

Mendeleev Commun., 2009, **19**, 281–283

Mendeleev Communications

Cyanomethylamines and azidomethylamines: new general methods of the synthesis and transformations[†]

Orudzh G. Nabiev, Zargalam O. Nabizade and Remir G. Kostyanovsky*

N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, 119991 Moscow, Russian Federation. Fax: +7 495 651 2191; e-mail: kost@chph.ras.ru

DOI: 10.1016/j.mencom.2009.09.018

Simple and efficient methods have been developed to obtain cyanomethylamines and azidomethylamines using reactions of methoxymethylamines with TMSCN and TMSN₃, respectively. In the case of dimethylformamide dimethylacetal, only one MeO group was substituted with CN, and an unexpected direction of the subsequent azidation was found. Adducts of azidomethylamines with DMAD were studied, and the base-catalyzed isomerization of symmetric triazoles into non-symmetric ones was revealed.

Long-time investigations in the chemistry of cyanomethylamines^{1(b),2} and azidomethylamines³ provided a number of useful reagents, synthons and valuable materials (including energetics).

The idea of this work is to use commercial reagents TMSCN and TMSN₃ both of which have strong nucleophile groups, CN and N₃, in order to synthesize cyanomethylamines **2** and azidomethylamines **3**, respectively, by aminomethylation with alkoxymethylamines **1** (Scheme 1).

$$\begin{array}{ccc} R_2 NCH_2 CN & \underbrace{TMSCN}_{-TMSOR} & R_2 NCH_2 OR & \underbrace{TMSN_3}_{-TMSOR} & R_2 NCH_2 N_3 \\ 2 & 1 & 3 \\ & Scheme & 1 \end{array}$$

Possibilities of such an approach are confirmed by the earlier reported data on the cyanation of methoxymethylamines with TMSCN/Et₂O·BF₃,^{1(b)} syntheses of cyanomethylamines^{2(a)} and azidomethylamines^{3(a)} by reactions of iminium salts with Na and Ag cyanides and azides, as well as cyanosilylation of aldehydes and ketones under the action of TMSCN.⁴ We have accomplished the azidosilylation of bromal [in Et₂O, 24 h, at 20 °C, ¹H NMR (CDCl₃) δ : 0.33 (s, 9H, Me₃Si), 8.54 (s, 1H, HC)] (Scheme 2).

 $CBr_3CH=O + Me_3SiN_3 \longrightarrow CBr_3CH < \underset{OSiMe_3}{N_3}$

Scheme 2

The smooth azidation of Me_3N with a combination of PhIO/ TMSN₃^{3(*f*)} can be explained by its oxidation to Me_2NCH_2OH followed by aminomethylation of TMSN₃.

Starting alkoxymethylamines 1^{\ddagger} were prepared from the corresponding amines and polyoxymethylene in MeOH according to the known methods⁵ and used for the syntheses of cyanomethylamines **2** and azidomethylamines **3** (Table 1).^{§,¶}

Cyanomethylamines were characterized by NMR, MS (ions $M^{+\cdot}$ and $M-CN^+$ are observed), and IR spectra (2020–2040 $cm^{-1}).\$$

Azidomethylamines were characterized by NMR, MS (ions M⁺ and M – N⁺₃ are observed), UV (245–250 nm) and IR spectra [2100–2110 cm⁻¹, *cf.* ref. 3(*g*)].[¶]

It was found that in the course of cyanation and azidation of dimethylformamide dimethylacetal **4**, only one MeO group is substituted. Upon subsequent azidation, stable cyanation product **5**

undergoes spontaneous fragmentation like unstable methoxyazide. Thus, despite expectations, azidation of **5** results in the substitution of CN group rather than MeO group, accompanied with spontaneous fragmentation into MeN₃ and DMF (Scheme 3).

Methylazide was isolated and characterized by ¹H NMR spectrum (CDCl₃) δ : 3.00 (s) [*cf.* ref. 3(*e*)] and its transformation into triazole **6** (Scheme 4).

[‡] NMR spectra were measured on a Bruker WM-400 spectrometer (400.13 MHz for ¹H and 100.61 MHz for ¹³C), mass spectra, on a Bruker spectrospin CMS-47 spectrometer with electrospray ionization, IR spectra, on Perkin–Elmer RX-1000 and UV spectra, on a Specord UV/VIS spectro-photometer.

1a: yield 33%, bp 63 °C. ¹H NMR (400 MHz, CDCl₃) δ : 2.4 (s, 6H, Me₂N), 3.35 (s, 3H, MeO), 3.97 (s, 2H, NCH₂O).

1b: yield 89%, bp 88–90 °C (1 Torr), $[a]_D^{20}$ +42.46 (*c* 3.02, MeOH). ¹H NMR (CDCl₃) δ: 1.4 (d, 3H, *Me*CH, ³J 6.7 Hz), 2.4 (s, 3H, MeN), 3.24 (s, 3H, MeO), 3.86 (q, 1H, HC, ³J 6.7 Hz), 4.1 (2H, OCH₂N, AB-spectrum, Δν 94.4 Hz, ²J –9.2 Hz), 7.32 (m, 5H, Ph).

1c: yield 34.5%, bp 34–36 °C (15 Torr). ¹H NMR (CDCl₃) δ : 1.77 (tt, 4H, CCH₂CH₂C), 2.76 (t, 4H, CH₂NCH₂), 3.31 (s, 3H, MeO), 4.14 (s, 2H, NCH₂O). MS, *m*/*z*: 503.1605 [M + Na]⁺; calc. for M⁺: 480.172.

1d: yield 65.5%, bp 66–67 °C (36 Torr). ¹H NMR (CDCl₃) δ: 1.68, 1.76, 2.75 [10H, (CH₂)₅N], 3.30 (s, 3H, MeO), 4.12 (s, 2H, NCH₂O).

1e: yield 43%, bp 96–98 °C (6 Torr). ¹H NMR (CDCl₃) δ : 2.73 [s, 8H, N(CH₂CH₂)₂N], 3.3 (s, 6H, 2MeO), 4.0 (s, 4H, 2OCH₂N).

1f: yield 53%, bp 81 °C (1 Torr). ¹H NMR (CDCl₃) δ: 3.27 (s, 6H, 2MeO), 4.0 (s, 2H, CH₂Ph), 4.24 (s, 4H, 2CH₂O), 7.3 (m, 5H, Ph).

1g: yield 66%, bp 122–124 °C (1 Torr). ¹H NMR (CDCl₃) δ: 1.6, 1.67, 1.78, 1.79, 2.04 (15H, Ad), 3.18 (s, 6H, MeO), 4.36 (s, 4H, NCH₂O).

1h: yield 54%, bp 105–107 °C (4 Torr). ¹H NMR (CDCl₃) δ : 1.25 (t, 3H, CMe), 3.34 (s, 3H, MeO), 3.51 (q, 2H, CH₂C), 4.73 (s, 2H, NCH₂O), 6.88 (m, 5H, Ph).

1i: yield 53%, bp 86–88 °C (4 Torr). ¹H NMR (CDCl₃) δ : 2.41 (s, 6H, NMe₂), 4.08 (s, 2H, OCH₂N), 4.53 (s, 2H, OCH₂O), 4.53 (s, 2H, PhC*H*₂), 7.34 (m, 5H, Ph).

 $^{\$}$ General procedure. To a stirred Et₂O solution of methoxymethylamine equimolar quantity of TMSCN (CAUTION: Toxic!) was added and the solution was left for 10–12 h at 20 °C. After evaporation of the solvent the solid product (**2e**) was separated or liquid (**2a**,**b**) was distilled in a vacuum.

2a: bp 66–68 °C (80 Torr). ¹H NMR (CDCl₃) δ : 2.35 (s, 6H, Me₂N), 3.49 (s, 2H, NCH₂CN).

2b: bp 105–107 °C (1 Torr), $[\alpha]_D^{20}$ +132 (*c* 1.4, MeOH). ¹H NMR (CDCl₃) δ : 1.39 (d, 3H, *Me*CH, ³*J* 6.7 Hz), 2.4 (s, 3H, MeN), 3.46 (2H, CH₂CN, AB-spectrum, $\Delta \nu$ 56 Hz, ²*J* –17.2 Hz), 3.49 (q, 1H, HC, ³*J* 6.7 Hz), 7.32 (m, 5H, Ph).

2e: mp 58–60 °C. ¹H NMR (CDCl₃) δ : 2.66 [s, 8H, N(CH₂CH₂)₂N], 3.54 (s, 2H, NCH₂CN).

[†] Geminal systems. Part 58. Previous communication, see ref. 1(*a*).

Table 1 Synthesis of cyanomethylamines 2 and azidomethylamines 3 by reaction of methoxymethylamines 1 with TMSCN and TMSN₃, respectively.

R ¹ R ² NCH ₂ OMe	Products	
	$R^1R^2NCH_2CN$ (yield, %)	$R^{1}R^{2}NCH_{2}N_{3}$ (yield, %)
$\mathbf{1a} \mathbf{R}^1 = \mathbf{R}^2 = \mathbf{M}\mathbf{e}$	$2a^{a}(94)$	$3a^{b}(95)$
(R)-(+)-1b R ¹ = Me, R ² = CHMePh	(<i>R</i>)-(+)- 2b (94)	(R)-(+)- 3b (95)
$1c R^1 + R^2 = (CH_2)_4$		3c (92)
1d $R^1 + R^2 = (CH_2)_5$	_	3d (93)
1e $R^1 + R^2 = (CH_2)_2 NCH_2 (OMe) (CH_2)_2$	2e (94)	3e (91.5)
1f $R^1 = CH_2OMe$, $R^2 = CH_2Ph$	_	3f $R^1 = CH_2N_3$, $R^2 = CH_2Ph$ (90)
$1g R^1 = CH_2OMe, R^2 = Ad^2$	_	$3g R^1 = CH_2N_3, R^2 = Ad(89)$
$1\mathbf{\tilde{h}} \mathbf{R}^1 = \mathbf{E}\mathbf{t}, \mathbf{\tilde{R}}^2 = \mathbf{P}\mathbf{h}$	_	3h (95)

^aCompound 2a was also obtained by reaction of Me₂NCH₂OCH₂OCH₂Ph (1i) with TMSCN. ^bCompound 3a was also obtained by reaction of 1i with TMSN₃.

Scheme 3

Synthetic perspectives of azidomethylamines were demonstrated by reactions of [3 + 2] cycloaddition of **3c**,e,f to dimethyl acetylenedicarboxylate (DMAD), and the base-catalyzed rearrangement of symmetric triazole **8** into non-symmetric triazole **9** was found (Scheme 5).^{††}

Data on the structures of **3e** and **10** in crystals and **3a,c** and **5** in gas phase will be published elsewhere.

[¶] **3a**: bp 110 °C. ¹H NMR (CDCl₃) δ : 2.41 (s, 6H, Me₂N), 4.31 (s, 2H, NCH₂N₃). ¹³C{¹H} NMR (100.61 MHz, CDCl₃) δ : 41.31 (Me₂N), 76.90 (NCH₂N₃).

3b: bp 110–112 °C (1 Torr), $[\alpha]_{20}^{20}$ +27 (*c* 1.18, MeOH). ¹H NMR (CDCl₃) δ : 1.38 (d, 3H, *Me*CH, ³*J* 6.7 Hz), 2.42 (s, 3H, MeN), 3.75 (q, 1H, HC, ³*J* 6.7 Hz), 4.37 (dd, 2H, NCH₂N₃, AB-spectrum, $\Delta \nu$ 88.2 Hz, ²*J* –8.6 Hz), 7.32 (m, 5H, Ph).

3c: bp 53–55 °C (10 Torr). ¹H NMR (CDCl₃) δ : 1.79, 1.82 [tt, 4H, C(CH₂)₂C], 2.78, 2.81 (t, 4H, CH₂NCH₂), 4.48 (s, 2H, NCH₂N₃), ¹³C{¹H} NMR (CDCl₃) δ : 23.9 [C(CH₂)₂C], 49.07 (CH₂NCH₂), 71.44 (NCH₂N₃).

3d: bp 73–74 °C (10 Torr). ¹H NMR (CDCl₃) δ : 1.71, 1.79, 2.79 [10H, (CH₂)₅N], 4.49 (s, 2H, NCH₂N₃).

3e: mp 109–110 °C. ¹H NMR (CDCl₃) δ : 2.74 [s, 8H, N(CH₂CH₂)₂N], 4.32 (s, 4H, 2NCH₂N₃). ¹³C{¹H} NMR (CDCl₃) δ : 48.76 [s, N(CH₂CH₂)₂N], 75.17 (s, NCH₂N₃). ICR (electrospray ionization) MS, *m*/*z*: 197.1266 [M + H]⁺; calc. for M⁺: 196.119.

3f: bp 102–103 °C (1 Torr). ¹H NMR (CDCl₃) δ : 3.97 (s, 2H, PhC H_2 N), 4.36 (s, 4H, 2NCH₂N₃), 7.35 (m, 5H, Ph). ¹³C{¹H} NMR (CDCl₃) δ : 53.35 (s, CH₂Ph), 70.05 (s, NCH₂N₃), 127.51, 128.58, 135.98 (Ph).

3g: mp 68–69 °C. ¹H NMR (CDCl₃) δ : 1.64, 1.68, 1.78, 2.13 (15H, Ad), 4.55 (s, 4H, NCH₂N₃).

3h: bp 115–117 °C (2 Torr). ¹H NMR (CDCl₃) δ: 1.27 (t, 3H, MeC), 3.53 (q, 2H, CH₂C), 4.88 (s, 2H, NCH₂N₃), 7.26 (m, 5H, Ph).

This work was supported by the Russian Academy of Sciences and the Russian Foundation for Basic Research (grant no. 09-03-00537-a).

References

- (a) V. G. Shtamburg, O. V. Shishkin, R. I. Zubatyuk, S. V. Kravchenko, A. V. Tsygankov, V. V. Shtamburg, V. B. Distanov and R. G. Kostyanovsky, *Mendeleev Commun.*, 2007, **17**, 178; (b) T. Chiba, I. Saitoh, M. Okimoto, T. Tanase and S. Yano, J. Org. Chem., 1999, **64**, 2516.
- 2 (a) D. Enders and J. P. Shilvock, *Chem. Soc. Rev.*, 2000, 29, 359;
 (b) E. Leclere, E. Vrancken and P. Mangeney, *J. Org. Chem.*, 2002, 67, 8928;
 (c) H. P. Husson and J. Royer, *Chem. Soc. Rev.*, 1999, 28, 383;
 (d) A. Peroza, M. Selva and P. Tundo, *J. Chem. Soc., Perkin Trans.* 2, 2002, 1033;
 (e) M. Bejaud, L. Mion and A. Commeyras, *Tetrahedron Lett.*, 1975, 34, 2985.

^{††} **5**: yield 96%, bp 90–92 °C (80 Torr). ¹H NMR (CDCl₃) δ : 2.35 (s, 6H, Me₂N), 3.38 (s, 3H, MeO), 4.56 (s, 1H, HCO). ¹³C{¹H} NMR (CDCl₃) δ : 38.86 (Me₃N), 55.62 (MeO), 86.89 (CH), 113.92 (CN).

6: ¹H NMR (CDCl₃) δ: 3.97 (s, 3H, MeO), 4.00 (s, 3H, MeO), 4.26 (s, 3H, MeN).

7: yield 93%, mp 69–70 °C. ¹H NMR (CDCl₃) δ : 1.7, 1.73 (tt, 4H, CCH₂CH₂C), 2.79, 2.82 (t, 4H, CH₂NCH₂), 3.97 (s, 6H, 2MeO), 5.51 (s, 2HNCH₃N).

8: yield 87%, mp 180–181 °C. ¹H NMR (CDCl₃) δ : 2.71 [s, 8H, N(CH₂CH₂)₂N], 3.98 (s, 12H, 4MeO), 5.30 (s, 4H, 2NCH₂N). ¹³C{¹H} NMR (CDCl₃) δ : 48.86 [N(CH₂CH₂)₂N], 52.49 (4MeO), 72.68 (2NCH₂N), 139.74 (C=N), 160.21 (C=O).

9: ¹H NMR (CDCl₃) δ : 3.31 [s, 8H, N(CH₂CH₂)₂N], 3.96 (s, 6H, 2MeO), 3.97 (s, 6H, 2MeO), 4.44 (s, 4H, 2NCH₂N).

10: yield 61%, mp 127–128 °C. ¹H NMR ($\overline{CDCl_3}$) δ : 3.96 (s, 12H, 4MeO), 4.26 (s, 2H, PhCH₂N), 5.62 (s, 4H, 2NCH₂N), 7.1 (m, 5H, Ph), ¹³C{¹H} NMR ($\overline{CDCl_3}$) δ : 52.28 (4MeO), 54.39 (PhCH₂N), 72.44 (2NCH₂N), 127.66, 128.28, 128.54, 135.25 (Ph), 139.54 (C=N), 159.71 (C=O).

- 3 (a) H. Böhme and D. Morf, Chem. Ber., 1958, 91, 660; (b) M. B. Frankel and D. O. Woolery, J. Org. Chem., 1983, 48, 611; (c) T. B. Brill, R. J. Karpowicz, T. M. Haller and A. L. Rheingold, J. Phys. Chem., 1984, 88, 4138; (d) Y. Oyumi, A. L. Rheingold and T. B. Brill, J. Phys. Chem., 1987, 91, 920; (e) A. Hassner, M. Stern, H. E. Cottlieb and F. Frolow, J. Org. Chem., 1990, 55, 2304; (f) P. Magnus, T. Lacour and W. Weber. J. Am. Chem. Soc., 1993, 115, 9347; (g) M. N. S. Rad, S. Behrouz and A. Khalafi-Nezhad, Tetrahedron Lett., 2007, 48, 3445.
- 4 G. K. Surya Prakash, H. Vaghoo, Ch. Panja, V. Surampudi, R. Kultyshev and T. Mathew, *Proc. Natl. Acad. Sci. USA*, 2007, **104**, 3026.
- 5 (a) O. G. Nabiev, M. A. Shachgeldiev, I. I. Chervin and R. G. Kostyanovsky, *Dokl. Akad. Nauk SSSR*, 1985, **284**, 872 (in Russian); (b) A. V. Bogatsky, N. G. Lukyanenko, V. N. Pastushok and R. G. Kostyanovsky, *Synthesis*, 1983, **12**, 992; (c) A. V. Bogatsky, N. G. Lukyanenko, V. N. Pastushok

and R. G. Kostyanovsky, *Dokl. Akad. Nauk SSSR*, 1982, **265**, 619 (in Russian); (d) R. G. Kostyanovskii, A. E. Polyakov, M. D. Isabaev, G. K. Kadorkina and V. I. Markov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1974, 1444 (*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1974, **23**, 1373); (e) R. G. Kostyanovskii and O. A. Pan'shin, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1965, 740 (*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1965, **14**, 721); (f) R. G. Kostyanovskii and O. A. Pan'shin, *Izv. Akad. Nauk SSSR, Otdel. Khim. Nauk.*, 1963, 182 (*Bull. Acad. Sci. USSR, Div. Chem. Sci.*, 1963, **12**, 164).

Received: 30th March 2009; Com. 09/3310