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In this paper we prove complex bounds, quasisymmetric rigidity, absence of
invariant linefields and density of hyperbolicity for real analytic maps with
one critical point of inflection type and which are orientation preserving on
each branch. For real bounds, see the first part of this paper, [Le].

1 Introduction

Recently quite a few papers appeared proving complex bounds, local con-
nectivity of Julia sets, absence of invariant linefields and quasisymmetric
rigidity for real polynomial maps.

Let us first discuss the unimodal case. In 1990 Martens [Ma] proved that
there are real bounds for a certain sequence of first return maps to suitable
central intervals. In 1990 Sullivan showed that if the unimodal maps are
real analytic, infinitely renormalizable and have bounded combinatorics,
then their first return maps extend to the complex plane as polynomial-like
maps, see [Su] and also [MS]. In 1994 the present authors proved that all real
analytic unimodal maps allow such polynomial-like complex extensions for
the ‘non-central’ first return maps. The proof even gave explicit numerical
lower bounds for the moduli of certain annuli, [LS1]. For the quadratic
case, different proofs were later provided by [GS1], [LY]. For the smooth
case see [Ko]. In 1996 Sands, see [Sa], improved our numerical bounds for
maps of the form g(x�) so that the Schwarzian derivative of g is negative.
This polynomial-like structure is one of the main ingredients in many recent
results on smooth unimodal maps. For example, it is heavily used in the proof
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that topologically conjugate quadratic maps are in fact quasisymmetrically
conjugate, see [GS2], also [Ly] and more recently [Sh]. Note that this is the
main step in the recent proofs that hyperbolic maps are dense in the family
z2 + c, c ∈ R. Moreover, complex bounds lead to the proof of the local
connectivity or total disconnectedness of Julia sets of some classes of real
polynomials [LS1], [LS2] and are also needed in results on renormalization
and on smoothness of conjugacies, see [Su], [MS], [McM2], and [MP], and
essentially simplifies the proof of absence of invariant linefields [McM1],
[LS2].

In the case of smooth critical circle homeomorphisms, the analogous
statements are proved in [Ya] (complex bounds), [He2], [Yo] (quasisym-
metric rigidity), [FM] (renormalization).

In this paper we deal with the next natural class, which contains smooth
covering maps of the circle with a unique critical point of inflection type.
This class includes (generalized Arnol’d) maps of the form f(x) = k ·x+a+
b sin(2πx) mod 1 where k ∈ N, k ≥ 2 and b is chosen so that f has a unique
cubic critical point. Other examples are certain real polynomial maps with
one non-escaping critical point of inflection type, and also certain Blaschke
products, see the examples below. Just as critical circle homeomorphisms
are in the boundary of the set of diffeomorphisms of the circle, the maps
we consider in this paper are in the boundary of the class of smooth cov-
ering maps without critical points. These covering maps without attracting
or neutral periodic orbits and without critical points are hyperbolically ex-
panding (by a theorem of Mañé), and are quasisymmetrically conjugate to
each other. In this paper we will study the metric theory for maps with points
of inflection. It turns out that the methods of proof differ substantially from
those used in the critical circle case and also quite a bit from the unimodal
case.

To prove real and complex bounds for maps with a critical point of
inflection type is more involved than for maps with a folding critical point.
This is because one no longer has a dynamically relevant symmetry near the
critical point. (Note that these covering maps can not be renormalizable.)
Therefore we obtain polynomial-like extensions for a sequence of first return
maps at moments which are no longer combinatorially defined. As in the
case of critical circle maps, our maps are in general not quasisymmetrically
conjugate to affine maps. In this case we no longer have growth of moduli
(as in the quadratic case), and also no bounded geometry of the postcritical
set (as in the critical circle case). In the minimal case we use instead that the
dynamics does change if we ‘move the map up’. In the non-minimal case,
a much more general way of proving quasisymmetric rigidity is used. Our
method also can be used to prove quasisymmetric rigidity and density of
hyperbolicity for real analytic unimodal maps (with a folding critical point
which is not necessarily quadratic) in the non-minimal case.

Let us be more formal and introduce the class AC which includes analytic
covering maps of the circle. Let I be an open interval around the point c = 0
and Ii a (finite) collection of disjoint open intervals inside the interval I .
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AC is the class of maps g : ∪ Ii → I , for which the following conditions
hold.

1. For every i , the map g : Ii → I extends to an orientation preserving real
analytic homeomorphism from the closure of Ii to the closure of I .

2. For every i 	= 0, the map g : Ii → I is a diffeomorphism, while the
map g : I0 → I has a unique critical point (i.e., a zero of g′) at the point
c = 0 ∈ I0 of odd order � ≥ 3. We call g : I0 → I the central branch,
and I0 the central interval of g.

3. All iterates of the critical point c = 0 under g are in ∪Ii (and, hence,
well defined).

4. There is an extension of g to a covering map ḡ : S1 → S1 (where we
identify S1 with R/(|I |Z)) which is real analytic on a neighbourhood of
∪I i .

We call g : I0 → I the central branch, and I0 the central interval of g. In
fact, in view of Proposition 2.1 below, we only use condition (4) in the proof
of Theorem B’, C’ (part 2) and B” and then only in the case I = (a−, a+),
where a± are the left and right most fixed points of g.

Examples
1. Consider a polynomial P with real coefficients. Assume that all except
one of its critical point escape to infinity and that the non-escaping critical
point c is a real point of inflection type. Moreover, assume that the orbit of
c only meets components of {x ∈ R ; P′(x) 	= 0} on which P is orientation
preserving. If we restrict P to a suitable interval of the real axis, it will
satisfy the conditions 1–4 (see [LS2] for details).

2. Consider the following Blaschke product: f(z) = λzd
z− d+1

d−1

1− d+1
d−1 z

, where

|λ| = 1, and d ≥ 3. Then f being restricted to the circle |z| = 1 and written
in the natural coordinate of the circle satisfies the conditions 1–4 above,
with � = 3 and with d − 1 intervals Ii . Note that λ = f(1) is the critical
value of f on the circle.

In fact, one can easily generalize our results to more general classes of
maps. For example, if g is a piecewise analytic map of the form g : ∪i Ii →
∪k I k where ∪i Ii ⊂ ∪k I k and Ii (respectively Ik) are pairwise disjoint
intervals satisfying the analogous properties 1-4 from the class AC, then the
branches of first return map to I0 containing points of ω(c) form a map from
AC in the case that ω(c) is minimal. Otherwise one can again use methods
from Sects. 10–12 of this paper.

Maps from AC have no wandering intervals and only a finite number
of attracting and parabolic orbits, see the next section. In this paper we
shall mainly deal with complex bounds for such maps. By this we mean
that one has geometric estimates for the (quasi) polynomial-like maps or
box mappings obtained by taking complex extensions of suitable first return
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maps to small interval neighbourhoods of the critical point. Note that the
domain of such return maps consists of infinitely many components. The
interesting case is when c is recurrent (i.e., c ∈ ω(c)), in which case c is
contained in one of the components of the domain. The non-recurrent case is
much easier, see Theorem A’ in Sect. 10. As is usual in this problem one has
to distinguish the persistently recurrent and the reluctantly recurrent case.
Since we are in the real case, this corresponds to the distinction betweenω(c)
being minimal or not. (That ω(c) is minimal means that each orbit in this set
is dense. In particular, ω(c) is a Cantor set in this case.) If ω(c) is minimal
then there are only finitely many domains of the first return map containing
points of ω(c) and in the next theorem we restrict our attention to these. The
non-minimal case is discussed below the statement of Theorem B.

Theorem A (complex bounds)
Let g ∈ AC be so that c is recurrent andω(c) is minimal. Then g has complex
bounds: there exists a constant C > 0 and sequence of open topological
discs Vk around the critical point such that the following properties hold.
(i) diam(Vk) → 0, and, moreover, Vk ∩ R = Unk is the range of a map
gSnk+1 : Unk+1 → Unk from the sequence of first return maps, see the next
section.
(ii) the (complex analytic) first return map of g to Vk along the critical orbit
is well defined and extends to a quasi-polynomial-like map Pk : ∪i V i

k → Vk.

(iii) the modulus of Vk \ V 0
k is bounded from below by C > 0 for all k ≥ 0.

By definition, see [LS1], Pk : ∪i V i
k → Vk is called quasi-polynomial-

like if each Vi
k is contained in Vk (not necessarily compactly), the closures

of the real traces of Vi
k , V j

k are disjoint, if i 	= j , and compactly contained
in the real trace of Vk, and Pk : V i

k → Vk is a univalent diffeomorphism for
i 	= 0 and a branched covering for i = 0. In the context of Theorem A
(i.e., ω(c) minimal) we shall have that the union ∪i V k

i is over a finite index
set and that the forward orbit of c always remains in this union. Note that
the domains can intersect each other. In Sect. 6 we construct a truly (not
quasi) polynomial-like map ([DH], [LM]) of arbitrarily small diameter for
any g ∈ AC with minimal ω(c), by ‘intersecting’ the quasi-polynomial-
like map with an artificially constructed smooth ‘polynomial-like’ map (in
a way which is somewhat similar to what was done in [LS1] for unimodal
maps). It allows us to quasiconformally conjugate this polynomial-like map
to a polynomial from a family of special polynomials, see Sect. 7. Since the
orbit of the critical point belongs to increasing branches of g, we are able
to prove using holomorphic dynamics the following.

The components Ii and the gaps (components of I \∪Ii) give a partition
of I . The number of components Ii and the ordering between the components
and the gaps determine what we would like to call the ‘combinatorial type’
of the map g ∈ AC.
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Theorem B (rigidity)
If two maps of the class AC with ω(c) minimal have critical points of the
same order, are of the same combinatorial type, and the critical points have
the same itineraries (w.r.t. to the corresponding partitions), then there is
a quasisymmetric map h : I → I which conjugates the restriction of the
two maps to their postcritical sets, and which maps the critical point to the
critical point of the other map.

In particular, the conjugacy is Hölder continuous. In fact, we prove
a stronger statement: the two maps are quasiconformally conjugate in com-
plex neighbourhoods of ω(c), and the conjugacy is conformal on the Julia
sets of the polynomial-like maps mentioned above.

Any map g ∈ AC is (semi-)conjugate to a piecewise linear map. In
particular, any real analytic n-covering map of a circle without attracting or
neutral periodic orbits is topologically conjugate to the map z �→ zn on the
unit circle. However, it is definitely not the case that maps from the class AC
are always quasisymmetrically conjugate to piecewise linear maps: it is easy
to construct examples of maps in the class AC with a sequence of longer and
longer saddle-cascades. This is similar to the way one finds within families
of smooth circle diffeomorphisms, maps with irrational rotation numbers
for which the conjugacy with a rotation cannot be absolutely continuous,
see [He1] or for example [MS].

If ω(c) is non-minimal (or non-recurrent), then similar bounds as in
Theorem A hold, see Theorem A’ in Sect. 10. In fact, if c is recurrent
and non-minimal then we construct a kind of sequence of ‘box mapping’
sending all but one domain univalently to a fixed large scale. Note that in
this case there are infinitely many domains of the return map containing
points of ω(c), which shall complicate the situation considerably.

If ω(c) is non-minimal then the analogous statement to Theorem B also
holds, see Theorem B’ in Sect. 11. However, in this case we have to assume
that ω(c) contains no parabolic periodic points. Note that this is always
the case if ω(c) is minimal. (As mentioned before, the method in the non-
minimal case is very general and also applies to real analytic unimodal
maps.)

It is very easy to show that the set of Axiom A maps in the class AC
is dense, see Sect. 12. It is much less obvious that Axiom A maps are
dense within any analytic family. However, repeating an argument used by
O. Kozlovski in his thesis [Ko], we shall deduce from Theorems A, B and
A’, B’ (see Sect. 12):

Theorem C (stability)
Within any non trivial real analytic family of regular maps g ∈ AC, either
each g from this family has a neutral periodic orbit or the Axiom A maps
within this family are dense.
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Here we say that g is a regular map if each parabolic periodic orbit O(p)
of g is either disjoint from ω(c) or one has ω(c) ⊂ O(p). Note that if ω(c)
is minimal, then g is automatically regular. (Actually, in Sect. 12 we shall
prove a slight generalization to Theorem C.) It follows from Theorem C,
that within families of maps as in Examples 1 and 2 above, Axiom A maps
are dense (the maps as in these examples are regular). Also, g is regular if
for example Sg < 0 or if g extends to a (generalized) polynomial-like map
with one critical point of odd order.

A consequence of Theorem A is:

Corollary
1. The Julia set of any polynomial-like map as above is totally disconnected
and carries no invariant line fields.

2. The Julia set of the rational function introduced in Example 2 is locally
connected.

Proof: Follows as in [McM1], [LS2] from the complex bounds. ��
In fact, the absence of invariant linefields proved in this corollary is

a very important ingredient in the proof of Theorem B.

Another consequence of Theorem B and B’ and their proofs is

Theorem B” (global rigidity)
Assume that two maps of the class AC have no parabolic or attracting
periodic points, and there is a conjugacy which maps the critical point of
one of these maps to the critical point of the other map. Then the conjugacy
is quasisymmetric. In fact, this conjugacy can be extended to a quasicon-
formal homeomorphism on the plane which is a conjugacy on a ‘necklace
neighbourhood’ of the dynamical interval; this neighbourhood consists of
infinitely many disjoint topological discs.

The proof of Theorem B” will be given in Sect. 13.
The above results should provide the basis for a study of “attractors”,

and “universality structure” in the class AC.
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2 Some background

Proposition 2.1 Maps g satisfying conditions 1–3 of the class AC do not
have wandering intervals and have only finitely many non-expanding peri-
odic orbits.

Proof: Any such map induces a covering map g : S1 → S1. Indeed, first
restrict g to the interval [a−, a+] where a± are the left and right most fixed
points of g. Points which are mapped eventually outside this interval will
also eventually map outside the domain of definition of g. Then simply
extend g to a piecewise increasing map defined on [a−, a+] with a unique
critical point at c. If g ∈ AC or the (closures of) domains of g are all disjoint
then we can make sure that g is C∞. Otherwise g will be C∞ except at a finite
number of preimages of a fixed point (where the left and right derivative
of g can differ). In particular, g will be in the class C1+Z (its derivative
is Zygmund) and so it follows from the comments below Theorem IV.A
in [MS] that g has no wandering intervals. The map g is not in the class
C1+z so one cannot apply Theorem IV.B from [MS] immediately. Note
however, that it fails this smoothness condition only at a finite number of
preimages of a fixed point. The intervals Un from Lemma 10.3 on p. 323 of
[MS] do not intersect these preimages of the fixed point, and so along the
pullback {U0, . . . ,Un} needed in the proof of Proposition 10.1 of [MS] one
still has the required cross-ratio estimate. It follows that Theorem IV.B from
[MS] still holds. Hence periodic attractors and parabolic orbits of g all have
period less than some number N (which depends on g). Since g is analytic
on each branch, it follows that g has only finitely many non-expanding
periodic orbits. ��

Let us introduce some notation and background.
If I ⊂ J are intervals then |I | denotes the length of I . The left and right

endpoints of I are denoted by ∂l I and ∂r I . The left and right components of
J \ I are denoted by l(J \ I ) and r(J \ I ).

If J ⊂ T are two intervals and L, R are the components of T \ J then
we define C(T, J) to be the cross-ratio of this pair of intervals:

C(T, J) = |J ||T |
|L||R| .

Often we prefer to work with C−1(T, J) = 1/C(T, J). Cross-ratios play
a crucial role in all recent metric results in real interval dynamics. If f |T is
a diffeomorphism and S f < 0 (where S f is the Schwarzian derivative of f )
then [MS]

C−1(T, J) ≥ C−1( f(T ), f(J)).
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In our case we shall apply this to maps f of the form gn . If Sg < 0 then also
Sgn < 0 so the previous inequality applies when we take f = gn provided
gn|T is a diffeomorphism. We will use the following amusing extension of
this classical fact:

Lemma 2.1 Consider a map

F(x) = [h(x)]�,
where � > 1 is an odd number, and h is a local diffeomorphism near x = 0,
so that h(0) = 0, and so that h increases cross-ratios. Then for each ε > 0
there exists ∆ > 0 such that the following holds. Let L be the left component
of T \ J, so that if we denote L = (x1, x2), then

x1 < 0 < x2 and |x2| ≥ (1 + ε)|x1|
and assume moreover that

|T | < ∆.

Then
C−1(T, J) ≥ C−1(F(T ), F(J)).

Proof: See [Le] and use a continuity argument. ��
If h is only real analytic then a similar statement holds, see Lemma 4.3.

If I is an interval near the critical point c, then we shall denote by Ig the
interval g(I ) near the critical value. We shall say that the smaller interval J
is well inside I , if the length of every component of I \ J is at least C∗ · |J |,
where C∗ > 0 is a universal constant (i.e. does not depend on the integer
n introduced below). Often we shall take C∗ to be equal to something like
C/10� where C is the constant from Theorem 2.1 below. If we can take
C∗ ≥ 2 then we say that J is deep inside I .

Consider now a map g as in the introduction and so that the critical point
is recurrent. As usual, define a sequence of first return maps

gSn : Un → Un−1

inductively as follows. We set S1 = 1, U1 = I0, and U0 = I . If Un−1 is
defined, then gSn : Un → Un−1 is the central branch of the first return map
to Un−1 (i.e. Un is the component of the domain of the first return map to
Un−1 which contains c).

Let us say that the map gSn : Un → Un−1 has a central return if
gSn(c) ∈ Un, and a non-central return otherwise. Sometimes we shall simply
say that gSn : Un → Un−1 is central. Note that if some gSn : Un → Un−1 has
a central return, then by pulling back the central domain Un by the map gSn

several times, we always obtain a non-central return map gSm : Um → Um−1,
where m > n and where the maps are the same, i.e., Sm = Sn. (Otherwise
c is in the basin of a periodic attractor.) We always have Sn+1 ≥ Sn. More
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specifically, Sn+1 = Sn iff gSn : Un → Un−1 is central, and Sn+1 > Sn
otherwise.

Theorem A of this paper gives the complex analogue of the real bounds
which were proved in [Le].

Theorem 2.1 Let g ∈ AC and assume that ω(c) is minimal. Also assume
that g increases cross-ratios on intervals on which it acts diffeomorphically.
Moreover, assume that one can write g(x) = g(c)+F(x) in a neighbourhood
of the critical point c = 0, where F is as in Lemma 2.1.

Then there exist a positive number C, which depends on � only, and
an integer N, so that for every n ≥ N, the length of every component
of Un−1 \ Un is equal to at least C · |Un|, whenever the previous map
gSn−1 : Un−1 → Un−2 is non-central.

Let gSn : Un → Un−1 be non-central. If Sn > Sn−1 (i.e., gSn−1 : Un−1 →
Un−2 is non-central again), then we set k(n) = 0, so that Un−1 = Un−k(n)−1.
Otherwise (if gSn−1 : Un−1 → Un−2 is central), there exists a first (max-
imal) interval Un−k(n), k(n) ≥ 1, in the chain (cascade) of central re-
turns containing Un, so that Sn = Sn−1 = · · · = Sn−k(n) > Sn−k(n)−1

(i.e., gSn−k(n)−1 : Un−k(n)−1 → Un−k(n)−2 is non-central). By Theorem 2.1,
Un−k(n) is well inside Un−k(n)−1 and also Un+1 is well inside Un. Let us
call {Un ⊂ · · · ⊂ Un−k(n)} the maximal chain of central intervals, which
contains Un (we do not exclude the case that k(n) = 0).

We shall use the following statement several times.

Proposition 2.2 Let g be as in the previous theorem. Let I ⊂ Un be a com-
ponent of the domain of the first return map to Un (for example, I could
be equal to the central domain Un+1), and assume that the first return map
restricted to I is of the form gs for some s > 0. Then there exists an interval
Ũ containing I such that gs−1 : Ũg → Un−k(n)−1 is a diffeomorphism.

Proof: Denote S = Sn = · · · = Sn−k(n). If s = S, then Ũ = Un−k.
So assume that s > S. Applying gS to Un for N = k(n) + 1 times, we
see that gS(Un) = Un−1, gS(I ) ⊂ Un−1 \ Un, ..., gNS(Un) = Un−k(n)−1,
gNS(I ) ⊂ Un−k(n)−1 \ Un−k(n). In particular, gNS(I ) lies in a non-central
component of the first return map R to Un−k(n)−1. Some iterate Ri maps
gNS(I ) diffeomorphically onto Un, and along the way all R-iterates are in
Un− j−1 \ Un− j for some 0 ≤ j ≤ k(n). This implies that if we let K′ be the
component of R containing Ri−1(gNS(I )), then pulling back K′ to Un, we
obtain the interval Ũ . ��

We shall also use the following

Theorem 2.2 (Mañé) Let g : N → N be a C2 map where N is a circle
or an interval. Let U be an open set containing the critical points of g,
the parabolic periodic points and also the immediate basins of periodic
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attractors. Then there exists C > 0 and λ > 1 such that for each x and each
integer k for which x, g(x), . . . , gk−1(x) /∈ U one has |Dg(x)| ≥ Cλk.

Proof: For a proof of this statement and a simplified proof of the original
result of Mañé, see [MS]. ��

We shall also use the following result from complex analysis. Given
a bounded real interval T we shall write D∗(T ) for the disc which is
symmetric with respect to the real line and which intersects the real line
exactly in T . More generally, if α ∈ (0, π) then consider the disc D which
intersects the real line exactly in T such that D+ = D ∩ {Im(z) > 0} has
external angle α with the real line. The set D(T ;α) denotes the union of
D+ and its mirror image with respect to R. (Note that D(T ;α) decreases
with α ∈ (0, π) increasing.) The reason these sets play an important role,
can be explained as follows. Let CT = C \ (R \ T ). The set CT carries
a Poincaré metric, and with respect to this metric the set D(T ;α) consists of
all points whose distance to T is at most equal to some constant k(α). From
this interpretation and the Schwarz lemma it follows that if φ : CT → CT ′
is a univalent conformal mapping sending T diffeomorphically to T′, then

φ(D(T ;α)) ⊂ D(T ′;α). (2.1)

As in [Su], we shall apply this statement in the following way:

Lemma 2.2 (Schwarz) Let F : C→ C be a real polynomial whose critical
points are on the real line and which maps the interval T′ diffeomorphically
onto the interval T , then there exists a set D ⊂ D(T′;α) with D ∩ R = T ′
which is mapped diffeomorphically onto D(T ;α) by F.

In fact, there is generalization of this lemma to the situation in which
G = F−1 is not defined on the entire region C′T :

Lemma 2.3 (Schwarz) For each θ0 ∈ (0, π) there exists δ > 0 and K > 0
with the following properties. Let G be a univalent map defined on the unit
disc D1(0), mapping the real diameter D1(0) ∩ R into the real line. Let
T be an interval on the real line containing the origin with |T | < δ and
G(T ) = T ′. Then for each θ ∈ (0, θ0),

G(D(T ;π − θ)) ⊂ D(T ′;π − θ(1 + K |T |)).
Proof: See Lemma VI.5.2 in [MS]. ��

3 The proof of Theorem A in the Epstein case

Let us first prove Theorem A for Epstein maps. Here we say that a map
g : ∪ Ii → I from the class AC is in the more restrictive class of Epstein
maps EC (cf. [Su]) if
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1. for every i 	= 0, the map g : Ii → I is a diffeomorphism such that
g−1 : I → Ii has a univalent extension to the slit complex plane CI ,

2. one can decompose the map g : I0 → I as g(x) = g(0)+[h(x)]�, where
� ≥ 3 is an odd integer, and h : I0 → I ′0 is a diffeomorphism with
h(0) = 0, such that h−1 : I ′0 → I0 has a univalent extension to CI ′0 .

We remark that g from 1) and h from 2) in the above definition increase
cross-ratios. Indeed, since g−1 and h−1 extend analytically to the slit com-
plex plane and since the Poincaŕe metric on a disc restricted to its diameter
corresponds to cross-ratios, the remark follows from the Schwarz lemma.

For each ε, take ∆(ε) as in Lemma 2.1. Since |Un| → 0 as n → ∞,
for each ε > 0 we shall only consider integers n which are so large that
|Un| < ∆(ε).

Lemma 3.1 There exists ε0 > 0 such that if for some ε ∈ (0, ε0) there exist
infinitely many n’s for which

max (|∂lUn − c|, |∂rUn − c|) < (1 + ε) · dist(∂Un−1, c)

then g has complex bounds.

Proof: Assume that the above inequality is satisfied. To be more concrete,
assume that

|∂lUn − c| ≤ |∂rUn − c| < (1 + ε) · |∂lUn−1 − c|. (3.1)

Consider two cases.

I. Un is well inside Un−1. Then we take Ω = D∗(Un−1) as the range of
the polynomial-like map. Consider the component of the domain of the
first return map to Un−1 which intersects Ug

n (we shall use this notation
for the interval g(Un)). By Schwarz and because g is in Epstein class this
component is inside D∗(U

g
n ). If ε would be equal to zero, then because

we are assuming in this case that Un is well inside Un−1, g−1(D∗(U
g
n )) is

compactly contained in D∗(Un−1). Provided ε ∈ (0, ε0) and we choose ε0
sufficiently small, the same is still true provided (3.1) holds. Note that the
modulus of D∗(Un−1) \ g−1(D∗(U

g
n )) is bounded from below by a positive

constant which does not depend on n. Again by Schwarz the non-central
domains are mapped univalently inside D∗(Un−1).

II. Un is not well inside Un−1. According to Theorem 2.1, then the previous
return is central (actually, many of the previous returns are central if Un is
not well inside Un−1). Hence, Un and Un−1 are two consecutive intervals
in a cascade of central returns. Then, on the one hand there exists a first
interval Un−k of this cascade, so that Sn = Sn−k and Un−k is well inside
Un−k−1. On the other hand, let Um (with m ≥ n) be the last interval of this
cascade, so that Sm = Sn and the map gSm : Um → Um−1 is non-central. So
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we have

Sm+1 > S := Sm = · · · = Sn = · · · = Sn−k+1 = Sn−k > Sn−k−1

and the following situation (where ∗ are points of the form giS(c))

where Sm+1 and S = Sm = · · · = Sn−k are the first return times of c to Um
respectively Um−1 and Im is the component of the first return to Um , which
is mapped by gSm onto Um (which is to the left of c if gSm(c) ∈ r(Um−1 \Um)
and to the right otherwise). Proposition 2.2 implies that there is an interval
between Ug

m and Ug
m+1 (i.e., contained in the former interval and containing

the latter one) which is mapped by gSm+1−1 diffeomorphically onto Un−k−1.
Let U∗ be the smallest symmetric interval which contains Um . Since Un−1 is
well inside Un−k−1, provided ε is small, (3.1) implies that U∗ is well inside
Un−k−1. Therefore, as we remarked before, there exists an interval U with
Um ⊃ U ⊃ Um+1 and so that gSm+1−1 maps g(U) diffeomorphically onto U∗.
Since U∗ is well inside Un−k−1, the interval U is well inside Um . Take as
the range Ω of the desired quasi-polynomial-like map the disc D∗(U∗) with
two slits (cf. the proof of Lemma 3.6):

Ω = D∗(U∗) \ (U∗ \ Um).

We put the slits in D∗(U∗) because we want our quasi-polynomial-like
map restricted to the real line to coincide with the first return map to Ω
along the postcritical set (and so the return time of c to Ω is equal to
Sm+1). Consider the first return map to Ω along the postcritical set. By
Schwarz the g-image of the central domain Ω0 of the first return map to
Ω is contained in D∗(g(U)). Because D∗(U∗) is a round disc centered
at c = 0, and because U is well inside Um ⊂ U∗, we obtain that Ω0 is
compactly contained in the range Ω (and we obtain a lower bound for the
modulus of Ω \ Ω0 which does not depend on n). Next consider the non-
central components of the first return map. Take a non-central real domain I
of the first return map RUm to Um and let s be so that RUm |I = gs. If s > Sm
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(= Sn = Sn−k), then there is a diffeomorphic extension gs : Î → U∗ of gs|I ,
and the pullback of Ω by gs is contained in D∗( Î ) and hence is compactly
contained in Ω (here we use similar arguments as above). Consider the
remaining branch gSm : Im → Um of the first return map to Um . It has
a diffeomorphic extension gSm−1 : Î g

m → U∗ only from an interval Î g
m ⊂ Ug

∗
(so near the critical value), and the pullback of Ω by gSm−1 is contained in
Dg

m := D∗( Î
g
m) \ ( Î g

m \ I g
m) (with g(c) ∈ (Î g

m \ I g
m)). But since Ω is a disc

centered at c (with two slits), the branch of the map g−1 corresponding to
g−1 : I g

m → Im , takes Dg
m onto some Dm , which is inside Ω, but possibly

not compactly inside: the boundaries of Ω and Dm can coincide in a subset
of the slits U∗ \ Um . Thus we obtain a quasi-polynomial-like mapping (the
definition is given below the statement of Theorem A). ��

If we are in the situation of the previous lemma, then Theorem A follows.
So we may and will assume that for each ε ∈ (0, ε0) there exists N so that
for all n ≥ N,

max (|∂lUn − c|, |∂rUn − c|) > (1 + ε) · dist(∂Un−1, c)

i.e., the larger component of Un \ {c} is a definite amount longer than the
shortest component of Un−1 \{c} (if ε = 0 then it is already at least as long).
Since Un ⊂ Un−1 this means that for each ε ∈ (0, ε0) there exists N(ε) so
that either for all n ≥ N(ε), (1 + ε)|∂lUn−1 − c| < |∂rUn − c| or for all
n ≥ N(ε), (1+ ε)|∂rUn−1 − c| < |∂lUn − c|. In order to be specific, we will
from now on make the following

STANDING ASSUMPTION:

(1 + ε) · |∂lUn−1 − c| < |∂rUn − c| for all n ≥ N(ε).

In particular, we assume that for each n ≥ N(ε) the right component of
Un \ {c} is a definite amount longer than its left component. This means that
for n ≥ N(ε),

Lemma 3.2 If J ⊂ T are intervals such that

T ⊂ Un−1, J ⊂ r(Un−1 \ Un)

then we can pass through the critical point without loosing on cross-ratio:

C−1(T, J) ≥ C−1(g(T ), g(J)).

Proof: Follows from Lemma 2.1 and the standing assumption. ��
Lemma 3.3 Assume that the standing assumption holds. Then there are
infinitely many n’s such that gSn(c) < c.
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Proof: By contradiction, assume that gSn(c) > c for all n ≥ N. It is enough
to show that C−1(Un,Un+1)→ ∞ as n → ∞ provided Sn > Sn−1 because
it would contradict the standing assumption. Consider Un ⊂ Un−1 and
assume that Sn > Sn−1. Since gSn−1(c) > c, g is orientation preserving on
each branch and Sn > Sn−1 one has gSn−1(Un) ⊂ r(Un−2 \ Un−1) and by
definition gSn−1(Un−1) = Un−2. Next apply gSn−2 = gSn−2−1 ◦ g. Lemma 3.2
and the standing assumption give us

C−1
(
Un−2, gSn−1(Un)

) ≥ C−1
(
gSn−2(Un−2), gSn−2+Sn−1(Un)

) =
= C−1(Un−3, gSn−2+Sn−1(Un)

)
.

Again gSn−1+Sn−2(Un)⊂r(Un−3\Un−2) and by definition gSn−1+Sn−2(Un−1)=
Un−3. Hence Sn−1 + Sn−2 < Sn because gSn(Un) = Un−1. Continuing in
this way we apply next gSn−3, gSn−4 and so on (using each time Lemma 3.2).
If we write t(n) = Sn−1 + · · · + SN then we get that t(n) < Sn, that gt(n)

maps Un−1 homeomorphically onto UN−1 and that

C−1(Un−2, gSn−1(Un)
) ≥ C−1(UN−1, gt(n)(Un)

)
.

Moreover, |gt(n)(Un)| → 0 because gSn(Un) = Un−1 tends to zero in length
(here we can use the contraction principle, see for example [MS], since g has
no wandering intervals). Moreover, gt(n) (Un) does not tend to ∂UN−1 because
ω(c) is assumed to be minimal. It follows that C−1(UN−1, gt(n)(Un))→ ∞.
Therefore, C−1(Ug

n−1, g(Un)) ≥ C−1(Un−2, gSn−1(Un)) → ∞, and we are
done. ��

Let us from now on assume that gSn(c) < c for infinitely many n. So
consider the (infinite) collection of integers

S = {n ; gSn(c) < c and Sn+1 > Sn}.

Note that for n ∈ S one cannot have that gSn : Un → Un−1 is central, but it
is possible that gSn−1 : Un−1 → Un−2 is central. In other words, if there are
central intervals then Un is always the last (smallest) interval in a chain of
central intervals

Un ⊂ Un−1 ⊂ · · · ⊂ Un−k(n),

with

Sn+1 > Sn = Sn−1 = · · · = Sn−k(n) > Sn−k(n)−1.

Here k(n) ≥ 0, and k(n) = 0 if and only if gSn−1 : Un−1 → Un−2 is again
not central. Let n1 < n2 < n3 < . . . be the elements of this collection S.
Below we draw the situation when k(ni) = 0.
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Let
V = [∂lUni−k(ni )−1, ∂rUni ].

It will also be useful to define an intervalÛni+1 containing c between Uni+1

and Uni with ∂rÛni+1 = ∂rUni+1 and so that

gSni+1 : Ûni+1 → [∂lUni−k(ni )−1, ∂rUni ] = V

is a homeomorphism. By Proposition 2.2, gSni+1−1 : Ûg
ni+1 → V is a diffeo-

morphism.

Lemma 3.4

C−1
(
V g, Ûg

ni+1

) = C−1
([
∂lU

g
ni−k(ni )−1, ∂rU

g
ni

]
, Ûg

ni+1

) ≥
≥ C−1

([
∂lUni−1−1, ∂rUni−1

]
, gSni

(
Ûni+1

))
.

Proof: Write Û = Ûni+1 and choose U between Uni and V (such that
U,Uni , V all have the same right end point) so that U is mapped homeo-
morphically by gSni onto [∂lUni−1−1, ∂rUni−1]. This means that

gSni−1 : Ûg ⊂ Ug → gSni (Û) ⊂ [∂lUni−1−1, ∂rUni−1]
is a homeomorphism between these pairs of intervals. It is enough to show
that we do not have loss of cross-ratios for this map, because obviously
the left-hand side of the inequality in the statement of the lemma is larger
than C−1(Ug, Ûg). Note that gSni−1 is a diffeomorphism restricted to Ûg

and also restricted to the right component of Ug \ Ûg (because these sets
are contained in Uni ). So we need to show that each time some iterate (up
to time S = Sni ) of the left component of Ug \ Ûg meets the critical point
we are in the situation described by Lemma 3.2.

The first time c enters Uni−k(ni )−1 is at time

S = Sni = · · · = Sni−k(ni ) (> Sni−k(ni )−1 ≥ · · · ≥ Sni−1).
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So all iterates of Û up to time S = Sni are outside Uni−k(ni )−1. Moreover,
they do not intersect ∂Ut when t ≤ ni because gSni (Û) ⊂ Uni−1. Let us take
j < Sni and show that either g is a diffeomorphism on gj(U) or we are
in the situation of Lemma 3.2 for J = gj(Û) ⊂ g j(U) = T . If g j(Û) is
outside Uni−1 then gj(U) is also outside Uni−1 (and so g is a diffeomorphism
on gj(U)); indeed boundary points of Uni−1 are never mapped inside Uni−1 .
If g j(Û) is in Uni−1 but to the left of c, then gj(U) also does not contain c
(because g preserves orientation and gSni −1 is a diffeomorphism restricted
to the right component of Ug \ Ûg), and again g is a diffeomorphism
on gj(U). So the only situation we have to consider is when gj(Û) ⊂
r(Uni−1 \Uni−k(ni )−1). In this case gj(Û) is contained in one of the intervals
r(Uni−s \ Uni−s+1) where ni−1 ≤ ni − s < ni − k(ni)− 1. We claim that if

g j(Û) ⊂ r(Uni−s \ Uni−s+1) (3.2)

(with s as above) then gj(U) is contained in Uni−s. So let us assume by
contradiction that j < Sni is the maximal integer such that there exists s as
in (3.2) such that gj(U) contains a boundary point of Uni−s. It is impossible
that ni − s = ni−1 because if gj(U) contains a boundary point of Uni−s then
gS(U) would contain the left boundary of Uni−1−1 which is not the case. If
ni−s > ni−1 then gSni−s is the first iterate which maps gj(Û) inside Uni−s−1.
It also maps gj(Û) into r(Uni−s−1 \Uni−s) (because ni − s < ni − k(ni)− 1
and by the definition of S). From this it follows that j is not maximal, and
so by contradiction the claim is proved. But from the claim it follows that
for each j with (3.2), we are in the situation of Lemma 3.2, and thus the
lemma follows. ��
Lemma 3.5 For each ε > 0 from the standing assumption there are δ > 0
and infinitely many ni ∈ S for which

C−1([∂lU
g
ni−k(ni )−1, ∂rU

g
ni

]
, Ûg

ni+1

) ≥ 1 + δ.

Proof: Fix such ε. By the previous lemma it suffices to prove that there are
δ > 0 and infinitely many ni ∈ S such that

C−1([∂lUni−1−1, ∂rUni−1], gSni (Ûni+1)) ≥ 1 + δ.
Moreover, since gSni (Ûni+1) ⊂ l(Uni−1 \ Uni ), the left hand side in the
previous inequality is bounded from below by

C−1
([∂lUni−1−1, ∂rUni−1], l(Uni−1 \ Uni )

)
.

Normalize so that c = 0 and write

Un = [−xn, yn]
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where by our standing assumption we have 0 < (1 + ε)xn < yn+1 < yn
provided ε ∈ (0, ε0). Then

C−1
([∂lUni−1−1, ∂rUni−1], l(Uni−1 \ Uni )

)= (xni−1−1−xni−1)(yni−1+xni )

(yni−1+xni−1−1)(xni−1−xni )
≥

(
xni−1−1 − xni−1

) (
(1 + ε)xni−1 + xni

)
(
(1 + ε)xni−1 + xni−1−1

) (
xni−1 − xni

) =
(
λ′ni

−1
)

(
(1+ε)+λ′ni

)
(
(1+ε)λni +1

)
(
λni −1

) ,

(3.3)

where we denote
λni = xni−1/xni

and
λ′ni

= xni−1−1/xni−1.

Take any κ > 0. Assume first that for all i sufficiently large, λni ≥ (1+κ)λ′ni
.

Observe that

λ′ni
= xni−1−1/xni−1 ≥ xni−1−1/xni−1 = λni−1 . (3.4)

Hence we would have λni ≥ (1 + κ)λni−1 for every i large. It implies
λni → ∞, and, together with (3.4), λ′ni

→ ∞. But then the expression in
(3.3) would be at least 1 + ε/2, for all ni large enough, which proves the
statement in the considered case with δ = ε/2.

Assume now that for some fixed i , λni ≤ (1 + κ)λ′ni
. Denote t = λ′ni

.
Then the expression in (3.3) is bounded from below by the function

A(κ, t) = (t − 1)

((1 + ε)+ t)

((1 + ε)(1 + κ)t + 1)

((1 + κ)t − 1)
, (3.5)

which one can rewrite as

(1 + ε)+ (2 + ε)(ε − ((1 + ε)(1 + κ)− 1)t)

((1 + ε)+ t)((1 + κ)t − 1)
. (3.6)

It is easy to see that the latter expression is increasing in t > 1. The real
bounds imply that there exists C > 1 so that λ′ni

≥ C > 1 for all i . Hence,
one can assume that t ≥ C and A(κ, t) ≥ A(κ,C). On the other hand,
A(κ,C)→1+2δ as κ→0, where we denote δ=0.5ε(C−1)/(1+ε+C)>0.
It follows that there exists κ > 0 dependent only on C and ε such that the
expression in (3.3) is again at least 1 + δ provided λni ≤ (1 + κ)λ′ni

for
a given i . ��

Let us now show that the situation of the previous lemma leads to
complex bounds. Let n = ni and k = k(ni). It follows immediately from
the previous lemma that

(*) the length of each component of [∂lUg
n−k−1, ∂rU

g
n ] \ {c1} is larger

than (1 + δ)|Ûg
n+1|, where δ > 0 does not depend on n = ni .
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Let us choose (and then fix) ∆ > 0 dependent only on δ as follows. Let

Vn−k−1(∆) ⊂ [∂lUn−k−1, ∂rUn]
be the interval obtained by removing from the left side of the interval
[∂lUn−k−1, ∂rUn] its ∆-part, i.e. an interval of length ∆ · |∂rUn − ∂lUn−k−1|.
We claim that for ∆ > 0 sufficiently small,

(**) the length of each component of Vg
n−k−1(∆) \ {c1} is larger than

(1+ δ/2)|Ûg
n+1|. Moreover, Vn−k−1(∆) contains the left end of Un−k

and Vn−k−1(∆) is well inside Un−k−1.

Let us show that this is indeed true. Let l and r be the lengths of
the left and the right components of [∂lUg

n−k−1, ∂rU
g
n ] \ Ûg

n+1. Since Un
is well inside Un−k−1, there is an absolute constant C > 0 such that l ≥
C · |Ug

n | ≥ C(r+|Ûg
n+1|). From the previous lemma, l, r > |Ûg

n+1|. This and
l ≥ C(r+|Ûg

n+1|), imply that one can choose ∆ > 0 (dependent on C and δ)
as in the first part of (**). Now, the left component of Un−k−1\Vn−k−1(∆) has
at least length ∆|Vn−k−1(∆)|. The right component of Un−k−1 \ Vn−k−1(∆)
is also not small compared with Vn−k−1(∆) because Un−k is well inside
Un−k−1 and by the standing assumption. This gives the second part of (**).

Lemma 3.6 Let δ > 0 and ∆ be as above. Then for any n = ni ∈ S,
k = k(ni) with

C−1([∂lU
g
n−k−1, ∂rU

g
n

]
, Ûg

n+1

) ≥ 1 + δ, (3.7)

the first return map to Un extends to a (quasi-)polynomial-like map with
range

Ω = D∗(V ) \ (V \ Un)

where V is either [−∂rUn, ∂rUn] or Vn−k−1(∆).

Proof: There are two cases:
I. There exists ρ > 0 (not depending on n) such that the left component
of Un−k−1 \ {c} is at least (1 + ρ) times as long as the right component
of Un \ {c}. In this case U∗ = (−∂rUn, ∂rUn) is well-inside Un−k−1. Now
proceed as in Case II of Lemma 3.1 by setting Ω = D∗(U∗) \ (U∗ \ Un)
(and taking m = n).
II. The situation is not as in I. Then let V = Vn−k−1(∆). Since Un−k is well-
inside Un−k−1, that the situation is not as in I means that we can assume
that the left component of Un−k \ {c} is shorter than the right component of
Un \ {c}.

Consider the first return map to Un, but extend each branch so that
it maps onto Ω := D∗(V ) \ (V \ Un). Let us first consider the central
domain of the first return map to Un and its extension gSn+1 : Û(∆) → V .
Let gSn+1 : D0 → Ω be the central branch. By Schwarz, some subset of
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D∗(Û(∆)g) is mapped diffeomorphically onto D∗(V ) by gSn+1−1. From
(**) it follows immediately that g−1(D∗(Û(∆)g)) ⊂ D∗(V ). To show that
the modulus of Ω \ D0 is bounded from below by some universal positive
constant, we still need to consider the real part of D0 (because of the slits).
Let Ũ ⊂ Un be so that gSn+1−1 : Ũg → Un−k−1 is a diffeomorphism. Since V
is well inside Un−k−1 by (**), the intervalÛ (∆) is well insideŨ , i.e. also well
inside Un. All this means that the modulus of Ω \ D0 is bounded away from
zero. Let us now show that the non-central components are also contained
in Ω. Take a non-central domain I of the first return map to Un so that the
first return restricted to I coincides with gs. If s > Sn, then, since forward
iterates of ∂Ui never enter Ui , this branch of the first ‘return’ map from Un+1
to Un extends diffeomorphically onto Un−k−1 (and the extended domain is
well inside Un). By the lemma of Schwarz, the corresponding domain is
inside Ω. So let us consider the case that s = Sn. In this case I is the non-
central interval in Un which is mapped by gs to Un, and one can extend the
interval Ig = g(I ) to the left to an interval Ĩ g = g( Ĩ ) so that gs−1 : I g → Un
extends to a diffeomorphism gs−1 : Ĩ g → V = [∂lUn−k−1(∆), ∂rUn]. The
extended domain Ĩ is inside J = [∂lUn−k, ∂rUn]. Since we are in Case II,
the right component of Ug

n \{c} is longer than the left component of Ĩ g \{c}.
Therefore we can apply the lemma from the appendix and get that the
component of g−1(D∗( Ĩ g)) \ R− which contains I , is contained in D∗( Ĩ ).
So also the non-central components are contained in Ω. Therefore also in
this case we obtain a quasi-polynomial-like map. ��

4 Real bounds for smooth maps in the minimal case

In this section, we will show that the real bounds of [Le] hold without
the negative Schwarzian condition. That is, in this section we shall prove
Theorem 2.1 for any C3 map g which satisfies conditions 1–3 of the class
AC (but is not necessary real analytic) and for which

• g(x) = g(c) + [h(x)]l in a neighbourhood of the critical point c = 0,
where h is a C3 local diffeomorphism and h(0) = 0,

• ω(c) is minimal.

Note that we shall use Theorem 2.1 for maps g ∈ AC only if ω(c) is
minimal. So fix such a map g.

The scheme of the proof is the following. In the first step, we prove
a weaker form of Theorem 2.1, namely, the following a priori real bounds:

Lemma 4.1 There exist a positive number C, and a sequence ni → ∞, so
that for every n = ni, the length of every component of Un−1 \ Un is larger
or equal to C · |Un|.

This lemma implies that any branch RUni
: V → Uni of the first return

map has a diffeomorphic extension onto a definite neighbourhood of Uni

(namely, to Uni−1) provided V and Uni are disjoint.
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In the second step we repeat the proof of Theorem 3.2 of [Ko] (replacing
Lemma 3.2.3 in [Ko] by Lemma 4.1). This shall imply

Lemma 4.2 Let U = Uni be small enough, and let gk : W → g(U) be
a branch of the first return map to g(U), such that c /∈ W and W contains
points of the postcritical set. Then the Schwarzian derivative S(gk) of gk on
W is negative.

In the third step we show how to go through the critical point arbitrary
many times without loss of the cross-ratio under the conditions of Lemma 4
of [Le] or even stronger see Lemma 3.3, and Lemma 3.4. This will prove
Theorem 2.1 for smooth maps as above.

In the final step, we will show that all real bounds from the previous
section also hold for smooth maps g as above.

Step 1: Firstly, it turns out that it is convenient to deal with another cross-
ratio B(T, J) instead of C(T, J) defined by

B(T, J) = |J ||T |
|L ∪ J ||R ∪ J | ,

where J ⊂ T are intervals and L , R are connected components of T \ J .
(Note that 1+C−1 = B−1.) A collection of intervals Ji ⊂ Ti , i = 1, . . . , n,
is said to satisfy the margins disjointness property (which was introduced
in Sect. 2.3 of [Ko]) if for the components Li and Ri of Ti \ Ji ,

Li ∩ L j 	= ∅ implies Ri ∩ R j = ∅, for 1 ≤ i < j ≤ n. (4.1)

By Lemma 2.3.2 of [Ko], a consequence of this property is that

n∑
i=1

|Li||Ri | ≤ 4 max
1≤i≤n

|Ti |

provided all Ti ⊂ [−1, 1].
The margins disjointness property is useful in view of the following

statements (which imply that we can pull-back big space provided the
margins disjointness property holds):

Theorem 4.1 [MS] Let f : N → N be a C3-map of an interval or
a circle N whose critical points are non-flat. Then there exists a constant
C1 = C1( f ) such that

B( f(T ), f(J)) ≥ B(T, J) exp (−C1|L||R|) ,
where f ′(x) 	= 0 for all x ∈ T.

Proof: See Sect. IV.1 from [MS]. ��
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Lemma 4.3 Under the conditions of Lemma 2.1, but assuming only that h
is a local C3-diffeomorphism, we have:

B(F(T ), F(J)) ≥ B(T, J) exp (−C1|L||R|) ,
where the constant C1 depends only on the map h.

Proof: F is a composition of h and xl. Then use Lemma 2.1 for the latter
map and the previous Theorem 4.1 for h. ��

In order to obtain Lemma 4.1, we observe that the proofs of Proposi-
tions 1–3 in [Le] hold for the smooth g as well, with the following changes.

The proofs in [Le] are based on combinatorial arguments (which of
course do not depend on any analytic condition), the Koebe Principle (which
also holds for smooth maps provided the intersection multiplicity is bounded
[MS]), and the following Interval Adding Procedure: Given gSn : Un →
Un−1, let τ+n be a maximal interval outside Un and to the right of Un

with a common boundary point with Un, so that gSn |τ+n is defined and
a diffeomorphism. The interval τ−n is defined in the same way, but to the
left of Un. Let t be either τ+n or τ−n . Note that one endpoint of gSn(t) is in
∂Un−1. If the other endpoint of gSn(t) is an endpoint of the range I of the
map g, then we set k = 0 and stop. Otherwise t is the minimal interval, such
that the boundary point of t which is not in ∂Un, is a critical point of gSn . In
this case there exists i , 1 ≤ i ≤ Sn − 1, so that c lies at the boundary of the
interval gi(t). So in this case we will apply the following operation (called
“adding the interval Un−1”):

Since gi(Un) is outside Un−1 and gi(t) has c in its boundary, the interval
gi(t) contains also a boundary point of Un−1. Hence, either i + Sn−1 >
Sn, or gi+Sn−1(t) contains a boundary point of Un−2. Hence, again either
i + Sn−1 + Sn−2 > Sn, or gi+Sn−1+Sn−2(t) contains a boundary point of Un−3.
We continue this process until we find k ≥ 1 so that

S := i + Sn−1 + ...+ Sn−k+1 < Sn,

while
S + Sn−k ≥ Sn.

Then gS(t) contains a boundary point of Un−k. Let us extend the interval
t to an interval t̂ so that gS(t̂) = [Un−1, gS(t)], and call this operation
“adding the interval Un−1”. The boundary point of t other than ∂Un lies in
a component of Um−1 \ Um , for some m ≤ n. Since ∂Um−1 are nice points,
t̂ = t̂±n ⊂ Um−1 \ Um . At the end, if gSn(t̂±n ) covers more than one interval
of the form gj(Un−1), 1 ≤ j ≤ Sn−1 −1, we shorten t̂±n to t±n so that gSn(t±n )
is the minimal interval, which covers only one interval of such form, or
such that |gSn(t±n )| = |Un−1|. In other words, gSn(t−n ∪ Un ∪ t+n ) = Ûn−1,
where Ûn−1 is said to be the minimal interval containing from each side of
Un−1 either its neighbour from the collection gi(Un−1), 1 ≤ i < Sn−1, or a
1-neighbourhood of Un−1 (i.e. of size |Un−1|).
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By construction, gSn |t±n has at most k±n = k critical points (see Lemma 1
of [Le] for detail). Now we shall prove the inequality of Lemma 1 of [Le]:

Lemma 4.4 There exists C > 0 which only depends on � and max(k−n , k+n )
so that for n large enough ∣∣t±n ∣∣ ≥ C|Un|. (4.2)

Proof: Observe that the collection of intervals:

gi(J) ⊂ gi(L ∪ J ∪ R), i = 0, ..., Sn − 1

where J = Un, L, R = t±, satisfies the margins disjointness property (4.1).
Indeed, otherwise one could find 1 ≤ j ≤ Sn −1 with gj(t−n )∩ gSn(t−n ) 	= ∅
and gj(t+n )∩gSn(t+n ) 	= ∅. Because gSn(Un) = Un−1 and gj(Un)∩Un−1 = ∅,
then either gj(t−n ) or gj(t+n ) contains a neighbourhood of Un−1. If, say,
g j(t+n ) ⊃ Un−1, then gSn(t+n ) strictly contains gSn− j(Un−1), a contradiction
with the choice of t+n .

The margins disjointness property implies that

en :=
Sn∑

i=0

∣∣gi(t−n )
∣∣∣∣gi(t+n )

∣∣ ≤ 4 max
0≤i≤Sn

|gi(T )|,

where T = t−n ∪Un∪ t+n . Here en → 0, because the length of the last interval
gSn(T ) tends to zero as n → ∞ (g has no wandering intervals). From the
Koebe principle and the shortest interval argument, there exists a positive
constant b0 < 1 (depending on � only) such that

B(Ûn−1,Un−1) ≤ b0.

Now pull Ûn−1 back to T . Let 0 = j1 < · · · < jr < Sn be the mo-
ments such that c ∈ gi(T ). As we know, r ≤ max(k−n , k+n ). Write Bi =
B(gi(T ), gi(Un)), 0 ≤ i ≤ Sn. Using Theorem 4.1 one can write Bjr+1 ≤
BSn exp(C1 · en) ≤ b1 < 1, where b1 is universal (i.e., only depends on �)
provided n is large enough. Passing from the critical value to the critical
point, Bjr ≤ b′1 < 1, where b′1 only depends on b1 (and on �, as always).
Continuing in this way, we obtain finally B0 = B(T,Un) ≤ b′r < 1, where
b′r only depends on the number r ≤ max(k±n ). Therefore (4.2) is proved. ��

Now we repeat the proof of Proposition 1 in [Le] for smooth maps using
the previous lemma and disjointness. The proof of Proposition 2 in [Le]
also holds for smooth maps, because the corresponding iterates satisfy the
margin disjointness property for the same reason as above. Thus we get that
Um is well inside Um−1 whenever either Um−1 is the last interval in a cascade
of central returns, or gSm−3(c) and gSm−4(c) are on opposite sides of c. (We
don’t need Proposition 3 since g preserves orientation. Lemma 5 of [Le]
and its proof also remains unchanged.) Therefore, to complete the proof of
Lemma 4.1, it is enough to have a weaker form of Lemma 4 of [Le]:
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Lemma 4.5 Assume that gSn : Un → Un−1 are not central and gSn(c) > c
for all n. Assume also that the Standing Assumption holds. Then Un is well
inside Un−1 for all n ≥ 1.

Proof: To prove this we apply the Interval Adding Procedure. More pre-
cisely, given n, let Ûn−1 be as above. Let T := t− ∪ Un ∪ t+ be an interval
mapped onto Ûn−1 by gSn (i.e., t± = t±n ). We observe that because of the
assumptions made in the lemma

• t+ is inside the right component of Un−1 \ Un (indeed, gSn−2(Un−1) ⊂
r(Un−3 \ Un−2) and gSn(r(Un−1 \ Un)) covers r(Un−3 \ Un−1)), and,
therefore gSn : t+ → Ûn−1 has at most one critical point.

• t− is inside the left component of Un−1 \ Un (because gSn−1(l(Un−1 \
Un)) ⊃ Un−1, i.e., gSn is not diffeomorphic on l(Un−1 \Un)). Moreover,
each time an iterate of t̂− passes through the critical point, more than
half of this iterate of t− lies to the right of c (as required in order to apply
Lemmas 2.1 and 4.3). This follows from the construction of t±: gS(t−)
contains an end point of Un−k and ∂lgS(t−) ≥ ∂lUn−1 (see the Interval
Adding Procedure).

Because of the latter observation, one can ignore that gi(t−) covers c from
time to time, and apply the proof of (4.2) where we set r = 2. We therefore
obtain, that B(Un−1,Un) ≤ B(T,Un) ≤ b′, where b′ < 1 depends on b0
(and �) i.e. depends finally on � only. ��

Thus we have proved (for C3-maps g) Propositions 1–2 of [Le],
Lemma 4.5 (instead of Lemmas 4 of [Le]), and Lemma 5 of [Le]. As
we have noticed this implies Lemma 4.1.

Step 2: Copying Sects. 3.3–3.4 of [Ko], Lemma 4.2 also holds. Note that we
can apply a theorem of Mañé (see Theorem 2.2) because ω(c) stays away
from the parabolic periodic orbits of g (of which there are at most finitely
many, see [MS] and Proposition 2.1).

Step 3: At last, let us prove Lemma 4 of [Le], or even stronger Lemma 3.3.
We repeat its proof as follows (cf. proof of Theorem 3.1 of [Ko]). Fix
an interval T0 = Uni0

with ni0 so large that we can apply Lemma 4.2.
Now, in the proof of Lemma 3.3, each time we apply gSr to the interval
T := Ur = gSn−1+...+Sr+1 (Un−1) (with the interval J := gSn−1+...+Sr+1(Un)
inside, so that T = L ∪ J ∪ R), we divide the orbit into the first M
iterates and the remaining iterates. To be more precise, let M < Sr be
the maximal integer so that gM−1(T ) ⊂ T0. Then, by Lemmas 4.2–4.3,
B(gM(T ), gM(J)) ≥ B(g(T ), g(J)) ≥ B(T, J) exp(−C1 · |L| · |R|). The
iterates gj(T ), j = M, . . . , Sr − 1, from M to Sr − 1 are outside T0 and
stay away from a fixed neighbourhood of all parabolic periodic orbits of g,
because ω(c) is minimal. Hence, we can use the theorem of Mañ́e (see 2.2)
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to obtain:

B(gSr(T ), gSr (J)) ≥ B(gM(T ), gM(J)) exp
(
− C1

Sr−1∑
i=M

|gi(L)||gi(R)|
)
≥

B(gM(T ), gM(J)) exp
( − C2|gSr (L)||gSr (R)|),

where the constant C2 depends on g and the neighbourhood T0, which is
fixed. Therefore, by the Standing Assumption and Lemma 4.3, we obtain
setting k(n) = Sn−1 + ...+ SN :

B(gk(n)(Un−1), gk(n)(Un)) ≥ B(Un−1,Un)

exp
(
−C2

n∑
r=N

|gSn−1+...+Sr+1 (L)||gSn−1+...+Sr+1(R)|
)
.

The latter sum can be made arbitrarily small provided N is large enough,
because the collection of intervals:

gSn−1+...+Sr+1(Un) ⊂ gSn−1+...+Sr+1 (Un−1), r = N, ...., n,

satisfies the margins disjointness property (because gSn−1+...+Sr+1 (Un) lies
in the right component of Ur \ Ur+1). Then we complete the proof as in
Lemma 3.3. Thus Lemma 4 of [Le] and Lemma 3.3 are proved for smooth
maps g.

Now we can proceed as in [Le] and complete the proof of Proposition 4
of [Le] and the real bounds from Theorem 2.1 for smooth maps as above.

Step 4: The only remaining real estimate we need to prove is Lemma 3.4.
But under the condition and notations of the proof of Lemma 3.4, the
collection of intervals

g j(Ûg) ⊂ g j(Ug), j = 0, ..., Sni − 1,

has the margins disjointness property, because Ûg ⊂ Ug
ni , ∂rUg = ∂Ug

ni

and because the intervals gj(Ug
ni ), 0 ≤ j ≤ Sni − 1, are pairwise disjoint.

Therefore also the inequality of Lemma 3.4 follows for smooth maps g,
with a spoiling factor which tends to 1 as ni → ∞.

5 Complex bounds for real analytic maps in the minimal case: the
proof of Theorem A

In this section we prove Theorem A for real analytic maps g ∈ AC. This
means that we have to use Lemma 2.3 instead of the Schwarz Lemma (be-
cause we only have a conformal map near the dynamical interval). Therefore
we shall need that the sum of the lengths of the intervals along any branch
of the first return map becomes small (because then we merely have a small
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loss of angles of pullbacks of the Poincaŕe domains). To get this, note that
the real bounds from the previous section imply that ω(c) has Lebesgue
measure zero (cf. [LS1] and [Ko]).

Let us go through the proofs of the results from Sect. 3.

First we deal with the real analytic version of Lemma 3.1.

Lemma 5.1 Let g be real analytic as above and assume that there exist
infinitely many n’s for which

max (|∂lUn − c|, |∂rUn − c|) < (1 + ε)dist(∂Un−1, c).

Then g has complex bounds.

Proof: As before assume that

|∂lUn − c| ≤ |∂rUn − c| < (1 + ε)|∂lUn−1 − c|.
Let us distinguish two cases as in Lemma 3.1.

Case I. Un is well-inside Un−1. Then, as before, take Ω = D∗(Un−1). Let J
be a domain of the first return map to Un−1 which intersects ω(c) and let s
be its return time. We claim that J is well inside Un−1. Indeed, if J = Un
then this follows by assumption. So let us assume that J is not the central
domain. gs−1 : Jg → Un−1 extends to a diffeomorphism gs−1 : Ĵ g → Un−2

with Ĵ ⊂ Un−1. So if Un−1 is well inside Un−2 then J is also well inside
Un−1. If Un−1 is not well inside Un−2, then Un is part of a long chain
Un+i ⊂ · · · ⊂ Un−k. But then, since J 	= Un, we get that gs−1 : Jg → Un−1

extends to a diffeomorphism gs−1 : Ĵ g → Un−k−1 with Ĵ ⊂ Un−1. By the
real bounds Un−1 is well inside Un−k−1, and so J is well inside Ĵ ⊂ Un−1.
Therefore the claim is proved in all situations. Since |ω(c)| = 0, the sum
of the lengths of J, . . . , gs−1(J) is small when n is large. It follows from
Lemma 2.3 that the pullback of Ω = D∗(Un−1) to J (with J either a non-
central domain or equal to Ug

n ) is contained in a Poincaŕe disc based on J
with angle close to π/2 when n is large. Since Un is well inside Un−1 the
central domain is still contained well inside the range Ω (using the same
arguments as in Case 1 of Lemma 3.1). By the claim above, a non-central
domain J is well inside Un−1, and so the Poincaré disc based on J with
angle close to π/2 is again contained well inside Ω.

Case II. The interval Un is not well inside Un−1. Then Un is inside a cascade
of central domains. As in Lemma 3.1 define m ≥ n ≥ n − k − 1 so that
Sm+1 > S := Sm = · · · = Sn−k > Sn−k−1. As in Lemma 3.1 let U∗ be
the smallest symmetric interval containing Um . As before, U∗ is well inside
Un−k−1. Let Ω = D∗(U∗) \ (U∗ \ Um) and let U with Um ⊃ U ⊃ Um+1
be so that gSm+1−1 : Ug → U∗ is a homeomorphism. Since |ω(c)| = 0 and
the intervals gj(Um+1), j = 0, ..., Sm+1 − 1 are pairwise disjoint, the sum
of the lengths of these intervals is arbitrary close to zero, when n (and
therefore m) is large enough. Since U∗ is well inside Un−k−1 and has length
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≤ 2|Um| = 2 · |gSm+1(Um+1)|, and since gSm+1−1 : Ug → U∗ extends to
a diffeomorphism onto Un−k−1, we get by the Koebe Principle that the sum
of the lengths of gj(U), j = 0, ..., Sm+1 − 1, is close to zero when n and
m are large. Therefore, the preimage of the disc D∗(U∗) by the central
branch to the critical value c1 is contained in a set D(Ug, θ), where the
angle θ is close to π/2 for n large. Since U is well inside Um ⊂ U∗, we
get that the central domain is contained well inside Ω. Let us now consider
a non-central domain J of the return map to Um with return time s. Let
Ĵ ⊃ J be so that gs : Ĵ → U∗ is a homeomorphism. The problem is that the
pullback of a Euclidean disc is merely inside a Poincaŕe disc of angle close
to π/2. Therefore we need that Ĵ is well inside U∗. This holds for all non-
central domains with return time s > Sm, and so for these the corresponding
domains in the complex plane fit inside Ω. However, unfortunately, for the
non-central branch gSm : Im → Um this may not hold. Indeed, let Îm ⊃ Im

be so that gSm : Îm → U∗ is a homeomorphism. It need not be true that
Îm is well inside U∗. Therefore, let us change the definition of U∗ slightly.
Define U∗(τ) to be the interval with boundary points ±(1 + τ)∂rU∗. For
all τ ∈ [0, τ0] (with τ0 ∈ (0, 1) some fixed small number), the interval
U∗(τ) is still well inside Un−k−1 and there is an interval Îm(τ) # c such
that gS−1 : Îm(τ)

g → U∗(τ) is a diffeomorphism. Since g has no periodic
attractors or neutral periodic orbits near c (see see Proposition 2.1), we may
assume that n is so large that gS : Îm(τ)→ U∗(τ) has only one fixed point.
This fixed point is repelling and lies in Um .

Claim: There exists τ ∈ [0, τ0] so that Îm(τ) is well inside U∗(τ). To prove
this claim, consider τi = (i/8)τ0 with i = 1, . . . , 8 and let [li, ri ] = Îm(τi).
If the claim is false for τi then either

|gS(ri)− ri| ≤ o(n)|U∗| or |gS(li)− li | ≤ o(n)|U∗|
where o(n) are functions which tend to zero as n → ∞. So if the claim is
false for all i , then for at least four of the points l1, . . . , l8 we have

|gS(li)− li | ≤ o(n)|U∗| as n → ∞ (5.1)

(or the same holds for four of the points ri). Choose intervals T ⊃ J so that
C(T, J) is the cross-ratio determined by these four points (from l1, . . . , l8).
From (5.1) it follows that C(gS(T ), gS(J))/C(T, J) is close to one when
n is large. But since U∗(τ) is well-inside Un−k−1 we get from the (real)
Koebe principle that the non-linearity of gS−1 : Î g

m(τ0) → U∗(τ0) is uni-
versally bounded. Hence Îm(τ0) ⊂ Un−k and since Un−k, . . . , gS−1(Un−k)

are disjoint and g has no wandering intervals, C(gST,gS J )
C(gT,gJ ) ≥ 1 − o(n) where

o(n) → 0 as n → ∞, see [MS]. By the definition of τi , |J |, |l(T \ J)|,
|r(T \ J)| and |U∗| are all of the same order. But an explicit calculation for
the map z �→ z� shows that this implies that C(gT, gJ)/C(T, J) > 1 + κ
for some universal constant κ > 0 (the intervals J ⊂ T do not contain the
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critical point c = 0, and are not small compared to the distance to c). It
follows that

C(gST, gS J)

C(T, J)
≥ 1 + κ − o(n).

But this violates (5.1). This contradiction proves the claim.
If we now define

Ω(τ) = D∗(U∗(τ)) \ (U∗(τ) \ Um)

then the extension of all non-central domains are all contained well inside
U∗(τ). Thus we obtain a quasi-polynomial-like map. ��

Next we should remark that Lemmas 3.2, 3.3, 3.4 and 3.5 remain un-
changed or were proved already in the previous section. So we only need to
prove Lemma 3.6. To do this, simply proceed as in the proof of Lemma 5.1
(notice that in Case II we have |V | ≤ 3|Un|). This completes the proof of
Theorem A (complex bounds).

6 Polynomial-like structure of real analytic maps in the minimal case

Given a real analytic map g ∈ AC with ω(c) minimal, we have constructed
a sequence of quasi-polynomial-like mappings

Pk : ∪i V
i
k → Vk,

such that diam(Vk) → 0. The map Pk is the analytic extension from the
real line of a first return map g to an interval Unk of our sequence (so
that the intersection of Vk with the real axis is Unk ). Quasi-polynomial-like
mappings have domains which can intersect.

In this section we construct from these ‘quasi-mappings’, genuine poly-
nomial-like mappings

Pk : ∪i V̂
i
k → V̂k.

Here V̂ i
k , V̂k will be subsets of Vi

k , Vk, and Pk are restrictions of the quasi-
polynomial-like mappings Pk : ∪i V i

k → Vk.
We should emphasize that the polynomial-like maps Pk : ∪i V̂ i

k → V̂k we
will build here, may have lost the original property of the quasi-polynomial-
like maps Pk : ∪i V i

k → Vk that the moduli of the annuli between the ranges
and the central domains are uniformly bounded away from zero. In spite of
this, we can conjugate the map Pk : ∪i V̂ i

k → V̂k to a polynomial, see the
next section.

The construction will go in two steps.

Step 1: Construction of a smooth polynomial-like mapping. Given the
initial map g : ∪i Ii → I , one can assume that the closures of the intervals
Ii are pairwise disjoint and contained in the open interval I (we can always
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pass to a first return map along the postcritical set, which, by the assumption
that ω(c) is minimal, obeys such property). Let us choose a neighbourhood
V of the interval I (with V a topological disc with analytic boundary) so
close to I , that, for each i = 0, ..., i0, there exists a neighbourhood Ui of
the interval Ii such that for i 	= 0 the map g : Ui → V is a complex
analytic (diffeomorphic) covering map. Choose V so that the discs Ui are
disjoint. For i = 0 it might be impossible to extend g|I0 analytically to
some set U0 in such a way that g : U0 → V becomes an analytic branched
covering map. (If such an extension did exist, its preimage of V would not
be close to the real line.) So instead choose an analytic extension near I0
and then extend diffeomorphically so that g : U0 → V becomes a smooth
branched covering map with critical point c. Note that the topological discs
Ui are not necessarily contained in V , but we can make sure that they are
disjoint. Therefore, fix a topological disc A, which properly contains V and
each Ui . Given i , choose a disc Bi , which contains properly Ui , is contained
properly in A, and so that all Bi are pairwise disjoint. Let us artificially
extend g : Ui → V to a map g̃ : Bi → A, which is a diffeomorphism for
i 	= 0 and such that it is a covering map for i = 0. After this step, we obtain

g̃ : ∪i Bi → A,

which is an extension of g : ∪i Ui → V , such that each g̃ : Bi → A
is a diffeomorphism for i 	= 0, and g̃ : B0 → A is a covering map with
a unique critical point at c. This map is the intermediate smooth polynomial-
like mapping. Note that there is NO guarantee thatg̃ and g coincide wherever
they are both defined and that g̃ is not analytic. However, g = g̃ close to the
intervals Ii .

Step 2: Intersecting the quasi-polynomial-like mapping with the smooth
polynomial-like mapping. Consider the sequence of first return maps ofg̃
along the postcritical set. Thus we obtain a sequence of smooth polynomial-
like mappings

g̃n : ∪i B
n
i → An,

such that g̃n coincides with the first return map of g to Un on the real traces.
This means that the smooth polynomial-like map g̃nk coincides with the
quasi-polynomial-like map Pk on the real line. We remark that one of the
properties of the quasi-polynomial-like mapping Pk is that if Vi

k is one of
its domains with Pk|V i

k = gs(i,k) then Vi
k , . . . , gs(i,k)(V i

k ) are all contained
in bounded Poincaré neighbourhoods of the real trace of these sets. So take
the component of Ank ∩Vk which contains c and consider the corresponding
preimages by Pk and g̃nk . By the above remark, g̃nk coincides with Pk on
these preimages. Thus we get a truly polynomial-like mapping,

Pk : ∪i V̂
i
k → V̂k,

see also [LS1].
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Note that we do not claim that the moduli of the annuli between the ranges
and the central domains of the constructed polynomial-like Pk : ∪i V̂ i

k → V̂k,
are uniformly away from zero, but on the other hand we can (and will)
conjugate the map Pk : ∪i V̂ i

k → V̂k with a polynomial, see next section.
Take one of the constructed polynomial-like maps Pk : ∪i V̂ i

k → V̂k. By
Theorem A, it induces quasi-polynomial-like maps Pm : ∪i V i

m → Vm for
m >> k sufficiently large (with definite bounds for the moduli of the annuli
obtained by taking the difference of the range and the central domain). But
as in [LS2] this is enough to obtain

Theorem 6.1 Every polynomial-like map Pk : ∪i V̂ i
k → V̂k constructed

above

1. has totally disconnected Julia set;
2. carries no invariant line field on its Julia set.

7 Conjugation to polynomials in the minimal case

Consider a map g ∈ AC for which one has an associated polynomial-like
map P : ∪i V̂ i → V̂ . (For example, a polynomial-like map as constructed
in the previous section.) In this section we do not assume that c is recurrent
or that ω(c) minimal, but only that the critical point stays in the domain of
definition of P (for example, P can have an attracting periodic orbit). So P
is any polynomial-like mapping such that its restriction to the real axis is
a map of the class AC and P is symmetric with respect to the real axis (in
particular, all components of P are symmetric).

We also write U < V , if two domains U, V like this have disjoint
closures and the intersections of U and V with the real axis are ordered
accordingly. For example, we can order the domains V̂ i like this. Let us
relabel the domains so that in this new notation the map is:

P : U−2m− ∪ U−2(m−−1) ∪ · · · ∪ U0 ∪ · · · ∪ U2(m+−1) ∪ U2m+ → V,

where m± ≥ 0 are the number of domains to the left and right of the central
domain U0 (which contains the critical point c), and such that

U−2m− < U−2(m−−1) < · · · < U0 < · · · < U2(m+−1) < U2m+.

Let us add new domains U−(2m−−1), . . . ,U−1, . . . ,U2m+−1 ordered so
that

U−(2m−) < U−(2m−−1) < · · · < U−1 <

U0 < · · · < U2m+−1 < U2m+.

For each new domain, we choose a holomorphic isomorphism, which maps
this domain onto V , such that this map is real and reverses orientation on
the real axis.
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We obtain a new polynomial-like map

Q : ∪2m+
i=−(2m−)Ui → V

with a unique critical point. This critical point is c = 0 and is of odd order
� ≥ 3.

Theorem 7.1 Q is quasiconformally conjugate to a polynomial F, in neigh-
bourhoods of their filled-in Julia sets, where F is such that:

• The degree of F is equal to d = �+ 2m+ + 2m−, and F is of the form
F(z) = z� ·r(z)+C, where r(z) = z2(m−+m+)+ ... is a monic polynomial
with real coefficients, and C = F(0) is a real number.

• All critical points of F,

x−2m− < . . . < x−1 < 0 < x0 < . . . < x2m+−1

are real (and can be ordered like this), and such that

F(xi) = H− and F(x j) = H+

for i odd and j even with −2m− ≤ i, j ≤ 2m+ − 1 where H± are real.
• All critical points of F except 0 escape to infinity, and, if we denote by

B the Böttcher function of the basin of infinity of F (normalized so that
B(z)/z → 1 as z → ∞), then B(H−) = −2 and B(H+) = 2.

Proof: We can assume that the boundaries of the domains Ui , V are analytic
curves (taking a little bit smaller disc inside V if necessary). By applying
a conjugacy which maps V conformally onto a round disc DR = {|z| < R},
for some R > 1, such that R < 2 < Rd , we can and will assume that
V = DR. Our map Q is defined so far on the union of Ui . Define also

Q(z) := zd

off V . Therefore Q(V ) = DRd . Now choose a map

φ : V \ ∪iUi → Q(V ) \ V ,

such that:

1. φ is a smooth d-fold branched covering map (not holomorphic) of the
domain V \ ∪iUi onto the standard annulus Q(V ) \ V , which extends
smoothly onto the boundaries, such that it agrees with Q. That is, φ = Q
on ∂(V \ ∪iUi).

2. φ is real on the real axis, and, moreover, φ(z) = φ(z). All critical points
of the cover φ are real (this is possible because the orientations of Q on
the real traces of any two adjacent domains Ui,Ui+1 are opposite and
because φ = Q on ∂U0).
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3. Denote the critical points of φ by a−2m− < ... < a−1 < a0 < a1 < ... <
a2m+−1, where ai lies between Ui and Ui+1. Then

φ(ai) = −2, φ(aj) = 2

for i odd and j even with −2m− ≤ i, j ≤ 2m+ − 1.
4. φ is a local diffeomorphism at any point 	= ai ; near each critical point ai

the map φ is holomorphic (and non-singular).

Now we define Q(z) = φ(z), for every z ∈ V \ ∪iUi . Thus Q is defined
everywhere.

We are in a position to use the well-known trick from the Straightening
Theorem [DH]. Take a standard conformal structure (i.e., the Beltrami
coefficient µ = 0) outside the disc Q(V ) and extend this structure to
a function µ : C → {z ; |z| < 1} which is invariant under Q. Since Q is
conformal off V and on ∪Ui , there are only a bounded number of points
(namely, one) in each orbit of Q where this map is not conformal. It follows
that the L∞-norm ofµ(z) is bounded away from one, and by the Measurable
Riemann Mapping Theorem, there exists a quasiconformal homeomorphism
H : C̄ → C̄ with H(∞) = ∞ which has µ as its Beltrami coefficient.
Because the structure is symmetric with respect to the real line, H(z) =
H(z). Since µ is invariant under Q, it follows that

F = H ◦ Q ◦ H−1

is a holomorphic d-cover of the complex plane. Hence Q is quasicon-
formally conjugate to a polynomial map F (of degree d). By an affine
conjugacy, we can assume that F is monic (it means that H(z)/z → 1 at
∞), and H(c) = 0. Then xi = H(ai), i = −2m−, ..., 2m+−1 are all simple
real critical points of F. Together with 0 = H(c) these are the only critical
points of F. The critical point 0 = H(c) is of order �. By construction,

F(x2k+1) = H(−2) := H−, F(x2k) = H(2) := H+.

H conjugates Q(z) = zd to F in the domain C \ V = {|z| > R}, and
is holomorphic there (because H preserves the standard complex structure
off V ). Moreover, H(z)/z → 1 at ∞. Hence, the inverse map B = H−1

coincides with the Böttcher function. That is, B(H−) = −2, B(H+) = 2. ��

Complement to Theorem 7.1: the polynomial F can be chosen to depend
continuously on the polynomial-like map P provided the polynomial-like
map P carries no invariant line fields on its filled-in Julia set K(P). (In par-
ticular, we need to assume that P has no periodic attractor.) (Here conver-
gence is meant in the Caratheodory topology: convergence of the domains
to a kernel, and convergence of holomorphic maps uniformly on compacta,
see e.g. [McM1]). Let us first observe that this implies that the polynomial
F also carries no invariant line field on its filled-in Julia set K(F). Indeed,
the conjugacy H has to be conformal a.e. on K(P) because otherwise the



430 G. Levin, S. van Strien

preimage of the standard complex structure on K(F) by H gives an in-
variant non-standard one on K(P), that is, an invariant line field. Hence
H is conformal on K(P), and so it takes an invariant line field of P to an
invariant line field of F, and vise versa. This proves the observation. Now,
let Pn → P be a sequence of polynomial-like maps tending to P. Then we
can choose Qn : ∪i Un

i → V n converging to Q : ∪i Ui → V uniformly on
compact subsets of the complex plane and so that the Beltrami coefficient of
Qn on V n \∪iUn

i converges to the one of Q on V \∪iUi in L∞-norm (even
in sup-norm). If Hn is the quasiconformal homeomorphism corresponding
to Qn , and Fn = Hn ◦ Qn ◦ H−1

n is the corresponding polynomial, then
the norms of the Beltrami coefficients of Hn are uniformly away from 1.
Since all Hn are normalized in the same way, passing to a subsequence,
Hn → H∗, where H∗ is quasiconformal and conformal near ∞. We get that
any such subsequence Fn tends to a polynomial F∗ = H∗ ◦ Q ◦ H−1∗ and
that H−1 ◦ F ◦ H = H−1∗ ◦ F∗ ◦ H∗. But F, F∗ are monic polynomials of
the same degree and H, H∗ are homeomorphisms of the plane which are
conformal at ∞. Then, by the last equality, the quasiconformal homeomor-
phism of the plane H ◦ H−1∗ (which conjugates F and F∗) is conformal off
the filled-in Julia set of the polynomial F∗. If the quasiconformal homeo-
morphism H ◦ H−1∗ would not be not conformal a.e. on the filled-in Julia set
of the polynomial F, then the complex structure, which is the image of the
standard one by the map H ◦ H−1∗ , is invariant under F. Hence, F carries
an invariant line field on its filled-in Julia set, a contradiction. Therefore,
H ◦ H−1∗ is conformal a.e.. So this map is affine and by the normalization it
is equal to the identity map. Hence, from Theorem 6.1,

Corollary 7.1 If P is a polynomial-like map constructed in the previous
section with ω(c) minimal, and if Pn → P is a sequence of polynomial-
like maps, then Fn → F (where Fn, F are the corresponding polynomi-
als from the previous theorem). (The convergence in this lemma is in the
Caratheodory topology).

Proof: In the previous section we constructed polynomial-like maps P from
maps g with ω(c) minimal, and showed that these do not carry invariant
linefields on their filled-in Julia set. ��

8 Conjugations to expanding maps of a circle

Let g : ∪i0
i=0 Ii → I be a real analytic map of the class we consider, but

without any restriction on the postcritical set of the critical point c. Let
us only assume that all iterates of the critical point stay in the domain of
definition of g (for example, g can have an attracting periodic orbit). For
simplicity also assume that each Ii is compactly contained in the interior
of I . (This is the case for all first return maps, if we assume that ω(c) is
minimal).
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Let us assume for simplicity that the length of I is equal to 1. Then
we can find an orientation preserving homeomorphism G : R→ R so that
G(x+1) = G(x)+m for some m ∈ N and all x and so that G|∪Ii = g mod 1.
We can do this so that each component J of I \ ∪Ii is mapped by G
affinely onto an interval of length 1. Note that G induces a piecewise
smooth covering map ĝ : S1 → S1. Here m is the number of branches of the
map ĝ.

Let Gm(z) = m · z mod 1 be the affine m-covering of the circle S1 =
Rmod 1. It is well known (see e.g. [MS]), that there exists an order preserv-
ing and surjective map h : S1 → S1, such that h ◦ ĝ = Gm ◦ h. This map h
is unique if we insist that h maps the fixed point corresponding to ∂I mod 1
to 0 mod 1. One can define h by letting h(x) to be the point whose kneading
invariant with respect to Gm is the same as the kneading invariant of that of
x with respect to ĝ. (For example, the kneading invariant of x w.r.t. ĝ lists
for all n which component of S1 \ g−1(0) the point gn(x) hits.) Uniqueness
of h follows since the choice h(∂I mod 1) = 0 mod 1 fixes the way we label
these components.) Of course, h will be constant on each component of the
basin of a periodic attractor of ĝ.

It is clear that h depends continuously on g, i.e., if g is a map from our
class which is close to g (in the C0-topology), then hg is close to hg (in
C0-topology). In particular, the image hg(c) ∈ S1 of the critical point c of g
depends continuously on g.

For any real ε with |ε| small, consider the perturbation gε : ∪i0
i=0 Ii → I ε

defined by gε(x) = g(x) + ε and Iε = I + ε. Let Gε = G + ε, and let
ĝε be the corresponding covering map of S1. Then ĝε has a fixed point pε
depending continuously on ε. Without loss of generality we may assume
that I = [0, 1] so that p0 = 0. By insisting that hgε (pε) = 0 (i.e. taking
kneading invariants with respect to the partition S1\ ĝ−1

ε (pε)which depends
continuously on ε when ε is close to zero), we have a continuous function

α(ε) = hgε (c)

from a closed interval [−ε0, ε0] into the unit circle S1.

Lemma 8.1 The function ε �→ α(ε) is order preserving for ε close to zero.
If the critical point of g is not in the closure of a component of the basin of
a periodic attractor, then α([−ε0, ε0]) contains an open arc of S1.

Proof: Take first ε > 0 and note that

Gn
ε (x) ≥ Gn(x)+ ε for all x. (8.1)

Consider the partition generated by g−n
ε (pε), n ≥ 1. Note that pε < p0 = 0

for ε > 0 small (just look at the graphs of gε for different choices of ε). Fix
n > 0 and let xn be a solution of gn (xn) = 0. Then there exists xn,ε depending
continuously on ε > 0 (when ε > 0 is small) so that gn

ε (xn,ε) = pε . We
have

xn,ε < xn (8.2)
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because otherwise (since Gε is increasing and by (8.1)) Gn
ε (xn,ε)≥Gn

ε (xn)>
Gn(xn)+ ε = p0 + ε > 0 > pε , a contradiction. This and (8.1) imply that

ε �→ α(ε) = hgε (c)

is non-decreasing. Since gε has no wandering intervals and c is not contained
in the closure of a component of the basin of a periodic attractor of ĝ,
elements of the partition containing g(c) shrink to zero in size. This, (8.1)
and (8.2) imply that the kneading coordinates of c with respect to g and gε
are not the same, i.e. α(ε) > α(0). Considering also negative ε, together
with the continuity of α, the lemma follows. ��

9 Quasiconformal rigidity in the minimal case: proof of Theorem B

Theorem 9.1 Let g, g1 be two real analytic maps from our class, such that
the ω-limit sets of the critical points of these maps are minimal, their critical
points are of the same order, and the maps are of the same combinatorial type
(see the definition above the statement of Theorem B). Moreover, assume
that the critical points have the same itineraries (w.r.t. to the corresponding
partitions). Then some maps G = gSn and G1 = gSn

1 from the sequences
of first return maps of g and g1 extend analytically to polynomial-like
maps. These two polynomial-like maps are quasiconformally conjugate in
neighbourhoods of their Julia sets by a map which is conformal on their
Julia sets.

Proof: Provided that the quasiconformal conjugacy does exists, the latter
statement (conformality of the conjugacy) follows from the fact that the
polynomial-like maps induced by g and g1 have no invariant line fields on
their filled-in Julia sets. Let us prove the existence of the quasiconformal
conjugacy. We can assume that the critical points of g and g1 are at zero.
As we have proved, there exists a polynomial-like extension P of some first
return gSn1 of g, and a polynomial-like extension P1 of some first return

g
Sn2
1 of g1. If, say, Sn2 > Sn1, then, because the maps g, g1 are conjugate

and the conjugacy respects the critical orbits, we can take first returns to
the central domains passing from P to a polynomial-like extension of gSn2 .
Thus, from the beginning, we can assume that P, P1 are polynomial-like
extensions of some gSn and gSn

1 , and by the assumption of the theorem, the
critical points of P and P1 have the same itineraries (w.r.t. the dynamics of
P and P1 on the real line). Let F and F1 be polynomials which are quasi-
conformally conjugate to P respectively P1 (see Theorem 7.1). To prove the
statement, it is enough to show that F = F1. Define Pε(z) = P(z)+ ε and
P1
ε (z) = P1(z)+ε, with ε real and |ε| small. According to Lemma 8.1, there

exist a sequence εn → 0 and a sequence ε′n → 0, such that the orbits of the
critical point 0 by the map Pεn and by the map P1

ε′n are well defined, have
the same itineraries, and are pre-periodic (but not periodic). In particular,
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the iterates of the critical point of these maps pass through the same do-
mains as that of P. Let qn , q1

n be polynomials corresponding to Pεn and P1
ε′n

respectively. By Corollary 7.1, qn → F and q1
n → F1 as n → ∞. Let us

for the moment fix q = qn and q1 = q1
n . Note q, q1 have the same degree d.

The non-escaping critical point 0 of q and q1 is preperiodic with the same
itineraries with respect to the partitions on the real line given by q and q1.
Since the only non-escaping critical point of q (and q1) is preperiodic and
not periodic, the Julia set of q (and q1) is totally disconnected [BH]. Denote
by B and B1 the Böttcher functions at infinity for q and q1 respectively.
Then, by the construction of the polynomials q, q1, the map H = (B1)−1◦B
is conformal in the domain {z : log |B(z)| > (log 2)/d}. Since the itineraries
coincide we get, step by step, that the conjugacy H extends conformally
onto domains {z : log |B(z)| > (log 2)/dn}, n = 1, 2, .... Hence it extends
up to the Julia set J(q) of q, and then homeomorphically to the Julia set J(q)
(because the Julia sets are totally disconnected). It follows that there exists
a quasiconformal homeomorphism h of the plane, which is homotopic to
H and coincides with H in the domain {z : log |B(z)| > (log 2)/dm}, for
some sufficiently large (but fixed) m, and on the postcritical set of q (which
is finite). Then, by the pullback argument, there exists a quasiconformal
conjugacy between q and q1 which coincides with H outside J(q) (and
hence is conformal outside J(q)). Since the extension to J(q) is unique, all
this implies that H is quasiconformal. On the other hand, J(q) has Lebesgue
measure zero (since the only non-escaping critical point is eventually pe-
riodic, see for example [McM1]). Therefore, H is conformal everywhere,
i.e., affine. Because of the normalization at infinity, H is the identity. This
means that q = q1. Remembering that q and q1 can be chosen arbitrary
close to F and F1 respectively, we get that F = F1. ��

10 Theorem A’: complex bounds in the non-minimal case

Let a± be the right and left most fixed points of g. In addition, let ai
be the boundary points of immediate basins of periodic attractors. Be-
cause g is real analytic, g has only finitely many periodic attractors (see
[MS]), and there are only finitely many such points a1, . . . , as. Every
point a±, a1, . . . , as is either repelling or parabolic periodic. Now define
A = {a−, a+, a1, . . . , as} ∩ ω(c) and if this is empty let A be any repelling
periodic orbit of g. (One could also use different partitions, see for example
the construction described in the proof of Proposition 10.1.) Let Pn (or Pa

n )
be the components of the complement of g−n A. This forms a natural dy-
namical partition of the real line. Since g(A) ⊂ A, any component of Pn+1
is contained in one and only one component of Pn. Let Pn(t) be the element
of the partition which contains t (this is well-defined if t is not eventually
mapped into A; if it is, take the interval whose interior is not contained in
the basin of a periodic attractor and also does not intersect a gap between
two domains of g). If two domains of g have a common end point then there
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is a choice, but then it will be clear from the context which interval Pn(t)
one should take. Since g has no wandering intervals, for each t ∈ ω(c), the
diameter of Pn(t) tends to zero as n → ∞.

In this section we shall prove the following theorem:

Theorem A’ (complex bounds in the recurrent non-minimal case) Let
g ∈ AC and assume that ω(c) is recurrent and non-minimal. Then g induces
a Box Mapping: there exists a sequence Ck → ∞, θ close to zero, and
a sequence of open topological discs Vk := D(Vk ∩ R, π − θ) around the
critical point such that the following properties hold.

1. diam(Vk)→ 0 and Vk ∩ R is a critical piece of the above partition.
2. the (complex analytic) first return map to Vk restricted to domains con-

taining points of ω(c) is a box mapping Fk : ∪i V i
k → Vk (see the

definition below the statement of the theorem).
3. the modulus of the annulus Vk \ V i

k is bounded from below by Ck.
Passing to the first return map to the central domain V0

k , we then obtain
again a box mapping Fk : ∪i V i

k → Vk (where this time we can choose
Vk to be the central domain V0

k and were the domains Vi
k are the new

domains) with all listed properties, and additionally such that:
4. each branch Fk|V i

k extends to a univalent map Fk|Wi
k for i 	= 0 (and for

i = 0 to an analytic covering map which is branched at c), such that
the modulus of Wi

k \ V i
k is at least Ck, and such that for i 	= j either

Wi
k is contained in W j

k \ V j
k or the other way around Wj

k is contained in
Wi

k \ V i
k (or Wi

k and W j
k are disjoint). Moreover, Wi

k is contained in Vk
for each i.

Here we say that Fk : ∪i V i
k → Vk is a box mapping (following ter-

minology of [GS2]) if the countably many domains Vi
k , V j

k with i 	= j
are pairwise disjoint, Vi

k is contained in Vk for all i and if Fk|V i
k → Vk is

a diffeomorphism for i 	= 0 while Fk|V 0
k → Vk is a �-branched covering.

It is very easy to prove an analogous theorem in the non-recurrent case,
see [Str] and [MS]. In that case all branches are diffeomorphic (i.e. V0

k
simply does not exist).

Proof: The proof uses ideas of Proposition 3.3 from [LS1]. Assume that
ω(c) is recurrent and non-minimal. For each integer i one has |Pn(gi(c))|→0
as n → ∞. First, let us show the existence of a sequence of (real) critical
pieces Pnk (c), such that for the (real) central component Uk of the first return
map to Pnk(c), we have: C−1(Pnk(c),Uk) → ∞ as k → ∞. Since ω(c) is
non-minimal, there exists x ∈ ω(c) such that forward iterates of x avoid
some neighbourhood of the critical point. Therefore, there exists N such
that for an infinite sequence of k, we can choose the interval Pk(x) ∈ Pk
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so that it is mapped by gk−N diffeomorphically onto some fixed interval
P := PN ∈ PN contained in one of the domains of g and such that gi(Pk(x))
does not contain c for i = 0, 1, . . . , k−N −1. Considering the first entry of
c into Pk(x), we then obtain a sequence of intervals Pnk (c) with diameters
shrinking to zero and integers nk → ∞ so that gnk−N−1 : g(Pnk (c)) → P
is a diffeomorphism. Fix k for a moment. By the construction, the iterates
g(c), . . . , gnk−N−1(c) are outside Pnk (c). Let s > nk − N −1 be the smallest
integer for which gs(c) ∈ Pnk (c). Let Uk be the pullback of Pnk(c) from
gs(c) to c.

Claim 1: The interval gnk−N(Uk) is very deep inside P. More exactly,
C−1(P, gnk−N(Uk))→ ∞ as k → ∞.

Proof of Claim 1: The length of gs(Uk) = Pnk(c) tends to zero as k → ∞
and therefore the length of gnk−N (Uk) tends to zero as k → ∞ (here we use
that nk − N < s and that g has no wandering intervals). If ∂P is a preimage
of a repelling periodic point, then we can go to big scale with bounded
distortion, and so if gnk−N(Uk) is close to the boundary of P then gnk−N(Uk)
is very deep inside P (if it is not close to one of the boundary points there
is nothing to prove).

But in fact, we do not even need to use that ∂P is in a hyperbolic
repelling set. Indeed, let ∂P be a preimage of the periodic point a, which is
parabolic, and assume that again gnk−N (Uk) is close to a boundary point x
of P, but the distance between gnk−N (Uk) and x is comparable to the length
of gnk−N(Uk). Then, when one end point of gnk−N(Uk) goes to a fixed (large)
distance from a by an iterate gr , then the length of gr(gnk−N(Uk)) is also
large (i.e., independent of k). (We see this in a standard local coordinate at
the parabolic point.) But this is impossible, because gs(Uk) tends to zero.

Claim 2: C−1(Pk(x), gnk−k(Uk)) tends to infinity as k → ∞.

Proof of Claim 2: The proof of this is essentially the same as that of Claim 1.
Indeed, gk−N maps Pk(x) diffeomorphically onto P ∈ PN . If ω(x) does
not contain parabolic periodic points, then x is contained in a hyperbolic
set because of Mañé’s Theorem 2.2. So in this case gk−N has bounded
distortion on Pk(x) and the proof follows immediately from Claim 1. If
ω(x) contains a parabolic periodic point, then we can assume that x is one
of these (finitely many) parabolic periodic points, and gnk−k simply maps in
interval Pk(x) periodically along the parabolic periodic orbit O(x) to the big
interval P (where P also contains a point from O(x) as a boundary point by
the construction of the partition). By the previous claim, both components
of P \ gnk−N(Uk) contain a very large number of adjacent fundamental
domains of the parabolic periodic orbit O(x). But then the same holds
for the components of Pk(x) \ gnk−k(Uk). Since neighbouring fundamental
domains of a parabolic periodic point have approximately the same size, it
follows that gnk−k(Uk) is very deep in Pk(x). This concludes the proof of
Claim 2.
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The intervals gi(Pnk (c)), 0 ≤ i ≤ nk − k, are disjoint, because
gnk−k(Pnk(x)) is the first visit of some iterate of Pnk (c) to Pk(x). Hence
we can apply the Koebe Principle to estimate the cross-ratio and obtain that
C−1(Pnk (c),Uk) tends to ∞ as k → ∞. To prove the theorem, fix now k and
consider the first return map to Uk. Then each (and not only the central) com-
ponent of this map is very deep inside Uk (we apply the margins disjointness
property (4.1) this time: it holds because the components of the first return
map are disjoint). Define Vk = D(Uk;π − θ), where θ is small enough,
and consider the pullback of Vk along some branch of the latter first return.
Because we consider first returns, the sum of the lengths of the preimages
of Uk along this pullback is uniformly bounded (by the length of the range
of g). Hence choosing θ small enough, we obtain by Lemma 2.3, that the
pullback is well-defined and is contained deep inside Vk. Disjointness of
the domains holds because by Lemma 2.3 the g-images of all the domains
(which are near g(c)) are contained in sets of the form D(g(Vi

k )∩R;π−θ ′)
with θ′ > 0 small. This implies the first three assertions of the theorem.

In property 4 the range of the extension can be taken to be the range of
the previous map. ��

It will be useful later on to modify the range of the polynomial-like
map constructed in Theorem A’. The reason for this is that later on we
will consider complex perturbations of the map. Therefore we will want to
modify the range of the polynomial-like map in a more dynamical way (to
deal with complex eigenvalues), so that nearby maps still have an associated
polynomial-like map.

Addendum to Theorem A’: Assume that ω(c) contains no parabolic peri-
odic points; in particular, assume that the periodic points in the set A are
hyperbolic. Then, given k, we can modify the range V = Vk = D(Uk;π−θ)
in the following way (imitating in some sense external rays to periodic
points in the standard Yoccoz puzzle construction). Let us do this construc-
tion in the case that a ∈ A is a fixed point (the periodic case goes in the
same way).

1. Denote σ = g′(a). Then σ > 1 and the branch g−1 (so that g−1(a) = a)
is conformally conjugate in a fixed neighbourhood Z of a to the map
w �→ σ−1w. It follows that, given a unit vector v at the point a there exists
a unique (analytic) curve lv in Z which starts at the point a and so that v is
the tangent vector of lv at a, such that g−1(lv) ⊂ lv. It gives a foliation of
Z \ {a}.
2. Fix two neighbourhoods Z1, Z2 of the end points a1, a2 of the real trace
of V , such that gM : Zi → Z, i = 1, 2, are well-defined and injective. For
bi ∈ ∂V ∩ Zi let lvi be the leaf of the foliation which contains gM(bi). If
we choose points bi ∈ ∂V ∩ Zi sufficiently close to ai , then the vector vi is
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close to one of the two (complex conjugate) tangent vectors of gM(∂V ∩ Zi)
at a and also the end point of lvi (other than a) is non-real.

3. Replace the small arc in ∂V connecting bi and ai by g−M(lv) (and do the
same for its complex conjugate). We obtain in this way a boundary of some
domain Ṽ .

Now choose Ṽ instead of V in the construction of the box mapping.
∂Ṽ is contained between two domains D(Uk;π − θ−) and D(Uk;π − θ+),
where θ± are close to θ. Hence, all the pullbacks are well-defined and form
a box mapping just as in Theorem A’.

We shall need also the following.

Proposition 10.1 (Construction of Cantor repeller) Assume that g is as
in the statement of Theorem A’ and in addition assume that ω(c) contains no
parabolic periodic points. Fix a critical piece P := Pa

m(c) from the partition
defined above, and let F : ∪i Pi → P be the restriction of the first return
map to P to domains containing points of ω(c) ∩ P. Let X be the closure
of the end points of Pi. Then there exists a hyperbolic Cantor set X̂ ⊃ X
which is contained in the set of non-escaping points (a Cantor repeller) of
some ‘polynomial-like mapping’

G : ∪B(J)→ ∪D(I ;π − β),
(without critical points and with a finite number of different ranges).

Proof: Here Pi are (some of the) pieces of the partition Pa inside P, and,
as usual, P0 is the critical one. Observe that the forward iterates (by g) of the
points x ∈ X avoid a neighbourhood U of the parabolic cycles of g, because
ω(c) is a closed set not containing such cycles, Pi are pieces covering
ω(c) ∩ P, and ∂Pi are pre-images of points a ∈ A. Define X̂ to be the set
of points y from the domain of g such that all iterates gj(y), j ≥ 0 are
well-defined and lie outside the piece P0 and outside the neighbourhood
U of the parabolic cycles and outside the basins of attraction. Note that
X ⊂ X̂.

Let us now choose a repelling periodic point b inside the central piece
P0 and let B = O(b). We would like to construct a partition using the
backward orbit of B. However, preimages of B do not (necessarily) ac-
cumulate from both sides to points from A. There are several ways to
remedy this. For example, consider the extension g : S1 → S1 of g from
assumption 4 in the definition of the class AC. Modify g possibly even
further on neighbourhoods of periodic attractors (and parabolic points) by
gluing-in additional branches inside immediate basins. By choosing the
derivative large, this can be done so that for the new map g̃ : S1 → S1

the points from the set A are no longer in the basins of periodic attrac-
tors. Then simply let Pb

n be the partition generated by g̃−n(B). It is ab-
solutely crucial to observe that we shall actually only consider elements
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of the partition on which the C∞ map g̃ coincides with the real analytic
map g. We do this by choosing n0 so large that g̃ coincides with g on
each element of the partition Pb

n0
containing points of the set X̂. Fix n0

also so large that the critical piece Pb
n0
(c) of this partition is completely

inside the critical piece P0 of the previous partition (determined by the
set A).

One can assume also that the neighbourhood U of the parabolic cycles
of g consists of finitely many pieces of Pb

n0
. The set X̂ is compact (because

g has finitely many domains of definition) and forward invariant under
g and a positive distance away from the end points of the pieces of Pb

n0

(since these end points hit b ∈ P0 eventually). For every n > n0, consider
the elements of the partition Pb

n which intersect X̂. Denote these intervals
by Jk

n . Note that for n large, the remaining (finitely many) pieces have
a definite distance to the boundary of the pieces of the finite partition Pb

n0
.

Let us choose a sufficiently small angle β > 0, and consider Poincaŕe
neighbourhoods D(Ii;π − β), where I i are the elements of the partition
P b

n0
except for the critical piece Pb

n0
(c) of this partition. Take n > n0 and

any interval J = Jk
n . Then gn−n0(J) is equal to some interval Ii(J ) (we

write I i(J ) to emphasize that the interval depends on J), and moreover
the iterates gj(J), j = 0, 1, . . . , n − n0 are all disjoint from the piece
Pb

n0
(c) and from the neighbourhood U of the parabolic points. Hence, by

Mañé’s theorem 2.2, the sum of the lengths of these intervals is bounded
by a universal constant, and, as we know (for any n large and β small
fixed), there exists a domain B(J), such that the map gn−n0 : B(J) →
D(I i(J );π−β) is well-defined, B(J) is inside D(J;π−Cβ), where C > 0
is some universal constant. The closed set X̂ is contained in the (finite)
union of the interiors of Ii . It follows that as n → ∞, each of the intervals
J (the partition elements of Pb

n intersecting X̂) becomes deeper and deeper
inside the (appropriate) interval Ii . Therefore, provided n is large enough,
the domains B(J) are well inside the domains D(Ii;π − β) and pairwise
disjoint.

Thus we end up with a map

G : ∪B(J)→ ∪D(I ;π − β),

where J runs over the finitely many intervals Jk
n (from P b

n ) and I runs
over the finitely many intervals Ii (i.e, every piece of Pb

n0
except the central

piece one). If two domains B(J) touch then we shrink D(I ;π−β) slightly,
and then the new domains B(J) will no longer touch. The above map is
a polynomial-like map (without critical points and with a finite number of
different ranges).

Note that X ⊂ X̂, and that points from X̂ never leave the domain of
definition of G under iterates of G. ��
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11 Proof of Theorem B’: quasisymmetric rigidity of maps in the
non-recurrent and the non-minimal case

Theorem B’ (rigidity)
Consider two maps of the class AC with critical points of the same order,
such that for both maps c is not attracted to an attracting or parabolic
periodic orbit, ω(c) is non-minimal or non-recurrent, and ω(c) contains no
parabolic periodic points. If the conjugacy on ω(c) maps the critical point
of one map to the critical point of the other map, then the conjugacy is
quasisymmetric on ω(c).

Proof: In the non-recurrent case, this is an exercise from Sect. III.6.2 of
[MS]. So let us assume that we are in the recurrent non-minimal case. Fix
maps g, g̃ as in Theorem B’. Denote the box mapping from Theorem A’ by

F : ∪∞
i=0Ωi → Ω and F̃ : ∪∞

i=0Ω̃i → Ω̃.

By assumption, F and F̃ are conjugate on ω(c)∩Ω, such that the conjugacy
maps the critical point of F to that of F̃. Hence, one can choose the generat-
ing real partitions in the construction of the box mappings (see Sect. 10) in
such a way that F, F̃ are the same iterate of g, g̃ on corresponding compo-
nents. In what follows, Ω̃i denotes the component of F̃ which corresponds
to the component Ωi of F. Let us try to extend the conjugacy on ω(c) to
a quasiconformal conjugacy between F and F̃, as in [LS1]. The problem
is that in this case we do not apriori have a natural external conjugacy, i.e.,
a quasiconformal map from

A := closure(Ω \ ∪∞
i=0Ωi)

onto
Ã := closure(Ω̃ \ ∪∞

i=0Ω̃i),

which respects the dynamics of F and F̃ on the boundaries. (We can assume
that F and F̃ are defined dynamically on the closures of Ωi and Ω̃i .) In the
case of polynomials or (generalized) polynomial-like mappings such exter-
nal conjugacy always exists: it is a composition of the Böttcher functions
at the basins of infinity or external maps [DH]. Then all steps of the proof
below are greatly simplified. In the general case we will proceed as follows.

In Steps 1–2 we construct a quasiconformal external conjugacy H :
A → Ã. In Step 3 we construct extensions of H : A → Ã using a pull-
back construction and describe some of the geometric structure involved.
Finally, in Step 4 we consider the dynamical extension of H to a map
∪∞

n=0 F−n(A) → ∪∞
n=0 F̃−n( Ã) (this is trivial, just pullback dynamically),

and then show that this map can be extended quasiconformally to Ω as
a conjugacy.

The box mapping F is one of the box mappings Fk of Theorem A’. We
will fix k and therefore drop k in the notation. In particular, we denote by
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Wi = Wi
k the neighbourhood of Ωi = Ωi

k, and by C = Ck the constant
from property (4) of Theorem A’. To simplify the picture, we choose the
map F so that the constant C is so large that every annulus Wi \Ωi contains
a standard round annulus surrounding Ωi with modulus at least C/2. Similar
for F̃.

Given a set Y of the plane, denote Y+ = {z ∈ Y ;$(z) ≥ 0} and
Y− = {z ∈ Y ;$(z) ≤ 0}.
Step 1: In this step, we shall show that the boundary of each of the sets A±
(and similarly for Ã) is a quasi-circle using the Ahlfors-Beurling criterion
[LeVi]. Pick any two points z1, z2 in, say, ∂(A+), and consider one of the two
subarcs C = C(z1, z2) of ∂(A+) between z1 and z2 of a smaller diameter.
According to the Ahlfors-Beurling criterion, we need to prove the existence
of a constant L independent of z1, z2 such that C lies inside a circle of
diameter L · |z1 − z2|. Let us consider several possibilities for z1 and z2.
(a) If z1, z2 are both in the boundary of either Ω or some Ωi , such L exists
(which does not depend on Ωi). Indeed, L exists for Ω, because ∂Ω is
a piecewise analytic curve without turning points. For the same reason, L
exists for the central component Ω0. Any other Ωi is an image of Ω under
a branch of F−1, which is univalent in a fixed neighbourhood W of Ω. Thus
L is independent on i . (b) If z1, z2 are in the boundaries of different Ωi , Ω j ,
then we notice that from Theorem A’ one gets that the diameter of these
topological discs is comparable to their real trace, that the discs are roughly
round (cf. Fact 11.3 (1d) below). This and the Case (a) imply that one has
a uniform choice for L in this case. (c) These considerations also settle the
case when one or both points z1, z2 are real, or belong to ∂Ω.

Thus ∂(A±) and similarly ∂(Ã±) are quasi-circles. So there exist K-
quasiconformal homeomorphisms φ± : D → A±, φ̃± : D → Ã±, where D
stands for the unit disc. We choose φ± to be so that φ+(z) = φ−(z) (and
similarly for φ̃).

Step 2: In this step we show that there exists a quasiconformal conjugacy
H : A → Ã.

Note that the boundary ∂(A+) of A+ consists of the set (∂A)+ and some
(possibly empty) open subset O of Ω ∩ R (for example, O can contain an
open set of points which are attracted to an attracting periodic orbit of g).

We are going to construct the map H : ∂A → ∂Ã to be symmetric
(i.e. H(z) = H(z)) and so that H|(∂A)+ is a restriction of some map
H+ : ∂(A+) → ∂( Ã)+ to the subset (∂A)+ of ∂(A+). Thus we need to
construct H+ (such that H+(x) is real for x real). Then H− : ∂(A−) →
∂( Ã−) is defined symmetrically: H−(z) = H+(z), so that H(z) = H+(z)
iff $(z) ≥ 0 and H(z) = H−(z) iff $(z) ≤ 0.

First define H+ : (∂Ω)+ → (∂Ω̃)+ as follows. For both endpoints y of
Ω∩R fix a neighbourhood Y such that some iterate gN maps Y univalently
onto the neighbourhood Z of the fixed point a of g (see Addendum to
Theorem A’). Similar for F̃: g̃N : Ỹ → Z̃. By the construction of Ω,
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gN((∂Ω ∩ Y )+) = l+v and g̃N((∂Ω̃ ∩ Y )+) = l̃+v , where lv, l̃v are invariant
arcs from Addendum to Theorem A’. Now fix a quasiconformal symmetric
conjugacy K between g|Z and g̃|Z̃, such that K(lv) = l̃v. Then define H+
on the arc g−N(l+v ) = (∂Ω ∩ Y )+ of ∂Ω as H+ = g̃−N ◦ K ◦ gN . Extend
H+ to the remainder of (∂Ω)+ so that it distorts (Euclidean) distances by at
most a uniformly bounded factor.

Next, define H+ on each (∂Ωi)
+ dynamically as follows. For z ∈

(∂Ωi)
+, let H+(z) = F̃−1

|Ω̃i
◦H±◦F|Ωi (z), where H± = H+ iff F(z) ∈ (∂Ω)+

and H± = H− iff F(z) ∈ (∂Ω)−. It is clear also which branch of F̃−1
Ω̃0

to
take on the central domain. If n is such that gn(Ωi) = Ω, then extend
H+

|gk(∂Ωi)+ = g̃−(n−k) ◦ H+
(∂Ω)+ ◦ gn−k , k = 1, ..., n − 1.

Finally, the remainder of (∂A)+ is the set X ∪ O on the real line,
where X is the Cantor set introduced in Proposition 10.1. Remember that
X ⊂ X̂, where X̂ is the Cantor set on the real axis invariant under g
and is contained in the set of non-escaping points of the expanding map
G : ∪B(J) → ∪D(I ;π − β) (without critical points and with a finite

number of different ranges). Let X̃, ˜̂X and G̃ : ∪B( J̃) → ∪D( Ĩ;π − β)

be the corresponding objects for the map F̃, chosen so that G and G̃ are
combinatorially conjugate (this can be achieved by constructing G andG̃ in
the proof of Proposition 10.1 simultaneously for F and F̃ in combinatori-
ally the same way). Then G,G̃ are quasiconformally conjugate: there exists
a quasiconformal symmetric map τ : ∪D(I ;π − β)→ ∪D(Ĩ;π − β) such
that τ ◦G = G̃ ◦ τ on ∪B(J). In particular τ(X) = X̃ . One can assume that
τ is extended to a quasiconformal map of the plane. Define finally H+ = τ

on X ∪ O. This completes the definition of H+ : ∂(A+)→ ∂( Ã+).
Let us now show that the map (φ̃+)−1◦H+◦φ+ : ∂D → ∂D is quasisym-

metric. In order to do this, take three nearby points z1, z2, z3 ∈ ∂D with z3
the midpoint between z1 and z2. Then the points wi = φ+(zi) ∈ ∂(A+), i =
1, 2, 3, are roughly equidistant because φ+ is quasiconformal. (“Roughly
equidistant” means that the distances between the points are roughly the
same; we say that numbers a, b are roughly the same: a % b (resp. a is
much bigger than b) if L−1 ≤ a/b ≤ L (resp. a/b ≥ L), for some universal
L > 1).

We need to show that the points w̃i = H+(wi), i = 1, 2, 3, are roughly
equidistant as well.

Assume w1, w2, w3 all belong to the boundary of either Ω+ or of
some Ωk. Then we are done because H+ is quasisymmetric on the real line,
distorts distances by a bounded factor on ∂Ω, and the map F : Ωi → Ω has
definite Koebe space.

Hence, we can assume that at least one and at most two of the points wi
lie in one of the curves ∂Ωk. Denote by Bi, i = 1, 2, 3, the domain Ωj of F
such that wi ∈ ∂Bi (for example, one of the sets Bi is Ωk; if wi is outside all
the domains Ωj , then wi ∈ R and we take Bi to be the point wi). Let Ui(x)
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be a neighbourhood of an endpoint x of Bi ∩ R, such that F(Ui(x)) = Y ,
where Y is the above mentioned neighbourhood of one of the endpoints of
Ω ∩ R from the domain of definition of H+

|(∂Ω)+. There are two main cases
to distinguish.

(a) all points wi lie in Uj(x), for some j between 1 and 3. Then pass to
big scale. The map gN ◦ F = gN1 : U j(x) → Z has bounded distortion,
and Z is the neighbourhood of the repelling fixed point a of g. Then the
point z j = gN1(w j) lies in the arc l+v . So we can iterate the map g (keeping
bounded distortion) until the distances of images of wi become larger than
a universal positive number. (We use that there is a universal ε > 0 such that
the Euclidean distance between any two components Ωi , Ω j is larger than
ε · {minimal diameter of Ωi,Ω j}, see Fact 11.3 for detail; the same holds for
the images of Ωi,Ω j until one of the images is Ω. Hence, gN1(Bi), i 	= j,
lie in a (1 + ε)-neighbourhood of Z, i.e. are still close to the fixed point a).
Hence we can transport all this by the map K , and then by an inverse tog̃N1 ,
and get again that the property that these three points are roughly equidistant
is preserved.

(b) for every j = 1, 2, 3, at least one of the points w1, w2, w3 is outside
the neighbourhood Uj(x). To avoid to deal with many scales and cases
(i.e. all possible diameters and mutual distances of B1, B2, B3), we do the
following. Remember that H+

|∂(A+)∩R is the restriction of the quasiconformal
map τ of the plane. Hence, the points w̃′

i = τ(wi), i = 1, 2, 3, are roughly
equidistant, and we finish the proof by showing that for every i, j , the
distances l̃ = |w̃i − w̃ j | and l̃′ = |w̃′

i − w̃′
j | are roughly the same: l̃ % l̃′.

Let B̃i be the component of F̃ with ∂ B̃i = H+(∂Bi), and B̃′
i = τ(Bi). Let

di, d̃i, d̃′
i be the diameters of Bi, B̃i, B̃′

i, and let D, D̃, D̃′ be the distances
between Bi and Bj , B̃i and B̃ j , B̃′

i and B̃′
j respectively. Consider three simple

subcases. (1) if max(di, dj) % D, then max(d̃i, d̃ j), D̃, max(d̃′
i, d̃′

j), D̃′ are
all roughly the same (because the real traces of Bi, B̃i, B̃′

i are comparable
with their diameters, and the map τ is quasisymmetric on R). Thereforel̃, l̃′
are roughly equal to D; (2) if di and dj are much smaller than D, the same
holds for d̃i, d̃ j and D̃, and for d̃′

i, d̃′
j and D̃′. But D̃ % D̃′, hence, l̃, l̃′ are

roughly D̃; (3) di is much bigger than dj and than D. Let x be an endpoint
of Bi ∩ R closest to Bj . The neighbourhood Ui(x) = F−1

|Bi
(Y ) is roughly

a round disc, and the diameters of Ui(x) and Bi are roughly the same. Hence,
there exists a round disc U′(x) inside Ui(x) and centered at x, with radius
roughly di , such that wi /∈ U ′(x), because otherwise all points w1, w2, w3
would be in Ui(x). Hence l = |wi − w j | % di . Also, w̃′

i /∈ τ(U ′(x)), hence
l̃′ % d̃′

i . Moreover, since w̃i = F̃−1 ◦ H+
|(∂Ω)+ ◦ F(wi), the point w̃i is outside

a definite neighbourhood of x̃ = H+(x), and again l̃ % d̃i . But d̃i % d̃′
i

(since B̃i, B̃′
i are comparable and have common real trace), and so we are

done.
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Thus (φ̃+)−1 ◦ H+ ◦ φ+ : ∂D → ∂D is quasisymmetric, and therefore
there exists a quasiconformal extension H+ : closure(A+) → closure(Ã+)
which is a conjugacy whenever this makes sense. The quasiconformal ex-
ternal conjugacy H : closure(A) → closure(Ã) is constructed as follows:
H(z) = H+(z) iff $(z) ≥ 0 and H(z) = H−(z) = H+(z) iff $(z) ≤ 0.

Step 3: In this step we construct a sequence of quasiconformal extensions
of H : closure(A)→ closure(Ã).

Fact 11.1
F−1(E) ∪ closure(∪i∂Ωi ∩ R)

is closed for any closed subset E of closure(Ω).

Proof: Let xn ∈ F−1(E) and xn → a. If a subsequence of {xn} belongs to
one component Ωj , then F(a) ∈ E, because F : closure(Ωj)→ closure(Ω)
is continuous. Hence, a ∈ F−1(E) in this case. If there are infinitely many
components Ωi containing points of the sequence, then a is the only limit
point of such sequence of components because their diameters tend to zero.
Hence, a ∈ closure(∪i∂Ωi ∩ R). ��

For n ≥ 0, let

An = A ∪ F−1(A) ∪ · · · ∪ F−n(A) and A∞ = ∪n≥0 An .

Since A is closed and closure(∪i∂Ωi ∩ R) ⊂ A, we have from Fact 11.1
that An is closed. Moreover, let

U0 = Ω,U1 = F−1(Ω) = ∪iΩi, . . . ,Un = F−n(Ω).

Since U1 ⊂ U0 this is a decreasing sequence of open sets. These sets form
the analogue of the Yoccoz puzzle pieces: the components of Un = F−n(Ω)
are said to be the pieces of level n. It is easy to see that

An ∪ Un+1 = closure(Ω), n = 0, 1, . . . .

One can extend H : A → Ã to a conjugacy

H : A∞ → Ã∞,

see the following fact. Restrictions of H to An even extend to a quasicon-
formal homeomorphism (but the dilatation of φn can depend on n):

Fact 11.2 H : A → Ã can be extended:

1. For each n = 0, 1, . . . , H : A → Ã extends to a conjugacy H : An →
Ãn. (We shall also denote this homeomorphism by H|An .)

2. For every n = 0, 1, . . . , there exists Kn such that H : An → Ãn extends
to a Kn-quasiconformal homeomorphism φn of Ω onto Ω̃.
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Proof: Use the pullback construction (see e.g. [MS]). More precisely, given
n one can choose a Kn-quasiconformal mapping φ : Ω → Ω̃ which is
symmetric with respect to R such that φ|∂A = H and such that φ(Fr(c)) =
F̃r(c̃), r = 1, . . . , n + 1, where c, c̃ are the critical points of F and F̃.
(Note that Kn could tend to infinity as n → ∞.) Next set φn = H|An

on An and define φn = F̃−n−1 ◦ φ ◦ Fn+1 on Un+1 in such a way that φn
becomes continuous and so that x̃ = φn(x) means that Fk(x) ∈ Ωik iff
F̃k(x̃) ∈ Ω̃ik , k = 1, . . . , n. (Continuity of φn determines which preimage
of the branched covering map of F̃ : Ω̃0 → Ω one should take and also
implies that φn will be symmetric with respect to R.) Then φn : Ω → Ω̃
is a homeomorphism which is K-quasiconformal on interior(F−k(A)), k =
0, . . . , n, and Kn-quasiconformal on Un+1. φn : An → Ãn conjugates F
and F̃. Let us consider the remaining set Ln := ∪n

k=0 F−k(∂A) = Ω \
(∪n

k=0interior(F−k(A)) ∪ Un+1). Note that by Fact 11.1, Ln is closed in
closure(Ω). Moreover, Ln is a countable union of

(a) rectifiable arcs: ∂Ωi and components of F−k(∂Ωi)

(b) subsets of components of F−k(R ∩ Ω).

Therefore, Ln is a closed subset of the plane with σ -finite linear measure,
and, by [Stre], or see Theorem V.3.2 of [LeVi], Ln is removable for any
homeomorphism which is quasiconformal outside Ln. ��

Since the dilatation Kn can tend to infinity, we need to study the geom-
etric structure of the sets Ωn in more detail. To do this, if x ∈ Un let
Ωn(x) be the component of Un containing this point (so Ωn(x) is the level
n piece which contains x). Note that for each n > 0, there are infinitely
many pieces of level n, and (what is worse) their ‘diameters’ are, in general,
incomparable with each other. The following fact describes the geometry
of these sets in more detail. Let c be the critical point. For n ≥ 0, let Ωn(c)
be the critical piece (i.e., the piece of level n containing c). Then define the
base point cΩn(c) of this critical piece to be c. For any non-critical piece Ωn

define its base point cΩn inductively so that F(cΩn ) = cF(Ωn).
Denote by mod (C) the modulus of an annulus C, by diam(M) the

Euclidean diameter of a planar set M, and by d(M, N) the Euclidean distance
between two planar sets M, N.

Fact 11.3 For each n ≥ 1, there exist positive constants Mn, Rn and εn,
εn,n−1, such that the following properties hold.

1. Every level n piece Ωn has a simply connected neighbourhood W(Ωn)
for which
a) mod (W(Ωn) \ Ωn) ≥ Mn,
b) F maps W(Ωn) into W(F(Ωn)) and restricted to W(Ωn) \ Ωn is an
(unbranched) covering onto its image,
c) W(Ωn) is a subset of the unique level (n−1) piece which contains Ωn,
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d) Ωn is roughly a disc:

sup
z∈∂Ωn

|z − cΩn |/ inf
z∈∂Ωn

|z − cΩn | < Rn.

2. a) for every piece Ωn of level n and every piece Ωn−1 of level (n − 1), if
Ωn ⊂ Ωn−1, then d(Ωn, ∂Ωn−1)/diam(Ωn) ≥ εn,n−1.
b) for every two different pieces Ωn

1,Ω
n
2 of level n, if diam(Ωn

1) ≥
diam(Ωn

2), then d(Ωn
1,Ω

n
2)/diam(Ωn

2) ≥ εn.

Proof: Let us first prove assertions 1a)–1d) by induction on n ≥ 1. Prop-
erty (4) of Theorem A’ implies these assertions hold for n = 1. So assume
1a)–1d) hold for 1, 2, . . . , n − 1. Take a piece Ωn of level n, and consider
the piece Ωn−1 = F(Ωn) of level (n − 1). We need to show that Mn and
Rn do not depend on Ωn (but only on n). If W(Ωn−1) does not contain the
critical value c1, then define W(Ωn) to be the preimage of W(Ωn−1) by F
(remember that all branches of F−1 are defined on a fixed neighbourhood
of Ω). Statements 1a)–1d) then hold; (for statement 1d) use the induction
assumption and Koebe). Now consider the case that c1 ∈ W(Ωn−1). Let
a > 0 be the distance between c1 and ∂Ωn−1(c1). By the induction assump-
tion 1d) for n − 1, there are only finitely many pieces of level (n − 1) with
diameter ≥ a. Hence, one can choose corresponding neighbourhoods so
that 1a)–1d) hold for these finitely many pieces.

If the diameter of Ωn−1 is smaller than a and Ωn−1 ∩ Ωn−1(c1) = ∅,
then one can choose M′

n−1 ≤ Mn−1 and a smaller neighbourhood W′ of
Ωn−1 inside W(Ωn−1) such that mod (W′ \ Ωn−1) ≥ M′

n−1 and so that
diam(W ′) ≤ (3/2)a. Then c1 /∈ W ′ and W(Ωn) can be taken as the dif-
feomorphic preimage of W′. This proves 1a)–1c) for n with Mn = M′

n−1.
From Koebe, induction and 1a)–1b) we get a constant Kn in 1d) which does
not depend on Ωn . If finally Ωn−1 = Ωn−1(c1) then 1a)–1c) follows with
Mn = Mn−1/�. Again 1d) follows.

Statement 2a) is a direct corollary of the statements 1a) and 1d) we just
proved.

Let us now prove assertion 2b) by induction. Let n = 1. Let Ωi , Ω j be
two different level 1 pieces, and Wi , W j the corresponding neighbourhoods,
see Theorem A’ (4). If Wi , W j are disjoint, then some uniform choice for
ε1 > 0 exists because the distance between the pieces is comparable or
larger than their diameters. If Wi,W j are not disjoint, then Wj ⊂ Wi (or
Wi ⊂ W j if the diameter of the pieces is comparable), and again the distance
between the pieces is larger than the distance between Ωj and ∂Wj , which
is larger than ε1 · diam(Ω j) where ε1 > 0 depends only on the lower bound
for the mod (Wj \ Ω j). (We always use that mod (Wj \ Ω j) is universally
bounded from below.) This proves 2b) for n = 1. So assume 2b) hold
for n − 1. If Ωn

1,Ω
n
2 are in different pieces of level n − 1, then one can

put εn = εn−1. If Ωn
1,Ω

n
2 ⊂ Ωn−1, then apply F and use the induction

assumption (one should consider two cases: Ωn−1 is critical or not). ��
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Step 4: In this step we approximate the desired conjugacy by the K-
quasiconformal mappings Hn constructed below.

To do this, we need the following fact which uses that there are pieces
Ωi(m) of level 1 with diam(Ωi(m)) → 0 as m → ∞ which intersects ω(c)
(because ω(c) is non-minimal). This allows us to prove a statement similar
to Proposition 3.3 of [LS1]:

Fact 11.4 There exist a sequence of integers nm → ∞, a neighbourhood
Q of the range Ω, such that, for every nm:

(a) there exists a neighbourhood Qnm of the critical piece Ωnm (c), such
that Fnm maps Qnm onto Q in a � to one fashion, and Fnm (c) lies in the
central component Ω0 of the map F;

(b) if x is so that Fj(x) ∈ Ωnm (c) with j minimal, then there exists a uni-
valent branch of F− j on Qnm to a neighbourhood of x.

Proof: Choose a sequence of distinct level 1 components Ωi(m) such that
Fk(m)(c) ∈ Ωi(m) for some minimal integer k(m) and so that the length of
Ωi(m) ∩R is smaller than the length of Ω(Fj(c))∩R for 0 ≤ j < k(m). By
Fact 11.3, this implies that the distances between Fj(c) and Ωi(m) is larger
than ε ·diam(Ωi(m)) for some universal ε > 0 and all 0 ≤ j < k(m). Because
c is recurrent, there exists a minimal k′ ≥ 1 so that Fk(m)+k′ (c) ∈ Ω0. Let
Qi(m) be the ε-neighbourhood of Ωi(m) . By Property 4 of Theorem A’, there is
a fixed neighbourhood Q of Ω and a topological disc Q′

i(m) # Fk(m)(c) with

Q′
i(m) ⊂ Qi(m) such that Fk′ : Q′

i(m) → C is injective and Fk′(Q′
i(m)) = Q.

Defining nm = k(m) + k′ gives part (a). To prove (b) notice that Qim ⊂ Ω
and therefore Qnm ⊂ Ωnm−1(c). This completes the proof of Fact 11.4. ��

Denote
Ω0(m) = Ωnm (c).

On the boundary of Ω0(m) (and on part of its interior) H is already defined
by the previous pullback construction. We now modify the definition of
H on Ω0(m) and also on all its preimages. We do this as follows. Choose
a quasiconformal homeomorphism Ĥ : Ω → Ω̃ which coincides with H
on the boundary of Ω and which maps Fnm (c) to F̃nm (c̃). Since Fnm (c)
is roughly in the middle of Ω (and the same holds for the other map),
one can choose Ĥ so that its quasiconformal dilatation is at most some
universal number K . Now redefine the partially defined map H to a map
Hm : Ω0(m)→ Ω̃0(m) so that Hm = F̃−nm ◦ Ĥ ◦ Fnm . Since Ĥ(Fnm (c)) =
F̃nm (c̃), Hm is well-defined and has quasiconformal dilatation ≤ K . Next
define Hm from a preimage of Ω0(m) to the corresponding preimage of
Ω̃0(m) as a conjugacy, but only consider those preimages F− j(Ω0(m))
whose forward iterates up to j − 1 do not enter Ω0(m). Outside all these
preimages let Hm coincide with the map H constructed by the pullback
construction in the previous section.
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Fix m and partition Ω into the following 4 sets:
Xm(a) is the set of points x such that there exists n ≥ 0 so that Fn(x)

lies in the (open) central piece Ω0(m);
Xm(b) is the set of x such that there exists a minimal n ≥ 0 so that Fn(x)

lies in the interior of the annulus A and Fk(x) /∈ Ω0(m), k = 0, . . . , n − 1;
Xm(c) is the set of x such that there exists a minimal n ≥ 0 so that Fn(x)

lies in the boundary of A and Fk(x) /∈ Ω0(m), k = 0, . . . , n − 1;
Finally, Xm(d) is the set of x such that Fn(x) is well-defined and lies

outside Ω0(m), for every n = 0, 1, 2, . . . .

Until now, Hm has been defined on the sets Xm(a), Xm(b), Xm(c). Ex-
tend Hm naturally to the set Xm(d) as follows. Any point x ∈ Xm(d) is
contained in a nested sequence of the puzzle pieces Ωn(x), n > nm , such
that each Ωn(x) is mapped by Fn−nm univalently onto some non-critical
piece of some fixed level nm (where nm does not depend on x but only
on m), and moreover, this map extends univalently onto one level up, i.e.,
from Ωn−1(x) onto some piece of level nm − 1. Note that the distortion of
this map does not depend on the point x (but only on m) because the mod-
ulus of the annuli between nm − 1 and nm levels is bounded from below by
some positive constant m− (which is fixed if m is fixed). All nm-components
are roughly discs with respect to their base points, see Fact 11.3(1d). We
conclude that all Ωn(x) are also roughly discs (with respect to their base
points): the inequality of Fact 11.3(1d) holds for them but with a constant Rn
which only depends on m (i.e. it does not depend on n and x). In particular,
the (Euclidean) diameters of Ωn(x) tend to zero as n → ∞ uniformly for
all x ∈ Xm(d). For x ∈ Xm(d) define Hm(x) dynamically as the unique
point y ∈ Ω̃ with the same itinerary, i.e., for every n ≥ 0, Fn(x) ∈ Ωin if
and only if F̃n(y) ∈ Ω̃in . Thus we have that

Hm : Ω → Ω̃

is a well-defined homeomorphism, which is a conjugacy between F andF̃
everywhere except in the central domain Ω0(m). Observe that the sequence
{Hm}m≥1 converges uniformly to a conjugacy h between F,F̃.

So we now need to show that h is quasiconformal. To this end, fix again
m and consider Hm at different points. First of all, Hm is K-quasiconformal
on the open sets Xm(a), Xm(b), where K does not depend on m (because Hm
is K-quasiconformal on Ω0(m); on the interior of A one has that Hm = H
is K-quasiconformal). Thus it is enough to prove the following three facts
(where the dilatations of Hm in the last two facts can depend on m).

Fact 11.5 Xm(c), Xm(d) are of zero Lebesgue measure.

Fact 11.6 Hm is quasiconformal at any point from Xm(d).

Fact 11.7 Hm is quasiconformal at any point from Xm(c).



448 G. Levin, S. van Strien

By quasiconformality in the last two of these statements we mean that
(***) below holds at any point from Xm(c) and Xm(d).

Let us first show that these three facts imply Theorem B’. Note that these
facts imply (cf. [GS2]) that the homeomorphism Hm is K-quasiconformal
everywhere (see e.g. Theorem V.3.3 of [LeVi]). On the other hand, the
sequence {Hm}m≥1 converges uniformly to a conjugacy h : Ω →Ω̃ between
F and F̃. Hence h is quasiconformal on Ω. So let us prove these facts.

Proof of Fact 11.5: That the Lebesgue measure of Xm(c) is zero is trivial:
Xm(c) is equal to ∪n≥0 F−n(∂A). Here ∂A has Lebesgue measure zero since
it is a countable union of rectifiable curves ∂Ωi and a subset of the real axis.

So let us show by contradiction that |Xm(d)| = 0. So let y be a Lebesgue
density point of Xm(d). Consider the same nested sequence of pieces Ωn(y),
n > nm , as before. We know that the distortion of Fn−nm : Ωn(y) →
Ωnm (yn), where yn = Fn−nm (y), is uniformly bounded (it only depends
on m), and all Ωn(y) are roughly discs. Therefore (since Xm(d) is for-
ward invariant under F) the density of Xm(d) in Ωn(y), i.e., |Ωn(y) ∩
Xm(d)|/|Ωn(y)| and also |Ωnm (yn) ∩ Xm(d)|/|Ωnm (yn)| both tend to 1 as
n → ∞. On the other hand, each piece Ωnm (yn) of level nm is mapped by
an F-iterate for the first time either to a central piece (of a level < nm) or
to Ω, and the distortion of this map is uniformly bounded because nm is
fixed. Therefore, there exists a fixed piece Q which is either a critical piece
of level < nm or which is equal to Ω so that the density of the set Xm(d) in
Q is equal to one. In particular, Xm(d) ∩ Ω0(m) 	= 0, a contradiction. This
completes the proof of Fact 11.5. ��
Proof of Fact 11.6: To prove that Hm is quasiconformal we are going to use
the following recent surprising result by Heinonen-Koskela, see [HK].

(***) A homeomorphism ϕ of the plane (more general, of Rd) is
quasiconformal, if there exists L such that for any point x there
exists a sequence of radii rn → 0, such that, for any n,

sup
|y−x|=rn

|ϕ(y)− ϕ(x)|/ inf|y−x|=rn
|ϕ(y)− ϕ(x)| < L. (11.1)

So it makes sense to call ϕ quasiconformal at a point x if (***) holds.

In our case we shall take ϕ = Hm and x ∈ Xm(c)∪ Xm(d). Note that we
do not mind if L from (***) does depend on m. (In fact, for points in Xm(c)
we can take any sequence r → 0.) In order to prove (***), we will use that
Hm is strongly related to quasiconformal extensions φn of H : An → An
when n is large.

So fix m and consider a point x ∈ Xm(d). Our aim is to show that (***)
is satisfied when we take rn equal to 2dn(x), where dn(x) is the diameter
of Ωn(x). (The factor 2 is because we need space between Ωn(x) and the
circle {y : |y − x| = 2dn}, since x can be close to the boundary of Ωn(x).)
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Note that all ‘universal’ constants below as well as statements on the
shapes of discs can depend on m but these constants will not depend on x.

As before, there exists m− = m−(m) > 0 so that for each n ≥ 0 and each
x ∈ Xm(d), the modulus of the annulus Ωn−1(x) \ Ωn(x) is bounded from
below by m−. (These moduli may not be bounded from above.) Hence there
exists j (which only depends on m), such that for any n, the modulus of the
annulus Ωn− j (x)\Ωn(x) is so big that the Euclidean disc Bn := B(x, 2dn(x))
centered at x with radius equal to 2dn(x) is contained in Ωn− j(x) (and
certainly contains Ωn(x)). This is because mod (Bn \ Ωn(x)) lies between
two universal positive numbers.

Fn− j−nm maps Bn to a set between pieces of levels nm + j and nm. Note
that these iterates of Bn do not intersect the critical piece Ω0(m), because the
latter piece has level nm . Since the map Fn− j−nm has universally bounded
distortion on Ωn− j(x), the image B′ = Fn− j−nm (Bn) is roughly a Euclidean
disc centered at

x ′ = Fn− j−nm (x),

is contained in a piece of level nm , and its diameter is comparable with the
diameter of

P := Ωnm+ j(x ′).

One can take everything back by the corresponding branch ofF̃−(n− j−nm )

with bounded distortion to x̃ = Hm(x), and hence (***) holds for x ∈ Xm(d)
(and therefore Fact 11.6 is proved) provided we can prove the following

Claim 1: For each set B′ as above, the image B̃′ = Hm(B′) is roughly a disc
centered at x̃ = Hm(x ′).

Proof of Claim 1: Note that

P = Ωnm+ j(x ′) ⊂ B′ ⊂ Ωnm (x ′).

The levels of the two puzzle pieces only depends on m, but since their
diameters can be incomparable, this does not help much. The idea of the
proof of the claim is to compare the set B′ with a larger set which has
dynamical meaning by adding to B′ certain puzzle pieces. Thus Hm(B′)
is contained in a set whose boundary is the image by some map φk (the
quasiconformal extension of the pullback map H : A∞ → Ã∞ from Step 3).
The quasiconformality of φk will then allow us to conclude the claim.

Let us start by noting that B′ is roughly a disc around x′ and mod (B′ \P)
is universally bounded from above and from zero (as before universal at least
for a given choice of m). Hence, there exists universal r > r′ > 0 such that

r ′ · diam(P) ≤ d(y, P) ≤ r · diam(P),

for every y ∈ ∂B′.
Fix a point y ∈ ∂B′, and consider its iterates up to Fj(y). The following

three cases can occur:
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1. There exists a minimal i0, 0 ≤ i0 ≤ j , such that Fi0(y) ∈ Anm−1 and
Fi(y) /∈ Ω0(m) := Ωnm (c) for 0 ≤ i ≤ i0 (as remarked before Anm−1 =
∪nm−1

k=0 F−k(A) is the complement to the pieces of level nm , and Ω0(m) =
Ωnm (c) is the critical piece of the level nm). One can write:

Hm(y) = F̃−i0 ◦ H|Anm−1 ◦ Fi0(y) = H|Anm−1+i0
(y)

= φnm−1+i0(y) = φnm+ j+1(y),

where φn is the quasiconformal extension of H|An to Ω constructed in
Fact 11.2. In this case define Q(y) = ∅.

2. For each i with 0 ≤ i ≤ j the iterate Fi(y) is well-defined, F j(y) ∈ Unm

(i.e., lies in Ωnm (F j(y))), and Fi(y) /∈ Ω0(m) for 0 ≤ i ≤ j . Then y ∈
Q′(y) := Ωnm+ j(y). Note that Q′(y)∩ P = ∅ because otherwise two pieces
of the same level nm + j coincide which is impossible because P does not
intersect ∂B′. Next let us look at one level down and consider two subcases.

(a) y is ouside the pieces of level nm + j + 1. Then F j+1(y) is outside the
pieces of level nm , and

Hm(y) = φnm+ j+1(y).

Then define Q(y) = ∅.
(b) y is inside a piece Ωnm + j+1(y) of level (nm+ j+1). Then define Q(y) :=

Ωnm+ j+1(y). Note that Hm(y) ∈ Ω̃nm+ j+1, where the latter is the piece
of F̃ of level (nm + j + 1) for which ∂Ω̃nm+ j+1 = H|Anm+ j+1(∂Q(y)).
In other words,

Hm(y) ∈ φnm+ j+1(Q(y)).

It is useful to note at this point that the sets Fi(P), 0 ≤ i ≤ j, do
not intersect Ω0(m) (because the iterates of x do not meet Ω0(m)).
Therefore, as above,

Hm(x
′) ∈ Hm(P) = φnm+ j(P) = φnm+ j+1(P),

where x′ = Fn− j−nm (x) as before.

3. There exists a minimal i0, 0 ≤ i0 ≤ j, such that Fi0(y) ∈ Ω0(m). Then
y lies in Ωnm+i0(y), which is a preimage of the critical piece Ω0(m) by
a branch of F−i0 . Consider again two subcases.

(a) diam(Ωnm+i0(y)) ≤ (1/10)·r′·diam(P). Then define Q(y) = Ωnm+i0(y).
Note that Hm(y) ∈ Ω̃nm+i0 , where ∂Ω̃nm+i0 = H|Anm+i0

(∂Q(y)) =
H|Anm+ j+1(∂Q(y)). In other words, again

Hm(y) ∈ φnm+ j+1(Q(y)).
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(b) If diam(Ωnm+i0(y)) > (1/10) · r′ · diam(P), then define Q(y) = ∅. By
construction Hm is K-quasiconformal on Ωnm+i0(y), and φnm+ j+1 = Hm

on the boundary of Ωnm+i0(y); Moreover, there are at most finitely
many Ωnm+i0(y) as in this subcase, see Fact 11.3(1d) and Fact 11.4.
In addition, Ωnm+i0(y) ∩ P = ∅ because otherwise the level nm + j
piece P is contained in the level nm + i0 piece Ωnm+i0(y) and then
Fi0(x ′) ∈ Fi0(P) ⊂ Fi0(Ωnm+i0(y)) = Ω0(m), a contradiction.

Now define a new map φ′. Let φ′ be equal to φnm+ j+1 everywhere in Ω

except for pieces Ωnm+i0(y) as in 3(b), on which we define φ′ = Hm . Define
also

C′ = ∂B′ ∪ {Q(y) ; y ∈ ∂B′}.
We have proved that

Hm(∂B′) ⊂ φ′(C ′)
and

Hm(x
′) ∈ φ′(P).

Observe that φ′ is a homeomorphism of Ω onto Ω̃, which is Knm+ j+1-
quasiconformal on any open set U for which φ′|U = φnm+ j+1 and K-
quasiconformal when φ′|U = Hm . Hence, φ′ is Knm+ j+1-quasiconformal
everywhere except along finitely many piecewise analytic curves (the bound-
aries of the pieces Ωnm+i0(y) as in Case 3b). Therefore, φ′ is K ′-quasi-
conformal on Ω, where K′ = Knm+ j+1 depends only on m. In order to use
this, we need to show that C′ has a good geometric structure:

Claim 2: There exist two universal constants 0 < b < a, such that, for
every z ∈ C′,

b · diam(P) ≤ d(z, P) ≤ a · diam(P).

Before we prove Claim 2, let us show that it implies Claim 1. Indeed,
take x′′ = (φ′)−1 ◦ Hm(x ′) ∈ P. Assuming Claim 2 is true, for every z ∈ C′,

b · diam(P) ≤ d(z, x′′) ≤ (1 + a) · diam(P).

Hence, Hm(∂B′) surrounds the set Γ1 := φ′(B(x ′′, b · diam(P))) and is
contained in the set Γ2 := φ′(B(x ′′, (1 + a) · diam(P))), where B(z, r) =
{y; |y − z| ≤ r}. Let x̃ = Hm(x ′) = φ′(x ′′). Since φ′ is K ′-quasiconformal,
there exists D = D(K′), such that

B(x̃, r̃1) ⊂ Γ1 ⊂ B(x̃, D · r̃1),

where r̃1 = min{|x̃ − y|; y ∈ Γ1}, and

B(x̃, r̃2/D) ⊂ Γ2 ⊂ B(x̃, r̃2),

where r̃2 = max{|x̃ − y|; y ∈ Γ2}. Hence

mod (Γ2 \ Γ1) ≥ 2π · log

(
r̃2/D

Dr̃1

)
.



452 G. Levin, S. van Strien

We need to prove that r̃2/r̃1 is universally bounded from above. But since
φ′ is K ′ quasiconformal and (Γ2 \ Γ1) is the φ′ image of the annulus
{z ; b · diam(P) ≤ |z − x′′| ≤ (1 + a) · diam(P)}, we get

(2π/K ′) · log((1 + a)/b) ≤ mod (Γ2 \ Γ1) ≤ (2π · K ′) · log((1 + a)/b).

This and the above inequality for log(Γ2 \ Γ1) imply that the ratio r̃2/r̃1

cannot be larger than D2 ·[(1+a)/b]K ′
. So let us prove Claim 2. First of all, it

holds for any z ∈ ∂B′: take b = r′ and a = r . It also holds for any z ∈ Q(y)
for any Q(y) (as above) for which diam(Q(y)) ≤ (1/10) ·r′ ·diam(P). This
is because in that case it is enough to put b = 9/10 ·r′ and a = r +1/10 ·r′.
In particular it holds for all z ∈ Q(y) with Q(y) as in Case 3(a).

So it remains to consider z ∈ Q(y)where Q(y) is as in 2(b). To prove the
right-hand side inequality of Claim 2, we need to show that any such level
nm+ j+1 piece Q(y), y ∈ ∂B′, is not too large compared to diam(P). Indeed,
for the level nm + j piece Q′(y) defined in Case 2, we have Q′(y)∩ P = ∅
and, by Fact 11.3(2a),

ε∗ ·diam(Q(y)) ≤ d(Q(y), ∂Q′(y)) ≤ d(Q(y), P) ≤ d(y, P) ≤ r ·diam(P),

where ε∗ = εnm+ j+1,nm+ j . Hence

diam(Q(y)) ≤ (r/ε∗) · diam(P)

which proves the right-hand inequality of Claim 2. Let us now prove the
left-hand side inequality. Since we consider Q(y) such that diam(Q(y)) ≥
(1/10) · r′ · diam(P), we get by Fact 11.3(2b):

d(Q(y), P) ≥ d(Q′, P) ≥ εnm+ j · min{diam(Q′), diam(P)} ≥
≥ εnm+ j · min{diam(Q), diam(P)} ≥ εnm+ j · min(1, r′/10) · diam(P).

This proves that one can also choose b > 0 uniformly in the left-hand side
inequality of Claim 2. This completes the proof of Claim 2 and therefore
also the proof of Claim 1. ��
Proof of Fact 11.7: Now consider Hm at points x ∈ Xm(c). By definition,
for some n ≥ 0, y := Fn(x) lies in the inner boundary of A, i.e. in the
closure of the union of ∂Ωi, and Fk(x) /∈ Ω0(m), k = 0, . . . , n. There are
two substantially different cases:

(a) y is not real, belongs to the boundary of some Ωj , and F(y) is not real
as well,

(b) either y ∈ ∂A ∩ R or y ∈ Ω1(c) and F(y) is real (i.e. one of the end
points of Ω ∩ R).

In turn, for both (a) and (b), there are two subcases:

(1) there exists k, 0 ≤ k ≤ n, such that Fk(x) ∈ ∂Ω0(m)
(2) Fk(x) /∈ Ω0(m), for all k = 0, . . . , n.
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In the Cases (a1)–(a2) there exists a neighbourhood U of z = Fk(x) in
Case (a1) and of z = y in Case (a2), such that U ⊂ An−k in (a1) and U ⊂ A1
in (a2) (remember that Ak = ∪k

i=0 F−i(A)). Hence, the homeomorphism
Hm is quasiconformal at each point of U except for a piecewise analytic arc
(which is either U ∩Ω0(m) or U ∩Ω j). Since such arcs are removable, Hm
is quasiconformal at z ∈ U .

In Case (b), the Subcases (1)–(2) are very similar. Let us first consider
the most difficult Case (b2) assuming also that y ∈ ∂A ∩ R (the second
possibility that y ∈ Ω1(c) with F(y) real is easier). Since Fk(x) /∈ Ω0(m)
for k ≤ n, we have Hm = F̃−n ◦ Hm ◦ Fn in a small neighbourhood of the
point x (the size of the neighbourhood depends on n). Hence, it is enough
to show that Hm is quasiconformal at y ∈ ∂A ∩ R. In particular, y is not
inside any Ωi but can be a point of ∂Ωi ∩R. Take a round disc B = B(y, r)
with the center at y and a small radius r . Similar to the proof of Claim 1
above, consider

C = ∂B ∪ {Ω2;Ω2 ∩ ∂B 	= ∅},
where Ω2 are the level 2 pieces. We have: Hm(y) = φ2(y) and Hm(∂B) ⊂
φ2(C). Since φ2 : Ω → Ω̃ is quasiconformal, it is enough to prove that C
is roughly a ‘circle’ around y, i.e. that there exist r2 > r1 > 0 such that
C∩{z; |z− y| = ri} = ∅, i = 1, 2 and such that r2/r1 is universally bounded
from above. To prove this, let Ω2 ∩ ∂B 	= ∅, and let Ω1 be the level 1 piece
containing Ω2. Note that y /∈ Ω1. As it follows from Fact 11.3(1c), for
example, there exists a universal εm > 0, such that

d(Ω2, ∂Ω1) ≥ εm · diam(Ω2).

This implies that diam(Ω2) ≤ r/εm because d(Ω2, ∂Ω1) > εm · (r/εm) = r
and since y /∈ Ω1 this would imply that (Ω2, y) > r , a contradiction.
Similarly, d := d(Ω2, y) ≥ r · εm/(1 + εm) because otherwise we would
have: d = d(Ω2, y) ≥ d(Ω2, ∂Ω1) ≥ ε·diam(Ω2) ≥ ε·(r−d) > r ·ε/(1+ε),
i.e. a contradiction. Thus one can take r1 = r · ε/(1+ ε) and r2 = r + r/ε =
r · (1 + ε)/ε.

If y is as in Case b(1) then Hm = F̃−k ◦ Hm ◦ Fk and so it is enough to
show that (***) holds for Hm near z = Fk(y) ∈ ∂Ω0(m). Using again a set
C as above, (***) again follows at z.

Thus we have proved that (***) holds at any point of Xm(c) and before
we proved (***) for any point of Xm(d) with a special choice of rn → 0.
The proof of Theorem B’ is completed. ��

Remark. Combining the considerations used in the cases x ∈ Xm(d) and
x ∈ Xm(c), one can show that (***) holds at x ∈ Xm(d) for an arbitrary
small enough rn , i.e. show that Hm is quasiconformal without the use of the
deep result of [HK].
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12 Proof of Theorem C: density of Axiom A maps in families

Let gλ : ∪i0
i=0 I i(λ) → I be a family of maps of the class AC, where

λ ∈ Λ := [Λ1,Λ2]. Denote cλ ∈ I 0(λ) the critical point of gλ, and ωλ(c)
the omega-limit set of c(λ) by gλ. Assume that:

a) the itineraries of the critical point of gΛ1 and gΛ2 are different;
b) gλ(x) is real analytic on (λ, x) in a neighbourhood of every point (λ0, x0),

where λ0 ∈ [Λ1,Λ2] and x0 ∈ closure(∪i0
i=0 I i(λ0));

c) there exists λ ∈ (Λ1,Λ2) such that gλ has no parabolic periodic orbits.

Let A = {λ ∈ Λ : gλ is Axiom A map} and S be its complement.
Given λ0 ∈ S, let S(λ0) be connected component of S containing λ0. In this
section, we address the important question whether the set A is dense (or
equivalently, S(λ) = {λ} for every λ ∈ S).

Observe that if gλ(x) = g0(x) + λ, then A is dense in this family,
because all the branches “move up” with λ (see Sect. 8 and also Lemmas
12.2–12.3 below). In particular, Axiom A maps are dense in the family
x �→ kx + λ− k/2π sin(2πx), λ ∈ R, of Arnold’s maps, and in the family
of Blaschke products of Example 2 of the Introduction. For the same reason,
Axiom A maps are dense in the space of all maps g ∈ AC.

Let us consider this problem for a family gλ satisfying the conditions
a)–c) from the beginning of this section. It is very easy to see that S(λ0) =
{λ0} if c is attracted to an attracting or parabolic periodic orbit of gλ0

(see Lemma 12.2) or eventually periodic (use condition a) from above and
Lemma 12.3).

The cases when ω(c) is infinite are much more difficult to consider. We
use Theorems A, B, A’, B’, and a method of [Ko, Sect. 7.2, p. 69–70] to
prove the following slight generalization of Theorem C:

Theorem C’. Assume ωλ0(c) is infinite.

• If ωλ0(c) is minimal, then S(λ0) = {λ0}, i.e., gλ0 is approximated by
Axiom A maps gλ.

• If ωλ0(c) is not minimal then again S(λ0) = {λ0}, provided the following
condition (*) holds:
(*) ωλ(c) does not contain parabolic periodic orbits, where λ is at least
one end point of S(λ0).

For more information see Lemmas 12.4–12.5.

In particular, we have

Corollary 12.1. Let Pλ be a holomorphic family of polynomials of Example 1
from the introduction. Then either all polynomials Pλ are conformally con-
jugate or Axiom A maps are dense in this family.
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The proof of Theorem C’ is contained in the following Lemmas. Let us
start by fixing a closed subinterval [e1, e2] of (Λ1,Λ2).

Lemma 12.1. For every n ≥ 1, the set Nn = {λ ∈ [e1, e2] : gn
λ has

a parabolic fixed point} is finite. In particular, the set N = ∪n≥1 Nn is at
most countable.

Proof: Use b) and c). (Actually we have much more, see Theorem IV.B’ in
[MS].) ��

Lemma 12.2. Fix an arbitrary parameter λ0 ∈ (e1, e2). If gλ0 has an
attracting or parabolic periodic orbit Pλ0 , which attracts cλ0 , then there
are parameters λ arbitrary close to λ0 on either side of λ0, such that gλ is
Axiom A map.

Proof: Assume for simplicity that λ0 = 0. Consider several cases.

1). P0 is attracting. Then for every λ close enough to λ0, gλ has an attracting
periodic orbit Pλ , which changes continuously with λ, tends to P0 asλ→ λ0,
and attracts cλ. By Lemma 12.1, one can choose λ arbitrary close to λ0, such
that gλ has no parabolic periodic orbits. Then, by Mãńe’s theorem [MS,
p. 222–223], this gλ is Axiom A.

2). P0 is a two-sided attracted parabolic periodic orbit (like 0 for x − x3).
Then, because of the previous lemma, for any λ close enough to λ0, there
exists an attracting periodic orbit (close to P0) which attracts cλ. For this λ,
we apply 1).

3). P0 is a one-sided attracted parabolic periodic orbit (like 0 for x + x2).
There are two subcases:

3a). For λ arbitrary close to λ0, gλ has a periodic orbit near P0. Then,
again because of the previous lemma, one of these orbits is attracting, and
it attracts the critical point. Then we apply 1).

3b). If 3a) does not hold, then we proceed as in [Le1]. Let p be the period
of P0. Then gpi

0 (c0) → a0 as i → +∞, where a0 ∈ P0. Moreover, since
P0 is the one-sided attracted orbit, one can assume that gpi

0 (c0) < a0,
i = 1, 2, . . . . On the other hand, since there are no wandering intervals,
there exists a sequence g−ni

0 (c0) of preimages of c0, which tend to a0 from
the right side. By continuity, for every small ε > 0 there exist i0 (large) and
δ > 0, such that for every λ′ ∈ (λ0 − δ, λ0 + δ),

g
−ni0
λ′ (cλ′) ∈ (a0 − ε, a0 + ε).

But since there are no fixed points of gp
λ in a neighbourhood of a0, if λ 	= λ0

is close to λ0, there exists (for the above λ′) an integer i1, such that

gpi1
λ′ (cλ′) > a0 + ε.
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Changing now λ from λ0 = 0 to λ′, we must meet λ such that

g
−ni0
λ (cλ) = gpi1

λ (cλ).

Therefore cλ is periodic, and we can again apply 1). ��

Lemma 12.3. If the itinerary of cλ is not constant for any λ in a neighbour-
hood of λ0, then there exists λ arbitrary close to λ0, such that cλ is attracted
by an attracting or neutral periodic orbit of gλ.

Proof: By the continuity of the itinerary on λ, one can choose λ arbitrary
close to λ0, so that the itinerary is periodic. It implies gλ has a periodic
interval containing the critical point. ��

Lemma 12.4. Assume that [λ1, λ2] is a closed subinterval of (e1, e2), such
that:

1) the itinerary of cλ is the same for each λ ∈ [λ1, λ2] and not periodic,

2) ωλ(c) does not contain parabolic periodic orbits, for λ equal to either λ1
or to λ2.

Then the interval [λ1, λ2] is not maximal obeying these properties.

In other words, if [λ1, λ2] is a maximal non-trivial interval satisfying 1),
then: ωλ(c) is non-minimal for each λ ∈ [λ1, λ2], contains a periodic orbit,
and in addition, ωλ(c) contains a parabolic periodic orbit for both λ equal
to λ1 and to λ2.

Moreover, we have

Lemma 12.5. Assume that [λ1, λ2] is as in the previous lemma and Λ′ ⊂
(λ1, λ2) is an open interval such that ωλ(c) contains no parabolic cycles
for all λ ∈ Λ′. Then for every λ ∈ Λ′, there is a first return map Gλ to
a nice interval around c (depending on λ), such that all Gλ are included in
a family of box-mappings depending complex-analytically on λ in a complex
neighbourhood Ω of the open interval Λ′, Ω ∩ R = Λ′, and all maps
Gλ, λ ∈ Ω, are pairwise quasi-conformally conjugate.

Proof of Lemmas 12.4–12.5. If ω(c) is minimal, we use Theorems A and B,
and the further proof is a repetition of the proof of the infinitely renor-
malizable case of real analytic family of real analytic unimodal maps, see
Sect. 7.2 of [Ko]. Note that condition 2) holds automatically in this case.

If ω(c) is not minimal, there is a substantial difference caused by the
fact that the box mapping we constructed in Theorem A’ has infinitely many
branches, and in order to apply an idea of [Ko], we need to include this map
in a complex analytic (on the parameter) family of such maps.

Let us assume that λ2 = 0 and that ω0(c) contains no parabolic cycles.
Then the map g0 satisfies the conditions of Theorems A’ and its addendum,



Maps with one inflection point. II. 457

and Theorem B’. Therefore, the first return map of g0 to a nice interval
P(0) around c, R0 : ∪Pi(0) → P(0), can be extended to a box mapping
F0 : ∪V i(0)→ V(0), such that Vi(0)∩R = Pi(0), V(0)∩R = P(0). ’Zero’
in the notations indicates that all this is constructed for the map g0. Let us
note that Theorem A’ shows that all intervals Pi(0) are very deep inside
P(0), so that we can take V(0) to be D(P(0);π − θ), where θ > 0 is small.
We need the modification of V(0) as made in the addendum to Theorem A’,
see Sect. 10. Namely, we replace (and fix, from now on) V(0) by Ṽ , where
Ṽ is D(P(0);π−θ), except for two small neighbourhoods Z1, Z2 of the end
points a1, a2 of the real trace P(0) of Ṽ , so that ∂Ṽ in Z1, Z2 is gM

0 -preimage
of two leaves lv1, lv2 (invariant under an iterate of g0) of the foliation defined
in Sect. 10. As explained in the addendum to Theorem A’, with the new
range V(0), the first return map to V(0) is still well-defined and forms the
initial box map. Let us denote this box mapping by F0 : ∪V i(0) → V(0)
(forgetting about the box mapping before this modification).

Let us consider the Yoccoz puzzle pieces of the map F0 as defined
in the Step 3 of the proof of Theorem B’ (see the previous section): the
pieces of level j ≥ 0 are by definition the components of F− j

0 (V(0)).
In particular, we consider the critical pieces Vj(0), j = 1, 2, . . . , of this
partition (i.e., Vj(0) is the component of F− j

0 (V(0)) containing c). Denote
by Fj,0 : ∪i V i

j (0) → Vj(0) the first return map to Vj(0) containing the
points of ω(c)∩ Vj(0). Our aim is to show that, provided j is large enough,
one of the maps Fj,0 can be included in a holomorphic family Fj,λ (induced
by gλ), for λ in a small (complex) neighbourhood of λ = 0. The idea is the
following. We include each individual component of Fj,0 in a holomorphic
motion which agrees with the gλ-dynamics. On the other hand, provided j
is large, the dynamics of Fj,0 is concentrated on a small neighbourhood of
the real axis, and this persists for any individual motion. If now two motions
intersect each other for some λ, then this intersection can be transferred
to a fixed neighbourhood of the periodic point aλ of gλ. Since the local
dynamics of gλ repels a domain to a fixed distance away from the real axis,
we obtain a contradiction.

1. Let us include ∂V(0) in a holomorphic motion φλ : ∂V(0) → ∂V(λ),
|λ| < ε, as follows.

Denote by aλ the periodic point of gλ, which is a holomorphic extension
of the periodic point a = a0 of g0, which was used to generate the real
partition. Since ω0(c) contains no parabolic points, a0 is repelling. One can
even assume that a0 is a fixed point.

First of all, using that the linearization Böttcher coordinates around aλ
depend holomorphically on λ, the leaves lv1 , lv2 are naturally included in
motions lv1(λ), lv2(λ), so that lvi (λ) are invariant under g−1

λ in a neighbour-
hood Z of aλ which is fixed once and for all. This holomorphic motion is
transferred by some branches of g−M

λ to neighbourhoods of ai(λ), where
the branches are chosen so that g−M

0 (a0) = ai(0) with ai(0) the end points
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of P(0). In particular, the end points Yi(λ) of g−M
λ (lvi (λ)) (other than ai(λ))

are holomorphic functions of λ. The rest of ∂V(0) between Yi(0), i = 1, 2,
is an arc of the circle (and its complex conjugate). It can be included in
a holomorphic motion as well within a family of arcs of circles joining
Yi(λ). We choose a complex neighbourhood W0 of λ = 0 so small that the
end points of lvi , i = 1, 2, are some definite distance away from the real
axis for all λ ∈ W . Then any point x ∈ lvi , x 	= aλ is repelled by iterates of
gλ inside the neighbourhood Z eventually to a definite distance h > 0 away
from the real axis, where h is independent of λ ∈ W0. Note that here we
use that we work with the modified range V with pieces of ‘external rays’
in the boundary, rather than the original range.

We shall constantly use the following obvious fact: Consider a univalent
map gn

0 : A0 → B0, where A0, B0 are domains with piecewise analytic
boundaries and let φλ : ∂B0 → ∂Bλ be a holomorphic motion. Then, for
any λ in a complex neighbourhood of λ = 0, the map gn

λ : Aλ → Bλ is
also a well-defined univalent map such that the domain Aλ tends to A0 as
λ→ 0. In particular, Step 1 gives a holomorphic motion of each individual
domain Vi

j (0) defined by g
−ni, j
λ ◦ φλ ◦ g

ni, j

0 : ∂V i
j (0)→ ∂V i

j (λ), where g
ni, j

0

maps Vi
j (0) onto V(0). However, a priori, each such motion is defined on

its own neighbourhood of λ = 0.

2. Choose j so large that the following holds: if Vi
j (0) is any component of

the map Fj,0 then all iterates of Vi
j (0) by g0 until the range Vj(0) of Fj,0

lie within a h/10-neighbourhood of the real axis (where h > 0 has been
defined in the Step 1). To see this, use Fact 11.4, and take j = nm be large.
Indeed, then the moduli of the annuli Qnm \ Vnm are uniformly away from
zero, and in particular Vnm (0) shrinks to the critical point. By part (b) of
Fact 11.4, with x ∈ R, the statement follows.

3. With j chosen as in the previous step, we forget about all other maps.
So let us write F0, V i(0) instead of Fj,0, V i

j (0) (and so on). If (as for the
minimal case) the number of components Vi(0) is finite, then finitely many
holomorphic motions already give us the desired extension. In our case, we
also will obtain a holomorphic motion, because all, except finitely many,
components Vi(0) of F0 are concentrated around a real set X(0), on which
g0 is expanding, and this situation persists for all λ complex near 0.

To make this precise, we consider the piece P = P(0), and for this piece
we consider the sets X(0) = X and X̂(0) = X̂ defined in the end of Sect. 10,
and the corresponding complex map

G(0) : ∪B(J)→ ∪D(I ;π − β),

where B(J) are finitely many pairwise disjoint topological discs all con-
tained properly inside ∪D(I ;π − β). Note that all G(0)-iterates of points
of the set X̂(0) remain in the domain of definition of G(0).
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Now, let us construct the family Fλ. For any component Vi(0) of the
map F0, choose mi ≥ 0 minimal, such that gmi

0 (V
i(0)) is not properly

contained in any domain B(J). Let N(i) be so that gN(i)
0 (V i(0)) = V(0).

Then, since we have fixed n0 in the construction of the map G in Sect. 10 and
since all iterates of all Vi(0) until the range V(0) of F0 are either disjoint or
coincide, and are roughly discs, the number of different domains gj

0(V
i(0)),

for arbitrary i and all j = mi, . . . , N(i), is bounded. Hence, the inverse
branches of gλ from V(λ) to these finitely many domains are well-defined
in some small complex neighbourhood of λ = 0. On the other hand, the
inverse branches of g0 mapping from gmi

0 (V
i(0)) back to Vi(0) persist for

λ in a small complex neighbourhood of λ = 0. The reason for this is that
the map G(0) is included in a complex analytic family G(λ), when λ is
close to λ = 0 and fix the range of G(λ) for all such λ, because the number
of components of the domain of the map G(0) is finite and their closures
are pairwise disjoint. Therefore G(λ) is uniformly expanding (where the
expansion factor is bounded by some constant which does not depend on
λ and on the points). It follows that there exists a small enough complex
neighbourhood of λ = 0 such that any Vi(0) and gN(i)

0 (V i(0)) = V(0) is
included in a holomorphic motion Vi(λ), such that gN(i)

λ (V i(λ)) = V(λ),
and all gk

λ(V
i(λ)), k = 0, 1, . . . , N(i), remain in a h/5-neighbourhood of

the real axis.

4. It remains to show that these holomorphic motion of the individual
components are pairwise disjoint with each other and with ∂V(λ) for every λ
in a fixed neighbourhood of λ = 0. Assume that the boundaries of Vi(λ) and
V j(λ) are not disjoint, for some λ (close to 0). In order to be definite assume
that mi < m j . By assumption, the diameter of gmi

λ (V
i(λ)) is comparable to

the diameter of V(λ) (so Ni − mi is bounded by some number which does
not depend on i). If gmi

λ (V
j(λ)) has a similar diameter then (since there are

only a finite number of such domains, and their closures are disjoint), we
can make sure that they are disjoint by taking λ sufficiently close to 0. So in
that case, we can use the map G(λ) from above to conclude that Vi(λ) and
V j(λ) are disjoint also, a contradiction. So we may assume that the diameter
of gmi

λ (V
j(λ)) is small compared to the diameter of V(λ). As before let M

be so that gM
λ maps the boundary points of V(λ) ∩ R to the fixed point aλ

of gλ, and consider gNi+M
λ (V j(λ)) (whose diameter is small compared to

V(λ)). Because of the last sentence of Step 3, we can take λ so close to zero,
so that gNi+M

λ (V j(λ)) lies in a small neighbourhood of the fixed point aλ,
and, moreover intersects, say, the leaf lv1(λ) of the foliation (because we
assumed that Vi(λ), V j(λ) did intersect and because lv1(λ) is a piece of the
boundary of gNi+M

λ (V i(λ))). It follows that some iterate of gλ repels a point
of the domain gNi+M

λ (V j(λ)) (staying inside the neighbourhood Z of aλ) to
distance h from the real axis before returning to V(λ) (here we use that the
leaf lv1(λ) is invariant under gλ). However, as shown in Step 3 this does not
happen, and so we proved by contradiction that domains remain disjoint.
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The same argument also shows that domains are disjoint with the boundary
of the range, provided λ is sufficiently close to 0.

The rest of the proof repeats the consideration of Sect. 7.2 of [Ko] (the
infinitely renormalizable case), using Theorem B’. If c is not recurrent, then
we replace F by the map G constructed in Proposition 10.1 (so that it is not
related to the piece P anymore, but the Cantor repeller of G contains ω(c)
is this case), and again repeat the construction of [Ko]. ��

13 Proof of Theorem B”

In this section we want to prove Theorem B”, which states that one has
a quasisymmetric conjugacy on the entire dynamical interval when there
are no parabolic or attracting periodic points.

Proof of Theorem B”: Let us for simplicity assume that the maps g,g̃ are
induced by covering maps of the circle R/Z. If there are gaps in the domain
of these maps, then the proof is even simpler. The proof goes in four steps.

Step 1. Let us first deal with the minimal case. Then in Theorem A we con-
structed a complex extension of the first return map to some nice interval Uk,
but only considered the domains containing points in ω(c). Now consider
the domains associated to extensions of ALL real domains of the first return
map to the nice interval Uk. Let us show that we get a quasi-box mapping
Pk : ∪ V i

k → Vk (as in Theorem A, but with infinitely many branches).
That the domains Vi

k intersecting ω(c) are contained in Vk follows from
|ω(c)| = 0, see the proof of Theorem A. So consider any other branch J of
the first return map R to Uk = Vk∩R. Let R|J = gs and let Ĵ ⊃ J be so that
gs : Ĵ → closure(Vk) ∩ R is a homeomorphism. This map is a diffeomor-
phism except possibly when gs is the central branch of the previous return
map, and then gs−1 : g( Ĵ ) → closure(Vk) ∩ R is a diffeomorphism (by
construction). Because one has Koebe space and by the choice of real trace
of Vk, there exists a universal constant C > 0 such that |gj( Ĵ )| ≤ C · |g j(J)|
for all 0 ≤ j ≤ s. Let Vi

k be the pullback of Vk corresponding to J . In order
to see that Vi

k is well-defined and contained in Vk, we need an improvement
to the Schwarz Lemma 2.3, which is due to E. de Faria and W. de Melo,
see Lemma 2.4 in part II of [FM]. This improvement states that there ex-
ists ε > 0 so that the spoiling factor in the Schwarz Lemma in the angles
of the Poincaré domains when going from gj+1(V i

k ) to gj(V i
k ) is at most

(1 + K |g j( Ĵ)|1+ε) for some universal constant K . Since the orbit of J up
to its first entry in Vk is disjoint, since |gj( Ĵ)| ≤ C · |g j(J)| and since the
maximum size of the intervals in this orbit is small when k is large, we get
that

∏
j=1,...,s(1 + K |g j( Ĵ )|1+ε) can be assumed to be as close to 1 as we

want. Hence Vi
k is well-defined, and inside a disc with angle close to π/2

(with some slits). Because the real trace of Vi
k is well inside the real trace
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of Vk, we then obtain that Vi
k is inside Vk. As in Theorem A we therefore ob-

tain a quasi-box mapping with infinitely many domains, which can intersect
and are contained (but not necessarily properly) inside Vk. The range Vk is
a disc with some slits: Vk ∩ R = Uk. Let us from now on fix k and remove
the k from the notation. Consider a real one-parameter family of ranges V(t)
by slightly changing the radius of the disc in such a way that V(0) = V but
so that the real trace is independent of t. Then we get a family of quasi-box
mappings P(t) : ∪i V i(t)→ V(t) for t ∈ R sufficiently close to 0. Now we
want to obtain a box mapping from this. For this we proceed as in Sect. 6.
As in Step 1 of Sect. 6, construct a smooth box mapping ĝ : ∪i B̂i → Â,
where B̂i ∩ R are the (finitely many) domains of the definition of g. As
above, consider the sequence of (all branches of the) first return maps to
the central domains ĝ j : ∪i B̂ j

i → Â j . In fact, we can choose ĝ so that
Â j ∩R = U j for all j . To do this, take an invariant curve through one of the
fixed points p of g (transversal to R), then choose Â so that close to p, ∂Â
coincides with the invariant curve. Then extend g smoothly as in Sect. 6 so
that ĝ coincides with g for all points in Â close to the real line.

Next, as in Step 2 of Sect. 6, intersect the smooth box mapping ĝ j with
the quasi-box mapping P(t) (where we assume that j is chosen so that two
ranges Â j and V correspond to the same level). By the Theorem of Sard
(which states that the set of critical values of a smooth mapping h : R→ R
has Lebesgue measure zero), it follows that we can find t close to zero, so
that the ranges of P(t) and ĝ j (which are both piecewise smooth curves)
are transversal. In fact, the range P(t) had two slits, but since we made sure
that Â j ∩ R = U j , we get that the component of Â j ∩ V(t) containing c is
a topological circle consisting of a finite number of smooth arcs and without
cusps (this follows from the transversality). So we obtain a box mapping
P : ∪i Ωi → Ω so that ∂Ω is a quasicircle. P is an iterate of g on each
of the domains, the domains are all disjoint, and properly contained in Ω.
The modulus of the annuli Ω \ Ωi need not be bounded away from zero
uniformly in i . However, by passing to the first return map to the central
domain this modulus condition will be satisfied: the ‘safe-space’ condition 4
from Theorem A’ in Sect. 10 holds. If we are in the non-minimal case, then
we can also extend the box mapping from Theorem A’ to a box mapping
P : ∪i Ωi → Ω such that the closure of ∪iΩ

i ∩ R again contains Ω ∩ R.
To prove this, we do not need the smooth polynomial-like mappings, but
only that the real domains Ωi ∩ R are deep inside Ω ∩ R (see the proof
of Theorem A’). Both in the minimal and non-minimal case let A+, A− be
the set of points in the upperhalf (lowerhalf) plane which are inside Ω but
outside all the domains Ωi and let A = A+ ∪ A−.

Step 2: Now observe that the boundaries of A+ and of A− are quasicircle.
The proof of this is identical to that in Step 1 of Sect. 11 because the
boundary of Ω is a quasicircle, and because each of the domains Ωi is
mapped with uniformly bounded distortion to Ω.
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Step 3: In Theorems B and B’ we did obtain a quasiconformal mapφ : Ω→Ω̃

conjugating P : ∪i∈J Ωi → Ω and P̃ : ∪i∈J Ω̃i → Ω̃ where the index set J
corresponds to the domains intersecting ω(c). Take any quasiconformal map
ψ : Ω → Ω̃ extending the restriction ofφ to ∂Ω. Let K be its quasiconformal
dilatation. By pulling back once, we obtain also K-quasiconformal maps
ψi : Ωi → Ω̃i for each i /∈ J . As in Step 2 of the proof of Theorem B’ we can
find a quasiconformal conjugacy H : A → Ã which agrees withφ on ∂Ωi for
i ∈ J and with ψi on ∂Ωi for i /∈ J . Now extend H : A → Ã to H : Ω → Ω̃
as follows. On ∪i∈JΩ

i let H be equal to the conjugacy φ and on Ωi with
i /∈ J let H be equal to ψi . As in Fact 11.2, we obtain that H : Ω → Ω̃ is
quasiconformal. H is a conjugacy on the domains Ωi intersecting ω(c). If
g is minimal, then the domains where H is a conjugacy cover ω(c)∩Ω. So
by taking subsequent pullbacks (as in the proof of Fact 11.2 but since we
already have a quasiconformal conjugacy onω(c) the dilatation now will not
depend on n), we obtain a sequence of quasiconformal homeomorphisms
Hn : Ω → Ω̃ with the same quasiconformal dilatation and converging to
a conjugacy Φ between P : ∪ Ωi → Ω and P̃ : Ω̃i → Ω̃. If g is non-
minimal, then the construction of a conjugacy is already done in Steps 3
and 4 of the proof of Theorem B’ (simply also include the domains which
do not intersect ω(c); the proof is identical).

Step 4: There exists a minimal N so that the gN maps Ω ∩ R injectively
onto the whole dynamical interval. By taking, if necessary, puzzle pieces of
deeper level in Ω which intersect the real segment Ω∩R, we can make sure
that the image under gN of all these puzzle pieces are disjoint. Their union
is the necklace neighbourhood mentioned in the statement of the theorem.
Of course the conjugacy can be naturally defined (extending the previous
conjugacy) quasiconformally to this neighbourhood by usingg̃N ◦Φ◦ g−N .
Using the same composition, it also follows that any point of the real line
has a neighbourhood on which the conjugacy extends quasiconformally, but
not necessarily as a conjugacy. By compactness of the dynamical interval,
it follows that this quasiconformal map is defined on a neighbourhood of
the dynamical interval. Therefore, the conjugacy on the real line is a quasi-
symmetry. ��

14 Appendix

As before, let J be a real interval and D∗(J) the disc with diameter J .
Consider the inverse by P(z) = z� of D∗([−1, K�

0]) \R− with K0 > 1. The
next lemma states that the component of this inverse which contains [0, K0]
is contained in D∗([−1, K0]).
Lemma 14.1 Let P�(z) = z� where � ≥ 2, −1 < 0 < 1 < K0 and

W = {z ∈ C ; arg(z) ∈ [−π/�, π/�]}.
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Then
P−1
�

(
D∗

([ − 1, K�
0

])) ∩ W ⊂ D∗([−1, K0]).
In particular, some subset of

D∗([−1, K0]) ∩ W

is mapped diffeomorphically onto

D∗
([ − 1, K�

0

]) \ R−.

Proof: Rescale [−1, K0] to [−∆, 1] and so consider the disc D with diam-
eter [−∆, 1], where ∆ < 1, and define P(z) = z2. Let us show that D
is contained in P(D) (and that the only intersection points are z = 1 and
z = −∆). Let us parameterize the boundary by α �→ r(α) · eiα. We want to
show that r2(α) > r(2α) except that equality holds if r = 1 (i.e. α = 0) and
r = ∆ (i.e. α = π/2).

Using the cosine rule we get

r2(α)+ (1 − ∆)2

4
− r(α)(1 − ∆) cos(α) = (1 + ∆)2

4
, i.e.,

r2(α)− r(α)(1 − ∆) cos(α)− ∆ = 0.

Hence,

cos(α) = r2(α)− ∆

r(α) · (1 − ∆)
and

cos(2α) = 2

(
r2(α)− ∆

r(α) · (1 − ∆)

)2

− 1.

Similarly, the point r(2α) · ei2α satisfies

r2(2α)− r(2α)(1 − ∆) cos(2α)− ∆ = 0.

Let us write A = r2(α) and B = r(2α) and substitute the expression for
cos(2α) in the last expression. Then we get

B2 − B(1 − ∆)

[
2
(A − ∆)2

A(1 − ∆)2
− 1

]
− ∆ = 0. (14.2)

This means

(1 + B)(B − ∆)

B(1 − ∆)
= B2 − ∆

B(1 − ∆)
+ 1 = 2(A − ∆)2

A(1 − ∆)2
.

If A = B := C then either C = ∆ or

(1 + C) = 2
(C − ∆)

(1 − ∆)
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which is only satisfied if C = 1. This means that the only intersection of
∂D with ∂P(D) are at z = 1 and z = −∆. To show that ∂P(D) is outside
∂D (except at z = −∆ and z = 1), let us analyze the situation close to
z = 1. So regard in (14.2) B as a function of A and differentiate B w.r.t. A
at A = 1 (and so also take B = 1). This gives

2B′B − B′(1 − ∆)

[
2
(A − ∆)2

A(1 − ∆)2
− 1

]
− B

2

(1 − ∆)

[
1 − ∆2/A2] = 0,

i.e., since A = B = 1,

2B′ − B′(1 − ∆)− 2
(1 − ∆2)

(1 − ∆)
= 0

which gives B′ = 2 and so B(A) < A for A < 1.
This, and the proof of Lemma 15.2 from [LS1] imply the proof of this

lemma. ��
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