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The reagent XtalFluor-E, [(Et2NSF2)BF4], was initially 
developed as a safer alternative to diethylaminosulfur trifluoride 

(DAST) and related derivatives for deoxofluorination reactions.
1
 

Over the years, we
2
 as well as others

3
 have exploited this reagent 

as a promoter for a number of transformations. In particular, we 

have recently reported its use as a stand-alone promoter for the 

SN1 reaction of benzyl alcohols using arenes as nucleophiles (Fig. 
1).

2f
 In this Friedel-Crafts benzylation, a benzyl alcohol (1; R

1
, R

2
 

= H) or diarylmethanol (1; R
1
 = Ar

1
, R

2
 = H) reacts with 

XtalFluor-E to initially generate an alkoxy-N,N-

diethylaminodifluorosulfane (2).
1,4

 The latter ionizes to generate 

a benzylic carbocation (3)
5
 that react with the aromatic 

nucleophile to generate the 1,1-diarylmethane (4; R
1
, R

2
 = H) or 

1,1,1-triarylmethane (4; R
1
 = Ar

1
, R

2
 = H). 

As a potential extension of this work, we wondered if it would 

be possible to intercept the carbocationic intermediate 3 with 

other -nucleophiles.
6
 Herein, we report that allyltrimethylsilane 

is a competent nucleophile and its use allows the allylation of 

benzyl alcohols (1; R
1,
 R

2
 = H), diarylmethanols (1; R

1
 = Ar

1
, 

R
2
 = H), and triarylmethanols (1; R

1
 = Ar

1
, R

2
 = Ar

2
) to produce, 

as shown in Figure 1, allylated products (5)
7,8,9

 that are useful, 

versatile and valuable synthetic intermediates. 

 
Figure 1. Previous and current work.  

We initially tested the conditions used for the Friedel-Crafts 

benzylation
2f

 on 4-phenylbenzyl alcohol (6), replacing the 
aromatic nucleophile with allyltrimethylsilane to obtain the 

desired allylated product 7 in 65% yield (Scheme 1). Further 

optimization (amount of allyltrimethylsilane, ratio of 

CH2Cl2/HFIP, and temperature) did not improve the yield, so the 

conditions shown in Scheme 1 were used for the rest of the study. 
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We report the direct allylation of benzyl alcohols, diarylmethanols and 

triarylmethanols mediated by XtalFluor-E using allyltrimethylsilane. The resulting 

allylated products are obtained in moderate to high yield. 
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Scheme 1. Initial result. 

The allylation of benzyl alcohols was first investigated 

(Table 1). Under the standard conditions, electron-rich benzyl 

alcohols provided the desired products (8-10) in moderate to 

excellent yields (60-87%). However, when using electron-poor 

benzyl alcohols, much lower yields of the allylated products (11-

13) were obtained (26-30%).  

Table 1 

Allylation of benzyl alcohols with allyltrimethylsilane promoted 
by XtalFluor-E.  

 

In the case of electron-poor benzyl alcohols (15, R = EWG), 
the corresponding dibenzylether (17 in Figure 2) was observed as 

a major side product by NMR analysis of the crude mixture. We 
hypothesize that for electron-rich benzyl alcohols (i.e., R = 

EDG), reaction with XtalFluor-E would provide the alkoxy-N,N-
diethylaminodifluorosulfane intermediate 16 that would rapidly 

ionize to the carbocation 18 (path leading to the desired allylated 
product). In the case of electron-poor benzyl alcohol (i.e., R = 

EWG), a slower ionization of intermediate 16 would leave 
enough time for its reaction with the remaining benzyl alcohol 

(15) to produce 17 via a SN2 reaction
10

 and thus becoming a 
competitive reaction pathway (Figure 2). 

 

Figure 2. Dibenzylether derivatives (17) as a major side 

products and proposed mechanism for their formation. 

 

The use of diarylmethanols was next examined as we expected 

that the addition of a second aryl group would further stabilize 

the carbocation and thus favour ionization over the undesired 
reaction of the intermediate with residual starting material. As 

shown in Table 2, moderate to excellent yield (65-96%) of the 

corresponding allylated products (18-33) could be obtained for a 

wide range of diarylmethanols. This selection included substrates 

bearing an electron-rich or an electron-poor aryl substituent. For 

substrates bearing strong electron withdrawing groups (CF3, SF5), 
slightly more forcing conditions (CH2Cl2/HFIP (1:1) at rt, or 

DCE/HFIP (1:1) at 65 °C) were required. 

Table 2 

Allylation of diarylmethanols with allyltrimethylsilane promoted 

by XtalFluor-E. 

 

 
a
 Reaction time was 24 h. 

b
 The reaction was conducted in DCE/HFIP (1:1) at 65 °C. 

c
 The solvent was CH2Cl2/HFIP (1:1). 

 

Finally, the reaction was examined using triarylmethanols as 

substrates and the results are shown in Table 3. The desired 

allylated products (34-38) were obtained in moderate to excellent 

yields (50-91%). Both electron-donating (Me, MeO) and 



  

 

 

3 
electron-withdrawing (Cl, CF3) groups were tolerated on the 

starting triarylmethanols. 

Table 3 

Allylation of triarylmethanols with allyltrimethylsilane promoted 

by XtalFluor-E.  

 

 
a
 The reaction was conducted in DCE/HFIP (1:1) at 65 °C. 

b
 The reaction was conducted in DCE/HFIP (9:1) at 65 °C. 

In terms of the mechanism, since allyltrimethylsilane possess 

nucleophilic parameters
6
 similar to the ones of the aromatic 

nucleophiles used in the Friedel-Crafts benzylation of benzyl 

alcohols and diarylmethanols promoted by XtalFluor-E,
2f

 we 

hypothesize that both transformations proceed through a similar 

mechanism as shown in Figure 1. 

In summary, we have reported the direct allylation of benzyl 

alcohols, diarylmethanols and triarylmethanols mediated by 
XtalFluor-E using allyltrimethylsilane. 
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HIGHLIGHTS 

 

 XtalFluor-E mediates the direct allylation of benzylic alcohols derivatives. 

 Benzyl alcohols, diarymethanols, and triarylmethanols can be used as substrates. 

 A wide range of allylated products can be obtained in moderate to excellent yield. 

 For electron-poor benzyl alcohols, dibenzylethers are observed as major side products. 

 

 


