. Alonso, I. P. Beletskaya, M. Yus, *Chem. Rev.* 2004, *104*, 3079–3160;
 d) F. Pohlki, S. Doye, *Chem. Soc. Rev.* 2003, *32*, 104–114;
 e) T. E. Müller, M. Beller, *Chem. Rev.* 1998, *98*, 675–704;
 f) for selected reviews for the hydroamination of alkenes, see: J. F. Hartwig, *Nature* 2008, *455*, 314–322;
 g) N. Nishina, Y. Yamamoto, *Top. Organomet. Chem.* 2013, *43*, 115–144.

2009, *74*, 6315–6318; for Au, see: k) R. A. Widenhoefer, X. Han, *Eur. J. Org. Chem.* **2006**, 4555–4563; l) E. Mizushima, T. Hayashi, M. Tanaka, *Org. Lett.* **2003**, *5*, 3349–3352; for Ag, see: m) Y. Luo, Z. Li, C.-J. Li, *Org. Lett.* **2005**, *7*, 2675–2678.

- [4] For Ga, see: a) F. Hild, S. Dagorne, Organometallics 2012, 31, 1189–1194; b) D. Jaspers, R. Kubiak, S. Doye, Synlett 2010, 1268–1272; c) J. Barluenga, F. Aznar, R. Liz, R. Rodes, J. Chem. Soc. Perkin Trans. 1 1980, 2732–2737; for Zn, see: d) K. Alex, A. Tillack, N. Schwarz, M. Beller, ChemSusChem 2008, 1, 333–338; for Hg, see: e) J. Barluenga, F. Aznar, Synthesis 1975, 704–705.
- [5] For lanthanide, see: a) S. Hong, T. J. Marks, Acc. Chem. Res. 2004, 37, 673–686, and references cited therein; b) J.-S. Ryu, G. Y. Li, T. J. Marks, J. Am. Chem. Soc. 2003, 125, 12584– 12605.
- [6] A. Heutling, F. Pohlki, I. Bytschkov, S. Doye, Angew. Chem. Int. Ed. 2005, 44, 2951–2954; Angew. Chem. 2005, 117, 3011.
- [7] a) Y. Zhao, M. Lin, Z. Chen, H. Pei, Y. Li, Y. Chen, X. Wang, L. Li, Y. Cao, Y. Zhang, W. Li, *RSC Adv.* 2012, *2*, 144–150; b)
 L. Li, G. Huang, Z. Chen, W. Liu, X. Wang, Y. Chen, L. Yang, W. Li, Y. Li, *Eur. J. Org. Chem.* 2012, 5564–5572.
- [8] S. Werkmeister, S. Fleischer, S. Zhou, K. Junge, M. Beller, *ChemSus Chem* 2012, 5, 777–782.
- [9] W. Iali, F. L. Paglia, X.-F. L. Goff, D. Sredojevic, M. Pfeffer, J.-P. Djukic, *Chem. Commun.* **2012**, 48, 10310–10312.
- [10] a) R.-Y. Lai, K. Surekha, A. Hayashi, F. Ozawa, Y.-H. Liu, S.-M. Peng, S.-T. Liu, *Organometallics* 2007, 26, 1062–1068; b)
 L. D. Field, B. A. Messerle, S. L. Wren, *Organometallics* 2003, 22, 4393–4395.
- [11] X.-Y. Liu, C.-M. Che, Org. Lett. 2009, 11, 4204-4207.
- [12] a) Y. Nishimoto, A. Okita, M. Yasuda, A. Baba, Org. Lett.
 2012, 14, 1846–1849; b) L. Pehlivan, E. Métay, D. Delbrayelle, G. Mignani, M. Lemaire, Eur. J. Org. Chem. 2012, 4689–4693; c) O.-Y. Lee, K.-L. Law, C.-Y. Ho, D. Yang, J. Org. Chem.
 2008, 73, 8829–8837; d) K. Miura, M. Tomita, Y. Yamada, A. Hosomi, J. Org. Chem. 2007, 72, 787–792; e) K. Miura, M. Tomita, J. Ichikawa, A. Hosomi, Org. Lett. 2007, 9, 133–136; f) M. Yasuda, T. Saito, M. Ueba, A. Baba, Angew. Chem. Int. Ed. 2004, 43, 1414–1416; Angew. Chem. 2004, 116, 1438; g) N. Hayashi, I. Shibata, A. Baba, Org. Lett. 2004, 6, 4981–4983; h) K. Miura, Y. Yamada, M. Tomita, A. Hosomi, Synlett 2004, 1985–1989; i) Y. Onishi, D. Ogawa, M. Yasuda, A. Baba, J. Am. Chem. Soc. 2002, 124, 13690–13691; j) M. Yasuda, Y. Oni-

shi, M. Ueba, T. Miyai, A. Baba, J. Org. Chem. 2001, 66, 7741–7744.

- [13] a) T. Moriya, S. Yoneda, K. Kawana, R. Ikeda, T. Konakahara, N. Sakai, J. Org. Chem. 2013, 78, 10642-10650; b) T. Moriya, K. Shoji, S. Yoneda, R. Ikeda, T. Konakahara, N. Sakai, Synthesis 2013, 45, 3233-3238; c) N. Sakai, Y. Usui, T. Moriya, R. Ikeda, T. Konakahara, Eur. J. Org. Chem. 2012, 4603-4608; d) T. Moriya, S. Yoneda, K. Kawana, R. Ikeda, T. Konakahara, N. Sakai, Org. Lett. 2012, 14, 4842-4845; e) N. Sakai, Y. Usui, R. Ikeda, T. Konakahara, Adv. Synth. Catal. 2011, 353, 3397-3401; f) N. Sakai, K. Nagasawa, R. Ikeda, Y. Nakaike, T. Konakahara, Tetrahedron Lett. 2011, 52, 3133-3136; g) N. Sakai, K. Kawana, R. Ikeda, Y. Nakaike, T. Konakahara, Eur. J. Org. Chem. 2011, 3178-3183; h) N. Sakai, K. Fujii, S. Nabeshima, R. Ikeda, T. Konakahara, Chem. Commun. 2010, 46, 3173-3175; i) N. Sakai, K. Moritaka, T. Konakahara, Eur. J. Org. Chem. 2009, 4123-4127; j) N. Sakai, T. Moriya, K. Fujii, T. Konakahara, Synthesis 2008, 3533-3536; k) N. Sakai, K. Fujii, T. Konakahara, Tetrahedron Lett. 2008, 49, 6873-6875; 1) N. Sakai, T. Moriya, T. Konakahara, J. Org. Chem. 2007, 72, 5920-5922.
- [14] a) J. Barluenga, F. Aznar, Synthesis 1977, 195–196; b) R. Sarma, D. Prajapati, Chem. Commun. 2011, 47, 9525–9527; c) J.-M. Huang, C.-M. Wong, F.-X. Xu, T.-P. Loh, Tetrahedron Lett. 2007, 48, 3375–3377.
- [15] We have no clear reason for the result at this stage.
- [16] N. Sakai, K. Annaka, A. Fujita, A. Sato, T. Konakahara, J. Org. Chem. 2008, 73, 4160–4165.
- [17] When the hydroamination of phenylacetylene with aniline and the hydrosilylation of an imine that was derived from benzaldehyde and *p*-methoxyaniline were carried out separately under our optimal conditions, the former reaction proceeded smoothly to give the corresponding imine product, whereas the latter reaction resulted in a remarkably decreased product yield. Although we have no clear reasons for the result, a onepot protocol for the indium-catalyzed hydroamination/hydrosilylation of terminal alkynes with anilines presented an advantage over a stepwise procedure.
- [18] In those table entries with moderate yields, no byproduct formation, such as a dimer or polymer of an alkyne or the hydrolyzed product of an imine intermediate, was observed. In most cases, the unreacted starting amine was recovered.

Received: May 7, 2014 Published Online: July 7, 2014