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In this paper we prove complex bounds, quasisymmetric rigidity, absence of
invariant linefields and density of hyperbolicity for real analytic maps with
one critical point of inflection type and which are orientation preserving on
each branch. For real bounds, see the first part of this paper, [L¢g].

1 Introduction

Recently quite a few papers appeared proving complex bounds, local con-
nectivity of Julia sets, absence of invariant linefields and quasisymmetric
rigidity for real polynomia maps.

Let usfirst discuss the unimodal case. In 1990 Martens[Ma] proved that
there are real bounds for a certain sequence of first return maps to suitable
central intervals. In 1990 Sullivan showed that if the unimodal maps are
real analytic, infinitely renormalizable and have bounded combinatorics,
then their first return maps extend to the complex plane as polynomial-like
maps, see[Su] and also [M§]. In 1994 the present authors proved that all real
analytic unimodal maps allow such polynomial-like complex extensions for
the ‘non-central’ first return maps. The proof even gave explicit numerical
lower bounds for the moduli of certain annuli, [LS1]. For the quadratic
case, different proofs were later provided by [GS1], [LY]. For the smooth
case see [Ko]. In 1996 Sands, see [Sa], improved our numerical bounds for
maps of the form g(x‘) so that the Schwarzian derivative of g is negative.
This polynomial-like structure is one of the main ingredients in many recent
resultson smooth unimodal maps. For example, itisheavily usedin the proof
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that topologically conjugate quadratic maps are in fact quasisymmetrically
conjugate, see [GS2], also [Ly] and more recently [Sh]. Note that thisisthe
main step in the recent proofs that hyperbolic maps are dense in the family
7° + ¢, ¢ € R. Moreover, complex bounds lead to the proof of the local
connectivity or total disconnectedness of Julia sets of some classes of real
polynomials [LS1], [LS2] and are also heeded in results on renormalization
and on smoothness of conjugacies, see[Su], [MS], [McM2], and [MP], and
essentially simplifies the proof of absence of invariant linefields [McM1],
[LS2].

In the case of smooth critical circle homeomorphisms, the analogous
statements are proved in [Ya] (complex bounds), [He2], [Yo] (quasisym-
metric rigidity), [FM] (renormalization).

In this paper we deal with the next natural class, which contains smooth
covering maps of the circle with a unique critical point of inflection type.
Thisclassincludes (generalized Arnol’d) mapsof theform f(x) = k-x+a+
bsin(2rx) mod 1wherek € N, k > 2 and b ischosen sothat f hasaunique
cubic critical point. Other examples are certain real polynomia maps with
one non-escaping critical point of inflection type, and aso certain Blaschke
products, see the examples below. Just as critical circle homeomorphisms
are in the boundary of the set of diffeomorphisms of the circle, the maps
we consider in this paper are in the boundary of the class of smooth cov-
ering maps without critical points. These covering maps without attracting
or neutral periodic orbits and without critical points are hyperbolically ex-
panding (by atheorem of MafE), and are quasisymmetrically conjugate to
each other. In this paper wewill study the metric theory for mapswith points
of inflection. It turns out that the methods of proof differ substantially from
those used in the critica circle case and aso quite a bit from the unimodal
case.

To prove real and complex bounds for maps with a critical point of
inflection type is more involved than for maps with afolding critical point.
Thisisbecause one no longer has adynamically relevant symmetry near the
critical point. (Note that these covering maps can not be renormalizable.)
Thereforewe obtain polynomial-like extensionsfor asequenceof first return
maps at moments which are no longer combinatorially defined. Asin the
case of critical circle maps, our maps arein general not quasisymmetrically
conjugate to affine maps. In this case we no longer have growth of moduli
(asinthe quadratic case), and also no bounded geometry of the postcritical
set (asinthecritical circle case). Inthe minimal case we useinstead that the
dynamics does change if we ‘move the map up’. In the non-minimal case,
amuch more general way of proving quasisymmetric rigidity is used. Our
method also can be used to prove quasisymmetric rigidity and density of
hyperbolicity for real analytic unimodal maps (with afolding critical point
which is not necessarily quadratic) in the non-minimal case.

Let usbemoreformal and introducethe classAC whichincludesanalytic
covering maps of thecircle. Let | bean openinterval around the pointc = 0
and |; a (finite) collection of digoint open intervals inside the interval |.
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AC isthe class of mapsg: U l; — I, for which the following conditions
hold.

1. Foreveryi,themapg: li — | extendsto an orientation preserving real
analytic homeomorphism from the closure of | to the closure of |.

2. Forevery i # 0, themap g: I; — | is a diffeomorphism, while the
map g: 1o — | hasaunique critical point (i.e., azero of d) at the point
c=0¢ lgof odd order ¢ > 3. Wecadl g: lgo — | the central branch,
and | the central interval of g.

3. All iterates of the critical point ¢ = 0 under g are in U} (and, hence,
well defined).

4. There is an extension of g to a covering mapg: St — S' (where we
identify Stwith R/(|1]Z)) which isreal analytic on aneighbourhood of
Ulj.

Wecall g : lg — | thecentral branch, and Iy the central interval of g. In
fact, inview of Proposition 2.1 below, we only use condition (4) in the proof
of Theorem B’, C' (part 2) and B” and thenonly inthecase | = (a , a,),
where a.. are the left and right most fixed points of g.

Examples

1. Consider a polynomia P with real coefficients. Assume that all except
one of its critical point escape to infinity and that the non-escaping critical
point c isareal point of inflection type. Moreover, assume that the orbit of
¢ only meets componentsof {x € R; P/(X) # 0} onwhich P isorientation
preserving. If we restrict P to a suitable interval of the real axis, it will
satisfy the conditions 1-4 (see [LS2] for details).

d
2. Consider the following Blaschke product: f(z) = Ai’%ﬁz, where
—d-1

Al = 1,andd > 3. Then f being restricted to the circle |z = 1 and written
in the natura coordinate of the circle satisfies the conditions 1-4 above,
with £ = 3 and with d — 1 intervals |;. Note that A = f(1) is the critical
value of f onthecircle.

In fact, one can easily generalize our results to more general classes of
maps. For example, if gisapiecewise analytic map of theformg: Y l; —
Ukl where Uil; < Uil* and 1; (respectively 1¥) are pairwise digoint
intervals satisfying the analogous properties 1-4 from the class AC, then the
branches of first return map to |, containing points of w(c) form amap from
AC in the case that w(c) is minimal. Otherwise one can again use methods
from Sects. 1012 of this paper.

Maps from AC have no wandering intervals and only a finite number
of attracting and parabolic orhits, see the next section. In this paper we
shall mainly deal with complex bounds for such maps. By this we mean
that one has geometric estimates for the (quasi) polynomial-like maps or
box mappings obtained by taking complex extensions of suitable first return
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maps to small interval neighbourhoods of the critical point. Note that the
domain of such return maps consists of infinitely many components. The
interesting case is when c is recurrent (i.e., ¢ € w(c)), in which case c is
contained in one of the components of the domain. The non-recurrent caseis
much easier, see Theorem A’ in Sect. 10. Asisusua in thisproblem one has
to distinguish the persistently recurrent and the reluctantly recurrent case.
Sinceweareinthereal case, thiscorrespondsto thedistinction between w(c)
being minimal or not. (That w(c) isminima meansthat each orbit in this set
isdense. In particular, w(c) isa Cantor set in this case.) If w(c) isminimal
then there are only finitely many domains of the first return map containing
points of w(c) and in the next theorem we restrict our attention to these. The
non-minimal case is discussed below the statement of Theorem B.

Theorem A (complex bounds)

Letg € AC besothat cisrecurrent and w(c) isminimal. Then g has complex
bounds: there exists a constant C > 0 and sequence of open topological
discs Vi around the critical point such that the following properties hold.

(i) diam(Vk) — 0, and, moreover, Vk N R = U, is the range of a map
g¥«+t s Up 41 — Uy, from the sequence of first return maps, see the next
section.

(i) the (complex analytic) first return map of g to \t along the critical orbit
iswell defined and extends to a quasi-polynomial-likemap R: U; Vg — V.

(iii) the modulus of \k \ V? is bounded from below by C > 0 for all k > 0.

By definition, see [LS1], R: Ui Vli — V is called quasi-polynomial-
like if each ; is contained in i (not necessarily compactly), the closures

of the real traces of \{, V! are digoint, if i # j, and compactly contained
in the real trace of \, and F: Vli — Vg isaunivalent diffeomorphism for
i # 0 and a branched covering for i = 0. In the context of Theorem A
(i.e., w(c) minimal) we shall have that the union U V¥ is over afinite index
set and that the forward orbit of ¢ always remains in this union. Note that
the domains can intersect each other. In Sect. 6 we construct a truly (not
quasi) polynomial-like map ([DH], [LM]) of arbitrarily small diameter for
any g € AC with minimal w(c), by ‘intersecting’ the quasi-polynomial-
like map with an artificialy constructed smooth ‘ polynomial-like' map (in
away which is somewhat similar to what was done in [LS1] for unimodal
maps). It allows usto quasiconformally conjugate this polynomial-like map
to apolynomial from afamily of specia polynomials, see Sect. 7. Since the
orbit of the critical point belongs to increasing branches of g, we are able
to prove using holomorphic dynamics the following.

The components |; and the gaps (components of | \ Ul;) give a partition
of I. Thenumber of components|; and the ordering between the components
and the gaps determine what we would like to call the ‘ combinatorial type'
of themap g € AC.
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Theorem B (rigidity)

If two maps of the class AC with w(c) minimal have critical points of the
same order, are of the same combinatorial type, and the critical points have
the same itineraries (w.r.t. to the corresponding partitions), then there is
a quasisymmetric map h: I — | which conjugates the restriction of the
two mapsto their postcritical sets, and which maps the critical point to the
critical point of the other map.

In particular, the conjugacy is Holder continuous. In fact, we prove
astronger statement: the two maps are quasiconformally conjugate in com-
plex neighbourhoods of w(c), and the conjugacy is conformal on the Julia
sets of the polynomial-like maps mentioned above.

Any map g € AC is (semi-)conjugate to a piecewise linear map. In
particular, any real analytic n-covering map of acircle without attracting or
neutral periodic orbits istopologically conjugate to the map z — £ on the
unit circle. However, it isdefinitely not the case that mapsfrom the class AC
areawaysquasisymmetrically conjugate to piecewiselinear maps. itiseasy
to construct examples of mapsin the class AC with asequence of longer and
longer saddle-cascades. Thisis similar to the way one finds within families
of smooth circle diffeomorphisms, maps with irrational rotation numbers
for which the conjugacy with a rotation cannot be absolutely continuous,
see [Hel] or for example [MS].

If w(c) is non-minimal (or non-recurrent), then similar bounds as in
Theorem A hold, see Theorem A’ in Sect. 10. In fact, if c is recurrent
and non-minimal then we construct a kind of sequence of ‘box mapping’
sending all but one domain univalently to a fixed large scale. Note that in
this case there are infinitely many domains of the return map containing
points of w(c), which shall complicate the situation considerably.

If w(c) isnon-minimal then the analogous statement to Theorem B also
holds, see Theorem B’ in Sect. 11. However, in this case we have to assume
that w(c) contains no parabolic periodic points. Note that this is always
the case if w(c) is minimal. (As mentioned before, the method in the non-
minimal case is very general and also applies to real analytic unimodal

maps.)

It is very easy to show that the set of Axiom A maps in the class AC
is dense, see Sect. 12. It is much less obvious that Axiom A maps are
dense within any analytic family. However, repeating an argument used by
O. Kozlovski in his thesis [Ko], we shall deduce from Theorems A, B and
A, B’ (see Sect. 12):

Theorem C (stability)

Within any non trivial real analytic family of regular maps g € AC, either
each g from this family has a neutral periodic orbit or the Axiom A maps
within this family are dense.
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Herewe say that gisaregular map if each parabolic periodic orbit O(p)
of g iseither digoint from w(c) or one has w(c) C O(p). Note that if w(c)
is minimal, then g is automatically regular. (Actually, in Sect. 12 we shall
prove a slight generaization to Theorem C.) It follows from Theorem C,
that within families of maps asin Examples 1 and 2 above, Axiom A maps
are dense (the maps as in these examples are regular). Also, g is regular if
for example Sg < O or if g extends to a (generalized) polynomial-like map
with one critical point of odd order.

A conseguence of Theorem A is:

Coroallary

1. The Julia set of any polynomial-like map as above istotally disconnected
and carries no invariant line fields.

2. The Julia set of the rational function introduced in Example 2 is locally
connected.

Proof: Followsasin [McM1], [LS2] from the complex bounds. O

In fact, the absence of invariant linefields proved in this corollary is
avery important ingredient in the proof of Theorem B.

Another consequence of Theorem B and B’ and their proofsis

Theorem B” (global rigidity)

Assume that two maps of the class AC have no parabolic or attracting
periodic points, and there is a conjugacy which maps the critical point of
one of these mapsto the critical point of the other map. Then the conjugacy
is quasisymmetric. In fact, this conjugacy can be extended to a quasicon-
formal homeomorphism on the plane which is a conjugacy on a ‘ necklace
neighbourhood’ of the dynamical interval; this neighbourhood consists of
infinitely many disjoint topological discs.

The proof of Theorem B” will be given in Sect. 13.
The above results should provide the basis for a study of “attractors’,
and “universality structure” in the class AC.
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2 Some background

Proposition 2.1 Maps g satisfying conditions 1-3 of the class AC do not
have wandering intervals and have only finitely many non-expanding peri-
odic orbits.

Proof: Any such map induces a covering mapg: S — S’ Indeed, first
restrict g to theinterval [a_, a, ] where a.. are the left and right most fixed
points of g. Points which are mapped eventually outside this interval will
also eventually map outside the domain of definition of g. Then simply
extend g to a piecewise increasing map defined on [a_, a, ] with a unique
critical point at c. If g € AC or the (closures of ) domains of g areall disjoint
then we can make surethat g isC™. Otherwise g will be C* except at afinite
number of preimages of a fixed point (where the left and right derivative
of g can differ). In particular, g will be in the class C-+# (its derivative
is Zygmund) and so it follows from the comments below Theorem IV.A
in [MS] that § has no wandering intervals. The mapTg is not in the class
C'*Z 50 one cannot apply Theorem IV.B from [MS] immediately. Note
however, that it fails this smoothness condition only at a finite number of
preimages of afixed point. The intervals U, from Lemma 10.3 on p. 323 of
[MS] do not intersect these preimages of the fixed point, and so along the
pullback {Uy, ..., Uy} needed in the proof of Proposition 10.1 of [MS] one
still hastherequired cross-ratio estimate. It followsthat Theorem IV.B from
[MS] still holds. Hence periodic attractors and parabolic orbits of g al have
period less than some number N (which depends on g). Since g isanalytic
on each branch, it follows that g has only finitely many non-expanding
periodic orbits. O

L et us introduce some notation and background.

If I c Jareintervalsthen |l | denotes the length of |. Theleft and right
endpoints of | are denoted by 91 and o, | . Theleft and right components of
J\ | aredenoted by I(J\ I)andr(J\ I).

If J C T aretwo intervals and L, R are the components of T \ J then
we define C(T, J) to be the cross-ratio of this pair of intervals:

[T
ILIIR]
Often we prefer to work with C™1(T, J) = 1/C(T, J). Cross-ratios play
acrucia roleinall recent metric resultsin real interval dynamics. If f|T is

adiffeomorphism and Sf < 0 (where Sf isthe Schwarzian derivative of f)
then [MS]

C(TJ) =

CXT, J) = CL(f(T), f(J)).
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In our case we shall apply thisto maps f of theform d'. If Sg < Othenalso
Sg" < 0 so the previous inequality applies when wetake f = ¢ provided
g"|T isadiffeomorphism. We will use the following amusing extension of
this classical fact:

Lemma 2.1 Consider a map
F) = [hx]",

where ¢ > 1isan odd number, and h isalocal diffeomorphismnear x = 0,
so that h(0) = 0, and so that h increases cross-ratios. Then for each € > 0
thereexists A > 0 such that thefollowing holds. Let L bethe left component
of T\ J,sothatif wedenote L = (X, X»), then

X1 <0< Xand [xz| > (1+ €)[xq|

and assume moreover that

IT] < A.
Then
CXT, J) = C"HF(T), F(J)).
Proof: See[Le€] and use a continuity argument. 0

If hisonly rea analytic then asimilar statement holds, see Lemma4.3.

If | isaninterval near the critical point ¢, then we shall denote by P the
interval g(1) near the critical value. We shall say that the smaller interval J
iswell inside I, if the length of every component of | \ Jisatleast C - |J|,
where C, > 0 isauniversal constant (i.e. does not depend on the integer
n introduced below). Often we shall take C, to be equal to something like
C/10° where C is the constant from Theorem 2.1 below. If we can take
C. > 2then wesay that J isdeep inside I .

Consider now amap g asin theintroduction and so that the critical point
isrecurrent. As usual, define a sequence of first return maps

gSn :Un— Up

inductively as follows. Weset § = 1, U; = lg,and Upg = I. If U_1 is
defined, then g™ : U, — U,_; isthe central branch of the first return map
to Un_1 (i.e. Uy is the component of the domain of the first return map to
Un_1 which contains c).

Let us say that the map g™ : U, — U,_; has a central return if
g% (c) € Uy, and anon-central return otherwise. Sometimesweshall simply
say that g : U, — U,_; iscentral. Notethat if some g™ : U, — U,_1 has
acentral return, then by pulling back the central domain U, by the map g™
several times, wealwaysobtain anon-central returnmap g™ : Uy, — Up_1,
where m > n and where the maps are the same, i.e., §, = S,. (Otherwise
cisinthe basin of aperiodic attractor.) We dways have §,1 > S,. More



Maps with one inflection point. I1. 407

specificaly, Si,1 = S, iff g : U, — U,_q iscentra, and Si11 > S
otherwise.

Theorem A of this paper gives the complex analogue of the real bounds
which were proved in [Le].

Theorem 2.1 Let g € AC and assume that w(c) is minimal. Also assume
that g increases cross-ratios on intervals on which it acts diffeomorphically.
Moreover, assumethat onecanwriteg(x) = g(c)+ F(x) inaneighbourhood
of the critical point ¢ = 0, where F isasin Lemma 2.1.

Then there exist a positive number C, which depends on ¢ only, and
an integer N, so that for every n > N, the length of every component
of Uy_1 \ U, is equal to at least C - |U,|, whenever the previous map
g5 1 :Uy_1 — Up_p isnon-central.

Letg> : U, — U,_q benon-central. If §, > S,_1 (i.e, g1 : U1 —
Un—2 isnon-central again), then we set k(n) = 0, so that Uy_1 = Up_n)—1.
Otherwise (if g™ : Up_1 — U,_, is central), there exists a first (max-
imal) interval U,_xmn), k(n) > 1, in the chain (cascade) of central re-
turns containing Uy, sothat §, = S-1 = -+ = Sy > S—km)-1
(i.e., gh-km-1 : Un—kmy-1 = Un_km—2 is non-central). By Theorem 2.1,
Un—km) is well inside Up_xn)—1 and also U, is well inside Uy,. Let us
cal {U, C --- C Up_xm} the maximal chain of central intervals, which
contains U, (we do not exclude the case that k(n) = 0).

We shall use the following statement several times.

Proposition 2.2 Let g be asin the previous theorem. Let | U, bea com-
ponent of the domain of the first return map to U, (for example, 1 could
be equal to the central domain U,,,), and assume that the first return map
restricted to | is of the form ¢® for some's > 0. Then there exists an interval
U containing | suchthat ¢ : U9 — Up_kn)_1 is a diffeomorphism.

Proof: Denote S = S, = --- = S . If s = S then U = U,y
So assume that s > S. Applying @° to U, for N = k(n) + 1 times, we
see that gS(Un) = Un—l, gS(I) C Un—l \ Un, e gNS(Un) = Un—k(n)—l,
g"S(1) € Un_km-1 \ Un_kmy- In particular, gNS(1) lies in a non-central
component of the first return map R to Uy_xn)—1. Some iterate R maps
gNS(1) diffeomorphically onto U,, and along the way all R-iterates are in
Un—j—1\ Un_j forsome 0 < j < k(n). Thisimpliesthat if welet K’ be the
component of R containing R~1(gNS(1)), then pulling back K’ to U, we
obtain the interval U. O

We shall also use the following

Theorem 2.2 (Maf€) Let g: N — N be a C?> map where N is a circle
or an interval. Let U be an open set containing the critical points of g,
the parabolic periodic points and also the immediate basins of periodic
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attractors. Then thereexists C > 0and A > 1 such that for each x and each
integer k for which x, g(x), ..., g 1(x) ¢ U one has |Dg(x)| > Cxk.

Proof: For aproof of this statement and a simplified proof of the original
result of Mafie, see [MS]. O

We shall also use the following result from complex analysis. Given
a bounded real interval T we shall write D,(T) for the disc which is
symmetric with respect to the real line and which intersects the real line
exactly in T. More generaly, if « € (0, ) then consider the disc D which
intersects the real line exactly in T such that D, = D N {Im(z) > 0} has
external angle « with the real line. The set D(T; ) denotes the union of
D, and its mirror image with respect to R. (Note that D(T; ) decreases
with @ € (0, ) increasing.) The reason these sets play an important role,
can be explained as follows. Let Gt = C\ (R\ T). The set Cy carries
aPoincaré metric, and with respect to thismetric the set D(T; «) consists of
al points whose distance to T isat most equal to some constant k(c). From
this interpretation and the Schwarz lemmait follows that if ¢: G — Cy/
isaunivalent conformal mapping sending T diffeomorphically to T, then

#(D(T; a)) C D(T'; ). (2.1)
Asin [Su], we shall apply this statement in the following way:

Lemma2.2 (Schwarz)Let F: C — C beareal polynomial whosecritical
points are on thereal line and which mapstheinterval T diffeomorphically
onto theinterval T, thenthereexistsaset D ¢ D(T; ) WithDNR =T’
which is mapped diffeomorphically onto D(T; «) by F.

In fact, there is generalization of this lemma to the situation in which
G = F~lisnot defined on the entire region C;:

Lemma 2.3 (Schwarz) For each & € (0, 7) there exists§ > 0and K > 0
with the following properties. Let G be a univalent map defined on the unit
disc D1(0), mapping the real diameter D;(0) N R into the real line. Let
T be an interval on the real line containing the origin with |T| < § and
G(T) = T'. Then for each 6 € (0, &),

G(D(T;m —0)) € D(T"s m — 61+ K[T))).
Proof: SeeLemmaV1.5.2in[MS]. O

3 Theproof of Theorem A in the Epstein case

Let us first prove Theorem A for Epstein maps. Here we say that a map
g: Ul — | from the class AC isin the more restrictive class of Epstein
maps EC (cf. [Su]) if



Maps with one inflection point. I1. 409

1. forevery i # 0, themap g: I — | is a diffeomorphism such that
g!: | — I hasaunivalent extension to the slit complex plane G,

2. onecan decomposethemap g: lg — | asg(x) = g(0) +[h(x)], where
¢ > 3isan odd integer, and h: lp — |, is a diffeomorphism with
h(0) = 0, such that h™*: 15 — o has aunivalent extension to G;.

We remark that g from 1) and h from 2) in the above definition increase
cross-ratios. Indeed, since g* and h—! extend analytically to the slit com-
plex plane and since the Poincare metric on adisc restricted to its diameter
corresponds to cross-ratios, the remark follows from the Schwarz lemma.

For each ¢, take A(¢) asin Lemma 2.1. Since |Uy] — 0asn — oo,
for each ¢ > 0 we shall only consider integers n which are so large that
|Unl < A(e).

Lemma 3.1 Thereexists¢y > 0such that if for somee € (0, ) there exist
infinitely many n’s for which

max (|)Un — cl, [0;Un — C|) < (1+¢€) - dist(dUn_1, ©)
then g has complex bounds.

Proof: Assume that the above inequality is satisfied. To be more concrete,
assume that

[Un —c| < [0yUp—c| < (1+¢€) - [§Un_1 —C|. (3.1

Consider two cases.

I. U, iswell inside U,_1. Then we take @ = D, (U,_;) as the range of
the polynomial-like map. Consider the component of the domain of the
first return map to U,_; which intersects Uy (we shall use this notation
for the interval g(U,)). By Schwarz and because g is in Epstein class this
component is inside D,(UJ). If € would be equal to zero, then because
we are assuming in this case that U, is well inside U,_1, g~ 3(D,(UY)) is
compactly contained in D,(U,_1). Provided ¢ € (0, ¢g) and we choose ¢
sufficiently small, the same is till true provided (3.1) holds. Note that the
modulus of D, (Un_1) \ g~X(D.(Uy)) is bounded from below by a positive
constant which does not depend on n. Again by Schwarz the non-central
domains are mapped univalently inside D, (U,_1).

1. U, isnot well inside U,,_;. According to Theorem 2.1, then the previous
return is central (actually, many of the previous returns are central if U, is
not well inside U,_;). Hence, U,, and U,_; are two consecutive intervals
in a cascade of central returns. Then, on the one hand there exists a first
interval U,_y of this cascade, so that S, = S,_x and U,_x is well inside
Un_k_1. On the other hand, let Uy, (with m > n) be the last interval of this
cascade, so that S, = S, and themap g5 : Uy, — Up_1 isnon-central. So
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we have
S1>S == =S=""=5 1= S«k> S«1

and the following situation (where x are points of the form ¢5(c))

I,c U1 I gsm(]m) =Un
Sm - -
QS +1 | .
g | v  Uni
gS ! * Un—lc
| * U‘nflcVI
where Sy 1and S= §, = --- = §_ are the first return times of ¢ to Uy,

respectively Uy_1 and |, is the component of the first return to Uy, which
is mapped by g5 onto Uy, (whichistotheleft of cif g™ (c) € r(Um—_1\Um)
and to the right otherwise). Proposition 2.2 implies that there is an interval
between Ug, and U3, , (i.e., contained in the former interval and containing
the latter one) which is mapped by g™+~ diffeomorphically onto Uy,__1.
Let U, bethe smallest symmetric interval which contains U,,. SinceU,_1 is
well inside U,_k_1, provided ¢ is small, (3.1) implies that U, iswell inside
Un_k_1. Therefore, as we remarked before, there exists an interval U with
Um D U D Upy1 and sothat g5+~ maps g(U) diffeomorphically onto U,.
Since U, iswell inside U,__1, the interval U iswell inside U,,. Take as
the range Q2 of the desired quasi-polynomial-like map the disc D.(U,,) with
two dlits (cf. the proof of Lemma 3.6):

Q= D.(U)\ (U \ Up).

We put the dlits in D, (U,) because we want our quasi-polynomial-like
map restricted to the real line to coincide with the first return map to
aong the postcritical set (and so the return time of ¢ to @ is equal to
Sni1). Consider the first return map to 2 along the postcritical set. By
Schwarz the g-image of the central domain % of the first return map to
Q is contained in D,(g(U)). Because D,(U,) is a round disc centered
at ¢ = 0, and because U is well inside U,, ¢ U,, we obtain that Qg is
compactly contained in the range 2 (and we obtain a lower bound for the
modulus of €\ €y which does not depend on n). Next consider the non-
central components of the first return map. Take anon-central real domain |
of thefirst return map Ry, toU, andlet sbhesothat Ry,,|, = ¢°% If s> S,
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(= S = S, then thereisadiffeomorphic extension ¢ : | — U, of g°;,

and the pullback of Q by ¢ is contained in D,(I') and hence is compactly
contained in  (here we use similar arguments as above). Consider the
remaining branch g™ : I, — Uy, of the first return map to Uy, It has
adiffeomorphic extension g1 : [ — U, only fromaninterval % c U?

(so near the critical value), and the pullback of © by g~ is contained in

D = D, (1) \ (I8 \ 12) (with g(c) € (1% \ 12)). But since Q is adisc
centered at ¢ (with two slits), the branch of the map g* corresponding to
gl 1% — Iy, takes D, onto some Dy, which isinside €2, but possibly
not compactly inside: the boundaries of 2 and D, can coincide in a subset
of the dlits U, \ U,. Thus we obtain a quasi-polynomial-like mapping (the
definition is given below the statement of Theorem A). O

If weareinthesituation of the previouslemma, then Theorem A follows.
So we may and will assume that for each € € (0, g) there exists N so that
foraln> N,

max (|ojUn, — ¢l |0;Un — ¢]) > (L +¢) - dist(dU,_1, €)
i.e., the larger component of U, \ {c} is a definite amount longer than the
shortest component of U,_1 \ {c} (if e = Othenitisalready at |east aslong).
Since U, C U,_1 this means that for each ¢ € (0, ) there exists N(¢) so
that either for all n > N(¢), (1 + ¢)|dUn_1 — ¢| < |0;U, — c| or for all

n > N(e), (14 ¢)|0,Un_1 — €| < |9;U, — ¢|. In order to be specific, we will
from now on make the following

STANDING ASSUMPTION:
(14+¢€) - |9Un_1 — | < |0:U, — c| for al n > N(e).

In particular, we assume that for each n > N(e¢) the right component of
Un \ {c} isadefinite amount longer than itsleft component. This means that
for n > N(e),
Lemma3.2 If J C T areintervals such that
T CUp1, I Cr(Un-1\Up)
then we can pass through the critical point without loosing on cross-ratio:
CH(T, J) = CH(g(T), 9(I)).

Proof: Followsfrom Lemma 2.1 and the standing assumption. O

Lemma 3.3 Assume that the standing assumption holds. Then there are
infinitely many n’s such that g™ (c) < c.
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Proof: By contradiction, assumethat g™ (c) > cforall n > N. Itisenough
to show that C"*(U,, Up41) — oo asn — oo provided §, > S,_1 because
it would contradict the standing assumption. Consider U, ¢ U,_; and
assumethat S, > S,_1. Since g™-1(c) > c, g is orientation preserving on
each branch and §, > S,_1 one has g™*(Up) C r(U,_» \ Uy_1) and by
definition g5-1(Up_1) = Up_o. Next apply g&-2 = g5-2710g. Lemma3.2
and the standing assumption give us

C 1 (Un_2, g™ 1(Up)) = CH(g¥2(Un_p), g5 2"51(Uy)) =
= C7}(Un-s. g7 51(Up)).

Again g5 -1+$-2(U,)) cr(Un_3\Uy_») and by definition gSh-1+tS-2(U,_1) =
Un_s. Hence Si_1 + Si_» < S, because g™ (U,,) = U,_1. Continuing in
thisway we apply next g™-3, g4 and so on (using each time Lemma 3.2).
If wewritet(n) = S,_1 + --- + Sy then we get that t(n) < S, that g™
maps U,_1 homeomorphically onto Uy_, and that

CH(Un_2, g5*(Upn)) = C}(Un-1, 8™ (Up)).

Moreover, |g™ (U,)| — 0 because g (U,,) = U,,_; tendsto zero in length
(here we can usethe contraction principle, seefor example[MS], since g has
nowanderingintervals). Moreover, ¢™ (U,,) doesnot tend to dUy_; because
w(C) isassumed to be minimal. It followsthat C*(Uy_1, g™ (Uy,)) — oo.
Therefore, C"1(U7_,, g(Up)) > C1(Un_2, g5-1(Up)) — oo, and we are
done. O

Let us from now on assume that g™(c) < c for infinitely many n. So
consider the (infinite) collection of integers

5=1{n; g¥@c) <c ad S > S}

Note that for n € 4 one cannot have that g™ : U, — U,_; is central, but it
is possible that g™1: U,_1 — Un_5 iscentral. In other words, if there are
central intervals then U, is always the last (smallest) interval in a chain of
central intervals

U,cUp1C---C Un—k(n),
with
St1>S=S-1="=Sn > Skmn-1-

Here k(n) > 0, and k(n) = 0if and only if g™1: U,_; — U,_, isagain
not central. Let n; < N, < n3 < ... bethe elements of this collection 4.
Below we draw the situation when k(n) = 0.



Maps with one inflection point. I1. 413

- Uni+1 C 0ni+1
..... | - Uy cUcCV
gsn’(ﬁerl) = ! Unict
' | * Un,-2
| v Un_,
+ ! Unioy—1

Let
V= [aIUni—k(ni)—lv arUni]-

It will also be useful to define an interval Uni+1 containing ¢ between Uy, 41
and Uni Wlth ar ljni+]_ - 8rUni+l and SO that

g+t ljni+1 = [8Un—kn)-1, dUn ] =V

isahomeomorphism. By Proposition 2.2, g™i+t~: U, — V isadiffeo-
morphism.

Lemma 3.4

CH(ve. Ul ) =Cc (AU 1 V2] 02 ) =
> C7([AUn ;-1 4 Un 1], 0% (Uny 1))

Proof: Write U = Uy, .1 and choose U between U, and V (such that
U, U, V dl have the same right end point) so that U is mapped homeo-
morphicaly by g™ onto [Uy,_, 1, 8 Uy, _1]. This means that

g1 U9 cU9— goi ) C [9Un_,_1. 8 Up 1]

is a homeomorphism between these pairs of intervals. It is enough to show
that we do not have loss of cross-ratios for this map, because obviously
the left-hand side of the inequality in the statement of the lemmaiis larger
than C-1(U9, U9). Note that g™ ! is a diffeomorphism restricted to U9

and also restricted to the right component of U9 \ U9 (because these sets
are contained in U, ). So we need to show that each time some iterate (up
totime S= S,) of the left component of U9 \ U9 meets the critical point
we are in the situation described by Lemma 3.2.

Thefirst time c enters Uy, _kn,)—1 isat time

S= S1i == Shi—k(ni) (> Shi—k(ni)—l == Shi_l)'
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So all iterates of U up to time S = S, are outside Uy, _yn)_1. Moreover,
they do not intersect 9U; whent < n; because g™ W) c Un,_1. Letustake
j < S, and show that either g is a diffeomorphism on ¢ (U) or we are
in the situation of Lemma3.2for J = g(U) c g/(U) = T.1f g/(U) is
outside Uy, _, theng! (U) isalso outside Uy,_, (and so gisadiffeomorphism
on g/ (U)); indeed boundary points of U, _, are never mapped inside U, ;.
If g/(U) isin U,_, but to the left of ¢, then g/(U) also does not contain ¢
(because g preserves orientation and g™ —* is a diffeomorphism restricted
to the right component of U9\ U9), and again g is a diffeomorphism
on gl (U). So the only situation we have to consider is when g(U) c
r(Un_; \ Un—km)-1). Inthiscase g (U) iscontained in one of the intervals
r(Up—s \ Un—sr1) Whereni_; < nj —s < n; —k(n;) — 1. We claimthat if

gj (lj) C r(Un—s \ Un—st1) (3.2

(with s as above) then ¢/(U) is contained in Uy, _s. So let us assume by
contradiction that j < S, isthe maximal integer such that there exists s as
in (3.2) such that g/ (U) contains aboundary point of U, _s. Itisimpossible
that nj —s = n;_4 becauseif gl (U) contains a boundary point of U, —s then
g°(U) would contain the left boundary of U, , 1 which is not the case. If
N, —s > n;_j then g™i—s isthefirst iteratewhich maps g (U) inside Uy, _s_1.
It also maps ¢/ W) into r(Un—s—1\Up_s) (becausen; —s < nj —k(n;) —1
and by the definition of §). From thisit follows that j is not maximal, and
so by contradiction the claim is proved. But from the claim it follows that
for each j with (3.2), we are in the situation of Lemma 3.2, and thus the
lemma follows. O

Lemma 3.5 For each ¢ > 0 fromthe standing assumption thereare§ > 0
and infinitely many ny € § for which

C_l([alur?i*k(ni)*l’ 8fUr%]’ Ur?i-l-l) > 1+

Proof: Fix such €. By the previous lemmaiit suffices to prove that there are
8 > 0 and infinitely many n; € § such that

C (8 Un_ ;1. 8 Un 1], g5 (Up 1) = 146,

Moreover, since g™ (Un 1) C 1(Up_1 \ Up), the left hand side in the
previous inequality is bounded from below by

C71 ([8IUni,l—l, 8rUni—1], I(Uni—l \ Uni)) .
Normalize so that ¢ = 0 and write

Un = [_Xn, Yn]
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where by our standing assumption we have 0 < (1 + €)% < VYni1 < Yn
provided ¢ € (0, ). Then

(Xni,l—l—xni—1)(yni—1+xni) -~
(yni—l+xni,l—1)(xni—1_Xni) o
(Xni,l—l - Xni—l) ((1 + )Xn—1 + Xni) _ ()‘;h _1) ((1+€))‘”i +1)

((1 + 6)Xl’li—l + Xni,l—l) (Xni—l - Xni) B ((1+€)+)\6|) ()\ni _1) ,
(33)

C ([ Un -1, 3 Un—1], 1(Up—1 \ Up)) =

where we denote
)\ni = Xni—l/xni

and
)":'“ = Xni,l—l/xni—l

Takeany « > 0. Assumefirst that for all i sufficiently large, &, > (1+x)A,, .
Observe that

)‘/ni = Xni_1—1/Xnj—1 = Xm_1—1/Xni_; = Ani_;. (3.4)

Hence we would have A, > (14 «)An_, for every i large. It implies
An, — 00, and, together with (3.4), A, — oo. But then the expression in
(3.3) would be at least 1 + ¢/2, for al n large enough, which proves the
statement in the considered case with § = ¢/2.

Assume now that for some fixed i, Ay, < (1 + «)A, . Denotet = A .
Then the expression in (3.3) is bounded from below by the function

(=D (A+el+0t+1)
Ale, D = (I+o9+H (A+0t-1 35)

which one can rewrite as

(e—((1+e)d+x) —D)

(1+6)+(2+6)((1+e)+t)((1+/<)t—1)' (3.6)
It is easy to see that the latter expression isincreasing int > 1. The real
bounds imply that there exists C > 1 sothat 4, > C > 1for al i. Hence,
one can assume that t > C and A(x,t) > A(x C). On the other hand,
Ak, C)— 1+28 ask — 0O, wherewedenote § =0. 5¢(C—1)/(1+¢+C)>0.
It follows that there exists ¥ > 0 dependent only on C and ¢ such that the
expression in (3.3) is again at least 1 + & provided &, < (1+ «)Ay, for
agiveni. O

Let us now show that the situation of the previous lemma leads to
complex bounds. Let n = n; and k = k(n;). It follows immediately from
the previous lemma that

(*) the length of each component of [E}Un 1> % UJ\ {c1) islarger

than (1 + 8)|Un+1| where § > 0 does not depend onn = n.
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Let us choose (and then fix) A > 0 dependent only on § as follows. Let
Vn—k—l(A) C [8IUn—k—l, 8rUn]

be the interval obtained by removing from the left side of the interval
[ Un_k_1, 0;Un] its A-part, i.e. an interval of length A - [dU, — 9/Up_k_1].
We claim that for A > 0 sufficiently small,

(**) the length of each component of \?_, . (A)\ {c;} islarger than

(1+68/2)|U2,,|. Moreover, Vi_i_1(A) contains the left end of Uy_
and V_x_1(A) iswell inside Uy, _k_1.

Let us show that this is indeed true. Let | and r be the lengths of
the left and the right components of [gUZ, ,, 3;Ug]1 \ UZ,,. Since U,
iswell inside U,_x_1, there is an absolute constant C > 0 such that | >
C-|U3| = C(r +|UZ ). Fromthe previouslemma, I, 1 > [J2,,|. Thisand
| > C(r+ IUSHI), imply that one can choose A > 0 (dependent on C and §)
asinthefirst part of (**). Now, theleft component of U, _x_1\Vh_k_1(A) has
at least length A|V,_k_1(A)|. Theright component of Uy_k_1 \ Vh_k_1(A)
is aso not small compared with V,_x_1(A) because U,_i is well inside
Un_k_1 and by the standing assumption. This gives the second part of (**).

Lemma3.6 Let § > 0 and A be as above. Then for any n = n € 4,
k = k(n;) with

CH[AUY 1. &UZ].UY,,) = 1+, 3.7)

the first return map to U, extends to a (quasi-)polynomial-like map with
range
@ =D.(V)\ (V\Un)

where V iseither [—8,Up, 0;Un] OF Va—k_1(A).

Proof: There are two cases:

I. There exists p > 0 (not depending on n) such that the left component
of Un_k_1\ {c} isat least (1 + p) times as long as the right component
of Up \ {c¢}. Inthiscase U, = (—9,;Up, 9;U,) iswell-inside Up_k_1. Now
proceed as in Case Il of Lemma 3.1 by setting @ = D.(U,) \ (U, \ Up)
(and taking m = n).

[l. Thesituationisnot asinl. ThenletV = \,,_x_1(A). Since U,_y iswell-
inside U,,_x_1, that the situation is not as in | means that we can assume
that the left component of U, _ \ {c} is shorter than the right component of
Un \ {c}.

Consider the first return map to U,, but extend each branch so that
it maps onto Q := D,(V) \ (V \ Up). Let us first consider the central
domain of the first return map to U, and its extension g&+1: U(A) — V.
Let g5+: Dy — K be the central branch. By Schwarz, some subset of
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D.(U(A)9) is mapped diffeomorphicaly onto D.(V) by g&+~1. From
(**) it follows immediately that g*(D,.(U(A)%)) c D, (V). To show that
the modulus of @ \ Dy is bounded from below by some universal positive
constant, we still need to consider the real part of Oy (because of the dlits).
LetU c U, besothat g1 : U9 — U,__; isadiffeomorphism. Since V
iswell insideU,_x_1 by (**), theinterval U(A)iswellinsideU,i.e asowell
inside U,,. All this means that the modulus of 2\ Dy isbounded away from
zero. Let us now show that the non-central components are also contained
in Q. Take anon-central domain | of the first return map to U, so that the
first return restricted to | coincides with ¢. If s > S, then, since forward
iterates of dU; never enter U;, thisbranch of thefirst ‘ return” map from U, 1
to U, extends diffeomorphically onto U,_,_1 (and the extended domain is
well inside U,). By the lemma of Schwarz, the corresponding domain is
inside Q. So let us consider the case that s = S. In thiscase | isthe non-
central interval in U, which is mapped by ¢° to U,, and one can extend the
interval 19 = g(1) tothelefttoaninterval 19 = g(I) sothat g°*: 19 — U,
extends to a diffeomorphism ¢1: [9 — V = [9Un_k_1(A), 3;U,]. The
extended domain I isinside J = [§Un_k, 8;U,]. Since we are in Cese l,
the right component of US \ {c} islonger than the |eft component of 9\ {c}.
Therefore we can apply the lemma from the appendix and get that the
component of g~1(D,(19)) \ R~ which contains I, is contained in D.(I).
So also the non-central components are contained in 2. Therefore also in
this case we obtain a quasi-polynomial-like map. O

4 Real boundsfor smooth mapsin the minimal case

In this section, we will show that the real bounds of [Le] hold without
the negative Schwarzian condition. That is, in this section we shall prove
Theorem 2.1 for any C® map g which satisfies conditions 1-3 of the class
AC (but is not necessary real analytic) and for which

e g(X) = g(c) + [h(x)]" in a neighbourhood of the critical point ¢ = O,
where h isaC? local diffeomorphism and h(0) =0
e w(C) isminimal.

Note that we shall use Theorem 2.1 for maps g € AC only if w(c) is
minimal. So fix such amap g.

The scheme of the proof is the following. In the first step, we prove
aweaker form of Theorem 2.1, namely, the following a priori real bounds.

Lemma4.1 Thereexist a positive number C, and a sequence n — oo, SO
that for every n = n, the length of every component of U,_1 \ U, islarger
or equal to C - |Uy|.

This lemmaimplies that any branch Ry, : V — Uy, of thefirst return
map has a diffeomorphic extension onto a defl nite neighbourhood of U,
(namely, to Uy, 1) provided V and Uy, are dioint.
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In the second step we repeat the proof of Theorem 3.2 of [K0] (replacing
Lemma3.2.3in [Ko] by Lemma4.1). Thisshall imply

Lemma4.2 Let U = U, be small enough, and let ¢ : W — g(U) be

a branch of the first return map to g(U), such that ¢ ¢ W and W contains
points of the postcritical set. Then the Schwarzian derivative S(¢) of g€ on

W is negative.

In the third step we show how to go through the critical point arbitrary
many timeswithout |oss of the cross-ratio under the conditions of Lemma4
of [Le] or even stronger see Lemma 3.3, and Lemma 3.4. This will prove
Theorem 2.1 for smooth maps as above.

In the final step, we will show that al real bounds from the previous
section a'so hold for smooth maps g as above.

Step 1: Firstly, it turns out that it is convenient to deal with another cross-
ratio B(T, J) instead of C(T, J) defined by
|JIITI

BT J)=—
(1. J) ILUJ[|RU J|

where J C T areintervals and L, R are connected components of T \ J.
(Notethat 1+ C~! = B~1) A collection of intervals ] C T;,i =1,...,n,

is said to satisfy the margins disjointness property (which was introduced
in Sect. 2.3 of [K0]) if for the components Lj and R of T; \ J;,

LinL; #0 impliess RNR; =9, for1<i < j<n. (4.1)
By Lemma 2.3.2 of [K0], a consequence of this property is that
n
D ILiIIR] < 4 max |Ti|
-y 1<i<n

provided all Ty C [—1, 1].

The margins disointness property is useful in view of the following
statements (which imply that we can pull-back big space provided the
margins disjointness property holds):

Theorem4.1 [MS Let f : N — N be a C3-map of an interval or
a circle N whose critical points are non-flat. Then there exists a constant
C; = Cy(f) such that

B(f(T), f(J3)) = B(T, J) exp(—=C4|L|IR]),
where f/(x) #Oforall x e T.

Proof: See Sect. IV.1from[MS]. O
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Lemma 4.3 Under the conditions of Lemma 2.1, but assuming only that h
isa local C3-diffeomorphism, we have:

B(F(T), F(J3)) = B(T, J) exp(—C4|L[IR]),
where the constant C; depends only on the map h.

Proof: F isacomposition of h and X. Then use Lemma 2.1 for the latter
map and the previous Theorem 4.1 for h. O

In order to obtain Lemma 4.1, we observe that the proofs of Proposi-
tions 1-3in[Le] hold for the smooth g as well, with the following changes.

The proofs in [Le] are based on combinatorial arguments (which of
course do not depend on any analytic condition), the Koebe Principle (which
also holdsfor smooth maps provided theintersection multiplicity isbounded
[MS]), and the following Interval Adding Procedure: Given g : U, —
Un_1, let t7 be a maximal interval outside U, and to the right of Uy,
with a common boundary point with U,, so that g™|z;" is defined and
a diffeomorphism. The interval ¢ is defined in the same way, but to the
left of Up. Let t be either =+ or 7. Note that one endpoint of g™ (t) isin
dU,_1. If the other endpoint of g™ (t) is an endpoint of the range | of the
map g, then we set k = 0 and stop. Otherwiset isthe minimal interval, such
that the boundary point of t which isnot in aU,, isacritical point of g™. In
this case there existsi, 1 <i < § — 1, so that c lies at the boundary of the
interval g (t). Soin this case we will apply the following operation (called
“adding the interval U,_1"): .

~ Since g (Uy) isoutside U,,_1 and ¢ (t) has cin its boundary, the interval

g'(t) contains also a boundary point of U,_;. Hence, either i + §_1 >
S\, or g*+S-1(t) contains a boundary point of U,_,. Hence, again either
i+ S14+ S > S, or gtS-1tS-2(t) contains a boundary point of U,_s.
We continue this process until we find k > 1 so that

S=i+S1+...+Sk1<$S,

while

S+ S«k=S.
Then gS(t) contains a boundary point of U,_y. Let us extend the interval
t to an interval f so that gS(f) = [Un_1, gS(t)], and call this operation
“adding the interval U,_,”. The boundary point of t other than oU, liesin
a component of Up_1 \ U, for some m < n. Since dU,,,_; are nice points,
f =ff c Un_1\ Un. At theend, if g™ (%) covers more than one interval
of theform g/ (Uy_1), 1 < j < Si_1 — 1, weshorten fF to t+ so that g (tF)
is the minimal interval, which covers only one interval of such form, or
such that |g% (t¥)| = |Up_1|. In other words, g>(t- U U, U t+) = U _y,
where U,,_; is said to be the minimal interval containing from each side of
U,_; either its neighbour from the collection d(Up_1), 1 <i < S§,_;,0ra
1-neighbourhood of U,_; (i.e. of size |Up_1]).
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By construction, g™ |t¥ has at most ki = k critical points (see Lemmal
of [Le] for detail). Now we shall prove the inequality of Lemma 1 of [L€]:

Lemma4.4 Thereexists C > 0 which only depends on ¢ and max(k;, ki)
so that for n large enough

] = ClUyl. (4.2)
Proof: Observe that the collection of intervals:
g cd(LUJUR),Ii=0,..,5 -1

where J = Uy, L, R = t*, satisfies the margins disjointness property (4.1).
Indeed, otherwiseonecould find1 < j < §—1withgl(t;)Ng>(t,) # 9
andg! (tH)Ng™(t)) # 0. Because g™ (Uy) = Up_1 and g! (Un) NUn_1 = 4,
then either g/ (t) or g’ (t}) contains a neighbourhood of U,_;. If, say,
gl (tF) D Up_1, then g™ (t*) strictly contains g™~ (U,,_1), a contradiction
with the choice of t'.

The margins disjointness property implies that

S
e =10 t)]|g ()] < 4 max 1g'(T)1.
i=0 =i=

whereT =t; UU,Ut!. Heree, — 0, because thelength of thelast interval
g (T) tends to zero asn — oo (g has no wandering intervals). From the
Koebe principle and the shortest interval argument, there exists a positive
constant by < 1 (depending on ¢ only) such that

B(Un_1, Un_1) < by.

Now pull U, ; back to T. Let 0 = j; < --- < j, < S, be the mo-
ments such that c € g (T). Aswe know, r < max(k;, ki). Write B; =
B(g'(T),d (Upn)), 0 <i < S. Using Theorem 4.1 one can write B, 1 <
Bs, exp(Cy - &) < by < 1, where b, isuniversa (i.e., only depends on ¢)
provided n is large enough. Passing from the critical value to the critical
point, Bj, < b} < 1, where b, only depends on by (and on ¢, as aways).
Continuing in this way, we obtain finally B = B(T, U,) < b} < 1, where
b, only depends on the number r < max(kt). Therefore (4.2) is proved. O

Now we repeat the proof of Proposition 1in[Le] for smooth maps using
the previous lemma and digointness. The proof of Proposition 2 in [Le]
also holds for smooth maps, because the corresponding iterates satisfy the
margin digointness property for the same reason as above. Thus we get that
Un iswell inside U,—1 whenever either U1 isthelast interval in acascade
of central returns, or g5-3(c) and gS4(c) are on opposite sides of c. (We
don’'t need Proposition 3 since g preserves orientation. Lemma 5 of [Le]
and its proof also remains unchanged.) Therefore, to complete the proof of
Lemma4.1, it is enough to have a weaker form of Lemma4 of [Le]:
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Lemma4.5 Assumethat g™ : U, — U,_; are not central and g™(c) > ¢
for all n. Assume also that the Standing Assumption holds. Then U, iswell
inside U,_1 for all n > 1.

Proof: To prove this we apply the Interval Adding Procedure. More pre-
cisely, givenn, let U,_; beasabove. Let T :=t~ UU, Ut* be aninterval

mapped onto U,,_; by g% (i.e, t* = t). We observe that because of the
assumptions made in the lemma

e t* isinside the right component of U,_; \ U, (indeed, g>-2(U,_1) C
r(Un—s \ Un—2) and g™ (r(Up_1 \ Up)) covers r(Un_s \ Up-1)), and,
therefore g™ : t+ — U,,_, has at most one critical point.

e t~ isinside the left component of U,_; \ U, (because g™1(1(Un_1 \
Un)) D Un_1, i.e, g isnot diffeomorphic on | (Us,_1 \ Up)). Moreover,
each time an iterate of = passes through the critical point, more than
half of thisiterate of t~ liesto theright of ¢ (asrequired in order to apply
Lemmas 2.1 and 4.3). This follows from the construction of t: gS(t™)
contains an end point of U,_, and 8,gS(t™) > §U,_1 (see the Interval
Adding Procedure).

Because of the latter observation, one can ignore that ¢(t~) covers ¢ from
time to time, and apply the proof of (4.2) wherewe setr = 2. We therefore
obtain, that B(U,_1, Un) < B(T,U,) < b/, whereb’ < 1 depends on Iy
(and ¢) i.e. depends finally on ¢ only. O

Thus we have proved (for C®-maps g) Propositions 1-2 of [Lg],
Lemma 4.5 (instead of Lemmas 4 of [Le]), and Lemma 5 of [Le]. As
we have noticed thisimplies Lemma4.1.

Step 2: Copying Sects. 3.3-3.4 of [Ko], Lemma4.2 also holds. Note that we
can apply atheorem of Mafe (see Theorem 2.2) because w(c) stays away
from the parabolic periodic orbits of g (of which there are at most finitely
many, see [MS] and Proposition 2.1).

Step 3: Atlast, let us prove Lemmad4 of [Le€], or even stronger Lemma 3.3.
We repeat its proof as follows (cf. proof of Theorem 3.1 of [Ko]). Fix
an interval Tp = Un, with n;, so large that we can apply Lemma 4.2.

Now, in the proof of Lemma 3.3, each time we apply g* to the interval
T := U, = g 1T5+1(U,_y) (with the interval J := gH-1+-TS+1(U),)
inside, so that T = L U J U R), we divide the orbit into the first M
iterates and the remaining iterates. To be more precise, let M < $ be
the maximal integer so that ¢"~1(T) C To. Then, by Lemmas 4.2-4.3,
B(g"(T), g™ (J)) = B(g(T),g(J)) = B(T, J)exp(—Cy - [L| - |R]). The
iterates g'(T), j = M,...,§ — 1, fromM to § — 1 are outside Tp and
stay away from a fixed neighbourhood of al parabolic periodic orbits of g,
because w(c) is minimal. Hence, we can use the theorem of Mafe (see 2.2)
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to obtain:
B(g¥ (1), 6% () = BE"(T). ¢" (@) exp(~ C1 Y 1g (LI (RI) =
i=M

B(g™(T), g™ () exp(— C2lg® (L)IIg% (R]),

where the constant C, depends on g and the neighbourhood Ty, which is
fixed. Therefore, by the Standing Assumption and Lemma 4.3, we obtain
settingk(n) = S_1 + ... + Su:

B(@“" (Un-1). g“" (Un)) = B(Un-1. Un)

n
exp (~Cp Y g+ S (L) |gh S (R) ).

r=N

The latter sum can be made arbitrarily small provided N is large enough,
because the collection of intervals:

gSﬁ—l‘l’m‘l’S(-%—l(Un) C gS‘|—1+‘.‘+S'+1(Un_l)7r = N, ceeay n,

satisfies the margins disjointness property (because gh-1+-+S+1(U,) lies
in the right component of U, \ U;,1). Then we complete the proof asin
Lemma3.3. Thus Lemmad4 of [Le] and Lemma 3.3 are proved for smooth
maps g.

Now we can proceed asin [Le] and complete the proof of Proposition 4
of [Le] and the real bounds from Theorem 2.1 for smooth maps as above.

Step 4: The only remaining real estimate we need to prove is Lemma 3.4.
But under the condition and notations of the proof of Lemma 3.4, the
collection of intervals

g U% cglU9,j=0,..S —1

has the margins digjointness property, becauseU9 c UJ, 3,U9 = aU§
and because the intervals g (U3),0 < j < S, — 1, are pairwise digoint.
Therefore aso the inequality of Lemma 3.4 follows for smooth maps g,
with a spoiling factor whichtendsto 1 asn — oo.

5 Complex boundsfor real analytic mapsin the minimal case: the
proof of Theorem A

In this section we prove Theorem A for real analytic maps g € AC. This
means that we have to use Lemma 2.3 instead of the Schwarz Lemma (be-
cause weonly haveaconformal map near thedynamical interval). Therefore
we shall need that the sum of the lengths of the intervals along any branch
of thefirst return map becomes small (because then we merely have a small
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loss of angles of pullbacks of the Poincagé domains). To get this, note that
the real bounds from the previous section imply that w(c) has Lebesgue
measure zero (cf. [LS1] and [Ko]).

Let us go through the proofs of the results from Sect. 3.

First we deal with the real analytic version of Lemma 3.1.

Lemmab.1 Let g be real analytic as above and assume that there exist
infinitely many n’s for which

max (|0,Un — ¢, |0:Un — ¢|) < (1 + e)dist(0U,_1, C).
Then g has complex bounds.
Proof: As before assume that
|0lUn —¢| < [0Un — ¢ < (1+€)[gUn-1 —C|.
Let us distinguish two cases asin Lemma 3.1.

Casel. U, iswell-inside U,_1. Then, as before, take 2 = D, (U,,_1). Let J

be a domain of the first return map to U,_; which intersects w(c) and let s
be its return time. We claim that J iswell inside U,_;. Indeed, if J = U,

then this follows by assumption. So let us assume that J is not the central
domain. g 1: J9 — U,_; extends to adiffeomorphism ¢¢~*: J9 — U,_,

with J € Up_1. Soif Up_; iswell inside U,_ then J is also well inside
Un_1. If Up_1 is not well inside U,,_», then U, is part of a long chain
Uny C -+ C Up_k. But then, since J # U, weget that g5*: J9 — U,_;

extends to a diffeomorphism ¢1: J9 — U,_,_1 with J C U,_;. By the
real bounds U,,_; iswell inside U,_y_1, and so J iswell inside J c U,,_;.

Therefore the claim is proved in al situations. Since |w(c)| = 0, the sum
of the lengths of J, ..., ¢ 1(J) is small when n is large. It follows from
Lemma 2.3 that the pullback of @ = D,(U,_1) to J (with J either a non-
central domain or equal to UY) is contained in a Poincaré disc based on J

with angle close to 7/2 when n is large. Since U, iswell inside U,_; the
central domain is still contained well inside the range 2 (using the same
arguments as in Case 1 of Lemma 3.1). By the claim above, a non-central
domain J is well inside U,_1, and so the Poincaré disc based on J with
angle close to r/2 is again contained well inside 2.

Casell. Theinterval U, isnot well inside U,_1. Then U, isinside acascade
of central domains. Asin Lemma 3.1 definem > n > n— k — 1 so that
Si1>S =S = =Sk > S k1 AsinLemma 3.1 let U, be
the smallest symmetric interval containing U,. Asbefore, U, iswell inside
Up_k_1. Let @ = D,(U,) \ (U, \ Up) and let U with Uy, D U D Upyg
be so that g5r+1~1: U9 — U, is a homeomorphism. Since |»(c)| = 0 and
theintervals ¢ (Um.1), j = 0, ..., Snp1 — 1 are pairwise digoint, the sum
of the lengths of these intervals is arbitrary close to zero, when n (and
therefore m) islarge enough. Since U, iswell inside U,,_x_1 and has length
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< 2|Unl = 21951 (Umya)|, and since g5+171 : U9 — U, extends to
adiffeomorphism onto U,_x_1, we get by the Koebe Principle that the sum
of thelengths of ¢/ (U), j =0, ..., Sny1 — 1, isclose to zero when n and
m are large. Therefore, the preimage of the disc D.(U,) by the central

branch to the critical value ¢ is contained in a set D(UY, 9), where the
angle 0 is close to 7/2 for n large. Since U is well inside U, C U,, we
get that the central domain is contained well inside 2. Let us now consider
a non-central domain J of the return map to U, with return time s. Let
J > Jbesothat ¢°: J — U, isahomeomorphism. The problem isthat the
pullback of a Euclidean disc is merely inside a Poincag disc of angle close
to /2. Therefore we need that J iswell inside U,. This holds for all non-

central domainswith returntimes > S, and so for these the corresponding
domains in the complex plane fit inside 2. However, unfortunately, for the
non-central branch g™ : 1., — Uy, this may not hold. Indeed, let [ D I

be so that g [, — U, is a homeomorphism. It need not be true that
[ iswell inside U,. Therefore, let us change the definition of U, slightly.

Define U, (1) to be the interval with boundary points +(1 + t)qU,. For

al v € [0, 1] (with g € (0, 1) some fixed small number), the interval

U.(7) is still well inside U,_x_; and there is an interval Im(7) > ¢ such

that g5 1: Im(1)9 — U, (1) is a diffeomorphism. Since g has no periodic
attractors or neutral periodic orbits near ¢ (see see Proposition 2.1), we may
assume that n is so large that g°: Im(7) — U,.(7) has only one fixed point.

Thisfixed point isrepelling and liesin Un,.

Claim: There exists t € [0, 1] S0 that (1) iswell inside U, (7). To prove
thisclaim, consider 7 = (i/8)to withi =1,...,8andlet [l;,ri] = [ (Ti).
If the claim isfalse for t then either

193(ri) —ri] < o(M)|U,] or [g3(i) — || < o(n)|U,]

where o(n) are functions which tend to zero asn — oo. Soif the clam is
falsefor dl i, then for at least four of the pointsk, ..., lg we have

19°() —lil < o(n)|U,|asn — oo (5.1)

(or the same holds for four of the pointsr;). Chooseintervals T O J so that
C(T, J) isthe cross-ratio determined by these four points (froml, ..., lg).
From (5.1) it follows that C(g>(T), g5(J))/C(T, J) is close to one when
n is large. But since U, (1) is well-inside U,_x_1 we get from the (real)
Koebe principle that the non-linearity of ¢ 1: ((19) — U, (1) is uni-
versally bounded. Hence I1(1g) C Un_x and since Un_y, ..., g5 1(Un_x)

are digoint and g has no wandering intervals, % > 1 — o(n) where
o(n) - 0asn — oo, see [MS]. By the definition of g, |J], |[I(T \ J)|,
Ir(T\ J)|] and |U,.| areall of the same order. But an explicit calculation for
the map z — Z‘ shows that this implies that C(gT, gJ)/C(T, J) > 1+«

for some universal constant ¥ > 0 (theintervals J ¢ T do not contain the



Maps with one inflection point. I1. 425

critical point ¢ = 0, and are not small compared to the distance to c). It
follows that
C(g°T, g°J)
C(T J)
But thisviolates (5.1). This contradiction proves the claim.
If we now define

Q(1) = DU (D)) \ (Us(1) \ Um)

then the extension of all non-central domains are all contained well inside
U.. (7). Thus we obtain a quasi-polynomial-like map. O

> 14« —o(n).

Next we should remark that Lemmas 3.2, 3.3, 3.4 and 3.5 remain un-
changed or were proved already in the previous section. So we only need to
prove Lemma 3.6. To do this, simply proceed as in the proof of Lemmab.1
(notice that in Case Il we have |V| < 3|U,|). This completes the proof of
Theorem A (complex bounds).

6 Polynomial-like structure of real analytic mapsin the minimal case

Given areal analytic map g € AC with w(c) minimal, we have constructed
a sequence of gquasi-polynomial-like mappings

P : UiV|i — Vi,

such that diam(\V) — 0. The map F is the analytic extension from the
rea line of a first return map g to an interval U, of our sequence (so
that the intersection of \f with thereal axisisU,, ). Quasi-polynomial-like
mappings have domains which can intersect.
In this section we construct from these ‘ quasi-mappings’, genuine poly-
nomial-like mappings
Py : Ui\7|i — \7k-

Here V., Vi will be subsets of \{!, Vi, and Py are restrictions of the quasi-
polynomial-like mappings R : UiV} — Vk.

We should emphasize that the polynomial-like maps R, : Uj; \7& — Vwe
will build here, may have lost the original property of the quasi-polynomial-
like maps B : UV, — Vi that the moduli of the annuli between the ranges
and the central domains are uniformly bounded away from zero. In spite of
this, we can conjugate the map R, : U \7; — V to a polynomial, see the
next section.

The construction will go in two steps.

Step 1. Construction of a smooth polynomial-like mapping. Given the
initial map g : Uil; — |, one can assume that the closures of the intervals
l; are pairwise digoint and contained in the open interval | (we can always
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passto afirst return map along the postcritical set, which, by the assumption
that w(c) isminimal, obeys such property). Let us choose a neighbourhood
V of theinterval | (with V atopological disc with analytic boundary) so
closeto I, that, for eachi = 0, ..., ip, there exists a neighbourhood U of

the interval I; such that fori # Othemap g : U — V is a complex

analytic (diffeomorphic) covering map. Choose V so that the discs U are
digoint. For i = 0 it might be impossible to extend g|l analytically to
some set Ug in such away that g : Uy — V becomes an analytic branched
covering map. (If such an extension did exist, its preimage of V would not
be close to the real line.) So instead choose an analytic extension near b

and then extend diffeomorphically so that g: Up — V becomes a smooth

branched covering map with critical point c. Note that the topological discs
U; are not necessarily contained in V, but we can make sure that they are
digoint. Therefore, fix atopological disc A, which properly contains V and
each U;. Giveni, choose adisc B, which contains properly Ui, is contained

properly in A, and so that all B are pairwise digoint. Let us artificialy
extendg: U — Vtoamap§: B — A whichisadiffeomorphism for
i # 0andsuchthat it isacovering map fori = 0. After this step, we obtain

g:yB — A

which is an extension of g: U4 Ui — V,suchthat eachq : Bf - A
is a diffeomorphism fori # 0, andd : By — A is a covering map with
aunique critical point at c. This map isthe intermediate smooth polynomial-
like mapping. Notethat thereis NO guarantee that§ and g coincidewherever
they are both defined and that § is not analytic. However, g = g closeto the
intervals I;.

Step 2: Inter secting thequasi-polynomial-likemapping with thesmooth
polynomial-like mapping. Consider the sequence of first return maps ofg
along the postcritical set. Thuswe obtain a sequence of smooth polynomial-
like mappings

On: UB' > A",

such that g, coincides with the first return map of g to U, on the real traces.
This means that the smooth polynomial-like map g, coincides with the
quasi-polynomial-like map R on the rea line. We remark that one of the
properties of the quasi-polynomial-like mapping R is that if \j is one of
its domains with RV} = g*'¥ then V. ..., g&"®(V}) are all contained
in bounded Poincaré neighbourhoods of the real trace of these sets. So take
the component of A NV which contains ¢ and consider the corresponding
preimages by R and g,,. By the above remark, g, coincides with R on
these preimages. Thus we get atruly polynomial-like mapping,

P : Ui\A/|i — \7k,

see also [LS]].
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Notethat wedo not claim that themoduli of the annuli betweentheranges
andthecentral domainsof the constructed polynomial-like R : Ui\7|i — Vi,
are uniformly away from zero, but on the other hand we can (and will)
conjugate the map R : Ui\7|i — Vi with a polynomial, see next section.

Take one of the constructed polynomial-like maps R, : Ui\7|i — V. By
Theorem A, it induces quasi-polynomial-like maps R, : UVl — Vi, for
m >> k sufficiently large (with definite bounds for the moduli of the annuli
obtained by taking the difference of the range and the central domain). But
asin [LS2] thisis enough to obtain

Theorem 6.1 Every polynomial-like map R : UV} — Vi constructed
above

1. has totally disconnected Julia set;
2. carries no invariant line field on its Julia set.

7 Conjugation to polynomialsin theminimal case

Consider amap g € AC for which one has an associated polynomial-like
map P : UVi — V. (For example, a polynomial-like map as constructed
in the previous section.) In this section we do not assume that c is recurrent
or that w(c) minimal, but only that the critical point stays in the domain of
definition of P (for example, P can have an attracting periodic orbit). So P
is any polynomial-like mapping such that its restriction to the real axisis
amap of the class AC and P is symmetric with respect to the real axis (in
particular, all components of P are symmetric).

We also write U < V, if two domains U, V like this have digoint
closures and the intersections of U and V with the real axis are ordered
accordingly. For example, we can order the domainsV' like this. Let us
relabel the domains so that in this new notation the map is:

P: U—Zm* @) U—Z(m*—l) U-.--u Uo J---u U2(m+—1) U U2m+ b V,

where m* > 0 are the number of domains to the left and right of the central
domain Up (which contains the critical point ¢), and such that

U—Zm* < U—2(m*—1) <0 < Uo < - < U2(m+—1) < U2m+.

Let us add new domains U_im-—1), ..., U_1, ..., Uym+_1 Ordered so
that
U—(Zm*) < U—(Zm*—l) < < U_l <

Uo <0 < U2m+_1 < U2m+.

For each new domain, we choose a holomorphic isomorphism, which maps
this domain onto V, such that this map is real and reverses orientation on
thereal axis.
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We obtain a new polynomial-like map

Q:UM Ui > V
with a unique critical point. This critical point isc = 0 and is of odd order
£ > 3.

Theorem 7.1 Q isquasiconformally conjugatetoa polynomial F,inneigh-
bourhoods of their filled-in Julia sets, where F is such that:

e Thedegree of F isequal tod = ¢ + 2m" + 2m~, and F is of the form
F(z) = Z' -1(2) + C, wherer(z) = 2™ +™") 4 isamonic polynomial
with real coefficients, and C = F(0) isa real number.

e All critical pointsof F,

Xoom <...<X1<0<Xy<...<Xom+—_1
arereal (and can be ordered like this), and such that
F(xi) = H_ and F(xj) = Hy

for i odd and j even with —2m~ <i, j < 2m*™ — 1 where H.. arereal.

e All critical points of F except O escape to infinity, and, if we denote by
B the Bottcher function of the basin of infinity of F (normalized so that
B(z)/z— lasz — o0),then B(H.) = —2and B(H,) = 2.

Proof: We can assume that the boundaries of thedomainsy, V areanalytic
curves (taking a little bit smaller disc inside V if necessary). By applying
aconjugacy which maps V conformally onto around disc D; = {|z| < R},
for some R > 1, such that R < 2 < R, we can and will assume that
V = Dg. Our map Q isdefined so far on the union of U. Define also

Q(z) =2
off V. Therefore Q(V) = Dgd. Now choose a map
¢:V\UU; > QW) \V,

such that:

1. ¢ isasmooth d-fold branched covering map (not holomorphic) of the
domain V \ U;U; onto the standard annulus Q(V) \ V, which extends
smoothly onto the boundaries, suchthat it agreeswith Q. Thatis, ¢ = Q
ona(V \ UU)).

2. ¢ isrea onthereal axis, and, moreover, ¢(z) = ¢(z). All critical points
of the cover ¢ arereal (thisis possible because the orientations of Q on
the real traces of any two adjacent domains U, U; 1 are opposite and
because ¢ = Q on dUp).
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3. Denotethecritical pointsof pbya - <... <ai1<a<a < .. <
aom+_1, Where g lies between U; and U;1. Then

@) =—-2, ¢@)=2

fori odd and j even with —2m~ <i, j <2m* — 1.
4. ¢ isalocal diffeomorphism at any point # a; near each critical point
the map ¢ is holomorphic (and non-singular).

Now we define Q(z2) = ¢(2), for every z € V \ UU;. Thus Q is defined
everywhere.

We are in a position to use the well-known trick from the Straightening
Theorem [DH]. Take a standard conformal structure (i.e., the Beltrami
coefficient © = 0) outside the disc Q(V) and extend this structure to
afunction u: C — {z; |z| < 1} which isinvariant under Q. Since Q is
conformal off V and on UU', there are only a bounded number of points
(namely, one) in each orbit of Q where this mapisnot conformal. It follows
that the L*°-norm of 14(z) isbounded away from one, and by the Measurable
Riemann Mapping Theorem, thereexistsaquasiconformal homeomorphism
H: C — C with H(co) = oo which has u as its Beltrami coefficient.
Because the structure is symmetric with respect to the red line, H(z) =
H(z). Since u isinvariant under Q, it follows that

F=HoQoH™

is a holomorphic d-cover of the complex plane. Hence Q is quasicon-
formally conjugate to a polynomial map F (of degree d). By an affine
conjugacy, we can assume that F is monic (it means that H(z)/z — 1 at
o0),and H(c) = 0. Thenx, = H(a),i = —2m™, ..., 2m* — 1 areall smple
real critical points of F. Together with 0 = H(c) these are the only critical
points of F. The critical point 0 = H(c) is of order ¢£. By construction,

F(Xok1) = H(—=2) :== H_, F(Xx) = H(2) := H,.

H conjugates Q(z) = Z to F in the domain C\ V = {|z| > R}, and
is holomorphic there (because H preserves the standard complex structure
off V). Moreover, H(z)/z — 1 at co. Hence, the inverse map B = H?!
coincides with the Béttcher function. That is, B(H.) = —2, B(H,) = 2.0

Complement to Theorem 7.1: the polynomia F can be chosen to depend
continuously on the polynomial-like map P provided the polynomial-like
map P carriesno invariant linefields onitsfilled-in Julia set K(P). (In par-
ticular, we need to assume that P has no periodic attractor.) (Here conver-
gence is meant in the Caratheodory topology: convergence of the domains
to akernel, and convergence of holomorphic maps uniformly on compacta,
see e.g. [McM1)). Let usfirst observe that thisimplies that the polynomial
F also carries no invariant line field on itsfilled-in Julia set K(F). Indeed,
the conjugacy H has to be conformal a.e. on K(P) because otherwise the
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preimage of the standard complex structure on K(F) by H gives an in-
variant non-standard one on K(P), that is, an invariant line field. Hence
H is conformal on K(P), and so it takes an invariant line field of P to an
invariant line field of F, and vise versa. This proves the observation. Now,
let P, — P beasequence of polynomial-like mapstending to P. Then we
can choose Q,: U; U" — V" converging to Q: U; U; — V uniformly on
compact subsets of the complex plane and so that the Beltrami coefficient of
Qnon V"\ U;U" converges to the one of Q on 'V \ LU; in L*-norm (even
in sup-norm). If H, isthe quasiconformal homeomorphism corresponding
to Qn,and Fy, = Hyo Q0 Hn—1 is the corresponding polynomial, then
the norms of the Beltrami coefficients of H, are uniformly away from 1.
Since al H, are normalized in the same way, passing to a subsequence,
H, — H., where H, is quasiconformal and conformal near oc. We get that
any such subsequence F, tends to a polynomial F, = H, o Q o H-* and
that H'o Fo H = H 1o F, o H,. But F, F, are monic polynomials of
the same degree and H, H, are homeomorphisms of the plane which are
conformal at co. Then, by the last equality, the quasiconformal homeomor-
phism of the plane H o H_ ! (which conjugates F and F,) is conformal off
the filled-in Julia set of the polynomial F.. If the quasiconformal homeo-
morphism H o H-1 would not be not conformal a.e. on thefilled-in Julia set
of the polynomial F, then the complex structure, which isthe image of the
standard one by the map H o H_, isinvariant under F. Hence, F carries
an invariant line field on its filled-in Julia set, a contradiction. Therefore,
H o H 1 isconformal a.e.. So thismap is affine and by the normalization it
isequal to the identity map. Hence, from Theorem 6.1,

Corollary 7.1 If P is a polynomial-like map constructed in the previous
section with w(c) minimal, and if B, — P is a sequence of polynomial-
like maps, then F, — F (where F,, F are the corresponding polynomi-
als from the previous theorem). (The convergence in this lemma is in the
Caratheodory topology).

Proof: Intheprevious section we constructed polynomial-like maps P from
maps g with w(c) minimal, and showed that these do not carry invariant
linefields on their filled-in Julia set. O

8 Conjugationsto expanding maps of acircle

Let g : U%,li — | bearea anaytic map of the class we consider, but
without any restriction on the postcritical set of the critical point c. Let
us only assume that al iterates of the critical point stay in the domain of
definition of g (for example, g can have an attracting periodic orbit). For
simplicity also assume that each |, is compactly contained in the interior
of I. (Thisis the case for al first return maps, if we assume that w(c) is
minimal).
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Let us assume for simplicity that the length of | is equal to 1. Then
we can find an orientation preserving homeomorphism G: R — R so that
G(x+1) = G(x)-++mforsomem € Nandall x andsothat G|Ul; = gmod 1.
We can do this so that each component J of | \ Ul is mapped by G
affinely onto an interval of length 1. Note that G induces a piecewise
smooth covering map§: S' — S'. Here misthe number of branches of the
map §.

Let G(z) = m- zmod 1 be the affine m-covering of the circle S =
R mod 1. It iswell known (seee.g. [MS]), that there exists an order preserv-
ing and surjectivemaph : § — S, suchthatho§ = G, o h. Thismap h
isunique if weinsist that h maps the fixed point corresponding to a1 mod 1
to Omod 1. One can define h by letting h(x) to be the point whose kneading
invariant with respect to G, is the same as the kneading invariant of that of
X with respect to §. (For example, the kneading invariant of x w.r.t.§ lists
for al n which component of S\ g~1(0) the point g"(x) hits.) Uniqueness
of h follows since the choice h(dl mod 1) = 0 mod 1 fixesthe way we label
these components.) Of course, h will be constant on each component of the
basin of a periodic attractor of §.

Itis clear that h depends continuously on g, i.e., if g isamap from our
class which is close to g (in the C’-topology), then hg is close to hg (in
CO-topology). In particular, theimage hy(c) € St of the critical point c of g
depends continuously on g. _

For any real e with || small, consider the perturbation g : U I; — 1€
defined by g.(X) = gX) +eand I = | + €. Let G, = G + ¢, and let
0 be the corresponding covering map of S. Then ¢, has afixed point p.
depending continuously on e. Without loss of generality we may assume
that | = [0, 1] so that py = 0. By insisting that hy, (p.) = O (i.e. taking
kneading invariants with respect to the partition $\ §;1(p.) which depends
continuously on € when ¢ is close to zero), we have a continuous function

a(e) = hg (0)
from a closed interval [—e, €o] into the unit circle S

Lemma 8.1 Thefunction € — a(¢) isorder preserving for € closeto zero.
If the critical point of g isnot in the closure of a component of the basin of
a periodic attractor, then «([—«, €o]) contains an open arc of S.

Proof: Takefirst e > 0 and note that
GM(x) > G"(x) + € for all x. (8.1)

Consider the partition generated by g "(p.), n > 1. Notethat p. < po =0
for ¢ > 0 small (just look at the graphs of g for different choices of ¢). Fix
n > Oandlet x, beasolutionof g'(x,) = 0. Thenthereexistsx, . depending
continuously on ¢ > 0 (when € > 0 issmall) so that d'(xn.) = p.. We
have

Xne < Xn (8.2
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because otherwise (since G, isincreasing and by (8.1)) G} (Xn.¢) > G2 (X,) >
G"(Xn) + € = po+ € > 0 > p, acontradiction. Thisand (8.1) imply that

€ — a(e) = hg (0

isnon-decreasing. Since g. has no wandering intervalsand cisnot contained
in the closure of a component of the basin of a periodic attractor of §,
elements of the partition containing g(c) shrink to zero in size. This, (8.1)
and (8.2) imply that the kneading coordinates of ¢ with respect to g and g
are not the same, i.e. a(¢) > «(0). Considering also negative ¢, together
with the continuity of «, the lemmafollows. o

9 Quasiconformal rigidity in the minimal case: proof of Theorem B

Theorem 9.1 Let g, g; be two real analytic maps fromour class, such that
the w-limit setsof the critical points of these mapsare minimal, their critical
pointsare of the same order, and the mapsare of the same combinatorial type
(see the definition above the statement of Theorem B). Moreover, assume
that the critical points have the sameitineraries (w.r.t. to the corresponding
partitions). Then some maps G = g™ and G; = gf“ from the sequences
of first return maps of g and ¢ extend analytically to polynomial-like
maps. These two polynomial-like maps are quasiconformally conjugate in
neighbourhoods of their Julia sets by a map which is conformal on their
Julia sets.

Proof: Provided that the quasiconformal conjugacy does exists, the latter
statement (conformality of the conjugacy) follows from the fact that the
polynomial-like maps induced by g and g have no invariant line fields on
their filled-in Julia sets. Let us prove the existence of the quasiconformal
conjugacy. We can assume that the critical points of g and g are at zero.

Aswe have proved, there exists apolynomial-like extension P of somefirst
return g of g, and a polynomial-like extension R of some first return

gf“z of gi. If, say, S, > S,,, then, because the maps g, g are conjugate
and the conjugacy respects the critical orbits, we can take first returns to
the central domains passing from P to a polynomial-like extension of g.

Thus, from the beginning, we can assume that P, R are polynomial-like
extensions of some g™ and gls“, and by the assumption of the theorem, the
critical points of P and P, have the same itineraries (w.r.t. the dynamics of
P and P, onthereal ling). Let F and F* be polynomials which are quasi-
conformally conjugate to P respectively R (see Theorem 7.1). To prove the
statement, it is enough to show that F = F*. Define P.(2) = P(2) + € and

Pj(z) = P1(2) +¢,with e real and |¢| small. According to Lemma8.1, there
exist asequence ¢, — 0 and a sequence ¢, — 0, such that the orbits of the
critical point O by the map R, and by the map Pj,n are well defined, have
the same itineraries, and are pre-periodic (but not periodic). In particular,
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the iterates of the critical point of these maps pass through the same do-
mains as that of P. Let ¢, g} be polynomials corresponding to P, and Pj,n

respectively. By Corollary 7.1, ¢, — F and ¢ — F!asn — oo. Let us
for the moment fix g = g, and g* = g'. Note g, ' have the same degree d.
The non-escaping critical point 0 of g and ¢ is preperiodic with the same
itineraries with respect to the partitions on the real line given by g and g.
Since the only non-escaping critical point of g (and d) is preperiodic and
not periodic, the Julia set of ¢ (and o) istotally disconnected [BH]. Denote
by B and B! the Bottcher functions at infinity for g and o respectively.
Then, by the construction of the polynomiasaq, d, themap H = (BY)~1o B
isconformal inthedomain {z: log|B(z)| > (log2)/d}. Sincetheitineraries
coincide we get, step by step, that the conjugacy H extends conformally
onto domains {z : log |B(z)| > (log2)/d"},n = 1, 2, .... Hence it extends
up to the Juliaset J(q) of g, and then homeomorphically to the Julia set J(q)
(because the Julia sets are totally disconnected). It follows that there exists
a quasiconformal homeomorphism h of the plane, which is homotopic to
H and coincides with H in the domain {z : log |B(2)| > (log?2)/d"}, for
some sufficiently large (but fixed) m, and on the postcritical set of g (which
is finite). Then, by the pullback argument, there exists a quasiconformal
conjugacy between g and - which coincides with H outside J(q) (and
hence is conformal outside J(q)). Since the extension to J(q) is unique, all
thisimpliesthat H isquasiconformal. On the other hand, J(q) has Lebesgue
measure zero (since the only non-escaping critical point is eventualy pe-
riodic, see for example [McM1]). Therefore, H is conformal everywhere,
i.e., affine. Because of the normalization at infinity, H is the identity. This
means that q = o'. Remembering that g and ¢t can be chosen arbitrary
closeto F and F* respectively, we get that F = F. O

10 Theorem A’: complex boundsin the non-minimal case

Let a. be the right and left most fixed points of g. In addition, let a
be the boundary points of immediate basins of periodic attractors. Be-
cause g is real anaytic, g has only finitely many periodic attractors (see
[MS]), and there are only finitely many such points a, ..., as. Every
point a, ay, ..., as is either repelling or parabolic periodic. Now define
A={a ,a,, a,...,a} Nw(c)andif thisisempty let A be any repelling
periodic orbit of g. (One could also use different partitions, see for example
the construction described in the proof of Proposition 10.1.) Let A (or P?)
be the components of the complement of g"A. This forms a natural dy-
namical partition of thereal line. Since g(A) C A, any component of R,
iscontained in one and only one component of &. Let P, (t) be the element
of the partition which contains t (this is well-defined if t is not eventualy
mapped into A; if it is, take the interval whose interior is not contained in
the basin of a periodic attractor and also does not intersect a gap between
two domains of g). If two domains of g have acommon end point then there
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is a choice, but then it will be clear from the context which interval R(t)
one should take. Since g has no wandering intervals, for each t € w(c), the
diameter of P,(t) tendsto zeroash — oc.

In this section we shall prove the following theorem:

Theorem A’ (complex boundsin the recurrent non-minimal case) Let
g € AC and assumethat w(c) isrecurrent and non-minimal. Then ginduces
a Box Mapping: there exists a sequence G, — oo, 6 close to zero, and
a seguence of open topological discs ¢ := D(Vk N R, & — ) around the
critical point such that the following properties hold.

1. diam(Vx) — Oand Vx N R isa critical piece of the above partition.

2. the (complex analytic) first return map to \f restricted to domains con-
taining points of w(c) is a box mapping F: U V; — Vi (see the
definition below the statement of the theorem).

3. the modulus of the annulus \k \ V; is bounded from below by G.
Passing to the first return map to the central domain \P, we then obtain
again a box mapping F.: U; Vg — Vi (where this time we can choose
Vi to be the central domain V{2 and were the domains \j, are the new
domains) with all listed properties, and additionally such that:

4. each branch K|V, extends to a univalent map F|W, for i # 0 (and for
i = 0 to an analytic covering map which is branched at c), such that
the modulus of W, \ V, is at least Cy, and such that for i # j either

W, is contained in W, \ V! or the other way around W is contained in
Wi\ V} (or Wi and W are digjoint). Moreover, W, is contained in
for eachi.

Here we say that F¢: Uj Vli — V is a box mapping (following ter-
minology of [GS2]) if the countably many domains \{, V) with i # |
are pairwise digoint, \} is contained in \k for al i and if RV} — Vg is
adiffeomorphism for i # 0while R|V? — Vi isa¢-branched covering.

It isvery easy to prove an analogous theorem in the non-recurrent case,
see [Str] and [MS]. In that case all branches are diffeomorphic (i.e. \f
simply does not exist).

Proof: The proof uses ideas of Proposition 3.3 from [LS1]. Assume that
w(c) isrecurrent and non-minimal. For eachintegeri onehas|R (g (c))| — 0
ash — oo. Firgt, let us show the existence of a sequence of (real) critical
pieces Py, (C), such that for the (real) central component U of thefirst return
map to P, (), we have: C~1(P, (c), Uy) — oo ask — oo. Since w(c) is
non-minimal, there exists x € w(c) such that forward iterates of x avoid
some neighbourhood of the critical point. Therefore, there exists N such
that for an infinite sequence of k, we can choose the interval R(X) € £
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so that it is mapped by gN diffeomorphically onto some fixed interval
P := Py € £y contained in one of the domains of g and such that ¢(Px(x))
doesnot containcfori =0, 1, ..., k— N — 1. Considering thefirst entry of
cinto R(x), we then obtain a sequence of intervals R, (c) with diameters
shrinking to zero and integers n, — oo so that g~N-1: g(P, (c)) — P
is a diffeomorphism. Fix k for a moment. By the construction, the iterates
g(©), ..., g% N-1(c) areoutside P, (). Let s > ny — N — 1 be the smallest
integer for which ¢°(c) € P, (c). Let Uy be the pullback of R, (c) from
g’(c) toc.

Claim 1: The interval g% N(Uy) is very deep inside P. More exactly,
C(P, g™ N(Uy)) — oo ask — co.

Proof of Claim 1: The length of ¢°(Ux) = P, (C) tends to zero ask — oo
and therefore the length of g%—N (U, ) tendsto zero ask — oo (here we use
that ng — N < sand that g has no wandering intervals). If 9P isapreimage
of a repelling periodic point, then we can go to big scale with bounded
distortion, and so if g™~N(Uy) iscloseto the boundary of P then g«—N(Uy)
isvery deep inside P (if it is not close to one of the boundary points there
is nothing to prove).

But in fact, we do not even need to use that P is in a hyperbolic
repelling set. Indeed, let 9P be a preimage of the periodic point a, which is
parabolic, and assume that again g«—N(Uy) is close to a boundary point x
of P, but the distance between g**—N(Uy) and x is comparable to the length
of g™«~N(U,). Then, when one end point of g~N (U, goesto afixed (large)
distance from a by an iterate d, then the length of ¢ (g™« N(Uy)) is also
large (i.e., independent of k). (We see thisin a standard local coordinate at
the parabolic point.) But thisisimpossible, because ¢(Uy) tendsto zero.

Claim2: C~Y(P(x), g™ X(Uy)) tends to infinity ask — oo.

Proof of Claim2: The proof of thisisessentially the ssmeasthat of Claim 1.
Indeed, g"N maps P(x) diffeomorphically onto P € $y. If w(x) does
not contain parabolic periodic points, then X is contained in a hyperbolic
set because of Maf€'s Theorem 2.2. So in this case N has bounded

distortion on R«(x) and the proof follows immediately from Claim 1. If
w(X) contains a parabolic periodic point, then we can assume that x is one
of these (finitely many) parabolic periodic points, and ¢« simply mapsin

interval B (x) periodically along the parabolic periodic orbit O(x) to the big
interval P (where P also contains a point from O(X) as aboundary point by
the construction of the partition). By the previous claim, both components
of P\ g™ N(Uy) contain a very large number of adjacent fundamental

domains of the parabolic periodic orbit O(x). But then the same holds
for the components of R.(x) \ g™ *(Uy). Since neighbouring fundamental

domains of a parabolic periodic point have approximately the same size, it
follows that gx~*(Uy) is very deep in R(x). This concludes the proof of

Claim 2.
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The intervals ¢ (Py (c)),0 < i < ng — k, are digoint, because
g™ k(P (X)) is the first visit of some iterate of R, () to P(x). Hence
we can apply the Koebe Principle to estimate the cross-ratio and obtain that
C1(P,,(0), Uy) tendsto oo ask — oo. To prove the theorem, fix now k and
consider thefirst return map to Uy. Then each (and not only the central) com-
ponent of thismap isvery deep inside U, (we apply the margins disjointness
property (4.1) thistime: it holds because the components of the first return
map are disjoint). Define Wk = D(Uy; = — 6), where 6 is small enough,
and consider the pullback of \f along some branch of the latter first return.
Because we consider first returns, the sum of the lengths of the preimages
of Uy aong this pullback is uniformly bounded (by the length of the range
of g). Hence choosing 6 small enough, we obtain by Lemma 2.3, that the
pullback is well-defined and is contained deep inside . Digointness of
the domains holds because by Lemma 2.3 the g-images of all the domains
(which are near g(c)) are contained in sets of theform D(g(\\) "R; 7 —6’)
with 6’ > 0 small. Thisimplies the first three assertions of the theorem.

In property 4 the range of the extension can be taken to be the range of
the previous map. m|

It will be useful later on to modify the range of the polynomial-like
map constructed in Theorem A’. The reason for this is that later on we
will consider complex perturbations of the map. Therefore we will want to
modify the range of the polynomial-like map in a more dynamical way (to
deal with complex eigenvalues), so that nearby maps still have an associated
polynomial-like map.

Addendum to Theorem A’: Assume that w(c) contains no parabolic peri-
odic points; in particular, assume that the periodic points in the set A are
hyperbolic. Then, given k, we can modify therangeV = \ = D(Uy; 7 —6)

in the following way (imitating in some sense external rays to periodic
pointsin the standard Yoccoz puzzle construction). Let us do this construc-
tion in the case that a € A is afixed point (the periodic case goes in the
same way).

1. Denote 0 = g'(a). Then o > 1 and the branch g~* (so that g~%(a) = a)
is conformally conjugate in a fixed neighbourhood Z of a to the map
w — o tw. It follows that, given a unit vector v at the point a there exists
aunique (analytic) curvel, in Z which starts at the point a and so that v is
the tangent vector of |, at a, such that g~(I,) C I,. It gives afoliation of

Z\ {a}.

2. Fix two neighbourhoods Z;, Z, of the end points a;, a, of the real trace
of V,suchthat g™ : Z; — Z,i = 1, 2, are well-defined and injective. For
by € 9V N Z; let |, bethe leaf of the foliation which contains d" (k). If
we choose points by € aV N Z; sufficiently closeto g, then the vector v is
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close to one of the two (complex conjugate) tangent vectors of ¢ (0V N Z;)
at a and also the end point of |,, (other than a) is non-real.

3. Replace the small arcin 3V connecting b and & by g=M(l,) (and do the
same for its complex conjugate). We obtain in thisway a boundary of some
domain V. i

Now choose V instead of V in the construction of the box mapping.
aV is contained between two domains D(U,; = — 6_) and D(Uy; = — 6,),
where 6. are close to 6. Hence, al the pullbacks are well-defined and form
abox mapping just asin Theorem A’.

We shall need also the following.

Proposition 10.1 (Construction of Cantor repeller) Assume that g is as
in the statement of Theorem A’ and in addition assume that w(c) contains no
parabolic periodic points. Fixacritical piece P := F(c) fromthe partition

defined above, and let F: U P' — P be the restriction of the first return
map to P to domains containing points of w(c) N P. Let X be the closure
of the end points of P'. Then there exists a hyperbolic Cantor set X > X

which is contained in the set of non-escaping points (a Cantor repeller) of
some ‘ polynomial-like mapping’

G:UBJ) - uD(l; T — pB),
(without critical points and with a finite number of different ranges).

Proof: Here P' are (some of the) pieces of the partition % inside P, and,
asusual, PP isthecritical one. Observethat the forward iterates (by g) of the
pointsx € X avoid aneighbourhood U of the parabolic cycles of g, because
w(c) is a closed set not containing such cycles, P are pieces covering
w(c) N P, and 9P' are pre-images of points a € A. Defi neX to be the set
of points y from the domain of g such that all iterates d(y), j > 0 are
well-defined and lie outside the piece P’ and outside the neighbourhood
U of the parabolic cycles and outside the basins of attraction. Note that
Xc X

Let us now choose a repelling periodic point b inside the central piece
PO and let B = O(b). We would like to construct a partition using the
backward orbit of B. However, preimages of B do not (necessarily) ac-
cumulate from both sides to points from A. There are several ways to
remedy this. For example, consider the extensiong: § — St of g from
assumption 4 in the definition of the class AC. Modify g possibly even
further on neighbourhoods of periodic attractors (and parabolic points) by
gluing-in additional branches inside immediate basins. By choosing the
derivative large, this can be done so that for the new mapg: St — St
the points from the set A are no longer in the basins of periodic attrac-
tors. Then simply let 2° be the partition generated by g—"(B). It is ab-
solutely crucial to observe that we shall actually only consider elements
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of the partition on which the C* map § coincides with the real analytic
map g. We do this by choosing ny so large that § coincides with g on
each element of the partition :P,?O containing points of the set X. Fix ng
also so large that the critical piece Fﬁ’o(c) of this partition is completely
inside the critical piece P° of the previous partition (determined by the
set A).

One can assume also that the neighbourhood U of the parabolic cycles
of g consists of finitely many pieces of ,73",;0 The set X is compact (because
g has finitely many domains of definition) and forward invariant under
g and a positive distance away from the end points of the pieces of :/3’0
(since these end points hit b € P° eventually). For every n > ny, consider
the elements of the partition #° which intersect X. Denote these intervals
by JK. Note that for n large, the remaining (finitely many) pieces have
a defl nite distance to the boundary of the pieces of the finite partition .7*’
Let us choose a sufficiently small angle 8 > 0, and consider Pomcae
neighbourhoods D(I'; 7 — ), where |' are the elements of the partition
P2 except for the critical piece B (c) of this partition. Take n > np and
any interval J = JX. Then g™ (J) is equal to some interval 1'? (we
write 110 to.emphasize that the interval depends on J), and moreover
the iterates ¢g'(J), | = 0,1,...,n — ng are al digoint from the piece
Pb (c) and from the ne|ghbourhood U of the parabolic points. Hence, by
Mane s theorem 2.2, the sum of the lengths of these intervals is bounded
by a universal constant, and, as we know (for any n large and g8 small
fixed), there exists a domain B(J), such that the map g~ : B(J) —
D' 7 — B) iswell-defined, B(J) isinside D(J; = — CB), whereC > 0
is some universal constant. The closed set X is contained in the (finite)
union of the interiors of I'. It follows that asn — oo, each of the intervals
J (the partition elements of $° intersecting X) becomes deeper and deeper
inside the (appropriate) mterval I'. Therefore, provided n islarge enough,
the domains B(J) are well inside the domains D(I'; = — ) and pairwise
digoint.

Thus we end up with amap

G:UBJ) — UD(l; 7 — B,

where J runs over the finitely many intervals X (from #P) and | runs
over thefinitely many intervals I (i.e, every piece of 52 except the central

piece one). If two domains B(J) touch then we shrink D(1; & — ) dlightly,
and then the new domains B(J) will no longer touch. The above map is
a polynomial-like map (without critical points and with afinite number of
different ranges).

Note that X c X, and that points from X never leave the domain of
definition of G under iterates of G. O
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11 Proof of Theorem B’: quasisymmetric rigidity of mapsin the
non-recurrent and the non-minimal case

Theorem B’ (rigidity)

Consider two maps of the class AC with critical points of the same order,
such that for both maps c is not attracted to an attracting or parabolic
periodic orhit, w(c) isnon-minimal or non-recurrent, and w(c) contains no
parabolic periodic points. If the conjugacy on w(c) maps the critical point
of one map to the critical point of the other map, then the conjugacy is
quasisymmetric on w(c).

Proof: In the non-recurrent case, this is an exercise from Sect. 111.6.2 of
[MS]. So let us assume that we are in the recurrent non-minimal case. Fix
maps g, § asin Theorem B’. Denote the box mapping from Theorem A’ by

F:uXeQ — QandF: UX,Q — Q.

By assumption, F and F are conjugate on w(c) N €2, such that the conjugacy
maps the critical point of F to that of F. Hence, one can choose the generat-
ing real partitions in the construction of the box mappings (see Sect. 10) in
such away that F, F are the same iterate of g, § on corresponding compo-
nents. In what follows, ; denotes the component of F which corresponds
to the component ; of F. Let us try to extend the conjugacy on w(c) to
a quasiconformal conjugacy between F and F, as in [LS1]. The problem
isthat in this case we do not apriori have a natural external conjugacy, i.e.,
aquasiconformal map from

= closure(2 \ UZ%2)

onto B - -
A := closure(Q2 \ U,<),

which respects the dynamics of F andF on the boundaries. (We can assume
that F and F are defined dynamically on the closures of  and €2;.) In the
case of polynomials or (generalized) polynomial-like mappings such exter-
na conjugacy always exists: it is a composition of the Bottcher functions
at the basins of infinity or external maps [DH]. Then all steps of the proof
below are greatly simplified. Inthe general case we will proceed asfollows.

In Steps 1-2 we construct a quasiconformal external conjugacy H :
A — A. In Step 3 we construct extensions of H: A — A using a pull-
back construction and describe some of the geometric structure involved.
Finaly, in Step 4 we consider the dynamica extension of H to a map
U F"(A) — UX F"(A) (this is trivial, just pullback dynamically),
and then show that this map can be extended quasiconformally to 2 as
a conjugacy.

The box mapping F is one of the box mappings K of Theorem A’. We
will fix k and therefore drop k in the notation. In particular, we denote by
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W = W, the neighbourhood of @ = €, and by C = Cy the constant
from property (4) of Theorem A’. To simplify the picture, we choose the
map F so that the constant C is so large that every annulus W\ €2; contains
astandard round annulus surrounding €2 with modulus at least C/2. Similar
for F.

Given a set Y of the plane, denote Y& = {z € Y;%(2) > 0} and
Y- ={zeY;N(2 <0}

Step 1: Inthis step, we shall show that the boundary of each of the sets A°

(and similarly for A) is a quasi-circle using the Ahlfors-Beurling criterion
[LeVi]. Pick any two points z;, z; in, say, d(At), and consider one of thetwo
subarcs C = C(z, z») of 3(A™) between z; and z, of a smaller diameter.

According to the Ahlfors-Beurling criterion, we need to prove the existence
of a constant L independent of z, z, such that C lies inside a circle of

diameter L - |zy — z|. Let us consider several possibilities for z and z.

(@) If zy, z, are both in the boundary of either  or some €3, such L exists
(which does not depend on €2). Indeed, L exists for 2, because 992 is
a piecewise analytic curve without turning points. For the same reason, L
exists for the central component €. Any other ©; is an image of 2 under

abranch of F~1, which isunivalent in afixed neighbourhood W of 2. Thus
L isindependent oni. (b) If z, z, are in the boundaries of different &, 2,

then we notice that from Theorem A’ one gets that the diameter of these
topological discsiscomparable to their rea trace, that the discs are roughly
round (cf. Fact 11.3 (1d) below). This and the Case (a) imply that one has
auniform choice for L in this case. (c) These considerations also settle the
case when one or baoth points z, z, are real, or belong to 9€2.

Thus d(A*) and similarly 3(A*) are quasi-circles. So there exist K-
quasiconformal homeomorphisms ¢*: D — A*, ¢*: D — A* where D
stands for the unit disc. We choose ¢* to be so that ¢ (z) = ¢~ (2) (and
similarly for ¢).

Step 2: In this step we show that there exists a quasiconformal conjugacy
H:A— A

Note that the boundary d( A™) of A" consists of the set (3A)™ and some
(possibly empty) open subset O of @ N R (for example, O can contain an
open set of points which are attracted to an attracting periodic orbit of g).

We are going to construct the map H: dA — 9A to be symmetric
(i.e. Hz) = H(2) and so that H|(dA)" is a restriction of some map
Ht: 9(AY) — 3(A)" to the subset (9A)T of d(AT). Thus we need to
construct H* (such that H*(x) is real for x real). Then H™: 9(A™) —
d(A™) is defined symmetrically: H™(Z) = H+(2), so that H(z) = H*(2)
iff X(z) > 0and H(z) = H~(2) iff %(z) <O.

First define H*: (9Q)* — (8€2)* as follows. For both endpoints y of
Q N R fix aneighbourhood Y such that some iterate d¥ maps 'Y univalently
onto the neighbourhood Z of the fixed point a of g (see Addendum to
Theorem A’). Similar for F: gN : Y — Z. By the construction of €,
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gN(@BQNY)) =1F and gN((8Q2 N Y)t) =TF, wherel,, I, are invariant
arcs from Addendum to Theorem A’. Now fix a quasiconformal symmetric
conjugacy K between g|Z and §|Z, such that K(l,) = I,,. Then define H*
onthearc g N(F) = @2 NY)" of IR as H* = g™V o K o gV. Extend
H* to the remainder of (92)* so that it distorts (Euclidean) distances by at
most a uniformly bounded factor.

Next, define HT on each (32))* dynamicaly as follows. For z €
@), letHt(2) = lfiloHioFm (2),where HE= = HTiff F(z) € (3Q2)"

and H* = H~ iff F(2) € (0Q)". Itis clear also which branch of F_* to

take on the central domain. If n is such that g“(Q) = Q, then extend

+ K k
Hioan: =9 "W oHigog" k=1.n—1

Finally, the remainder of (dA)" is the set X U O on the red line,
where X is the Cantor set introduced in Proposition 10.1. Remember that
X c X, where X is the Cantor set on the real axis invariant under g
and is contained in the set of non-escaping points of the expanding map
G : UBWJ) — UD(l; 7 — B) (without critical points and with a finite

number of different ranges). Let X, X and G : UB(J) — UD(I; 7 — B)
be the corresponding objects for the map F, chosen so that G and G are
combinatorially conjugate (this can be achieved by constructing G andG in
the proof of Proposition 10.1 simultaneously for F andF in combinatori-
aly the sameway). Then G, G are quasiconformally conjugate: there exists
aquasiconformal symmetricmap z : UD(l; = — B) — UD(l’; = — B) such
that 7 0 G = G o T on UB(J). In particular t(X) = X. One can assume that
7 isextended to a quasiconformal map of the plane Definefinaly HM = 1
on X U O. This completes the definition of Ht : 3(At) — a(AT).

L et usnow show that themap @) toHTo¢™: D — 9D isquasisym-
metric. In order to do this, take three nearby points z, z,, z3 € 9D with z3
the midpoint between z and z,. Then the points wy = ¢™(z) € d(A"),i =
1, 2, 3, are roughly equidistant because ¢" is quasiconformal. (“Roughly
equidistant” means that the distances between the points are roughly the
same; we say that numbers a, b are roughly the same: a < b (resp. a is
much bigger than b) if L=! < a/b < L (resp. a/b > L), for some universal
L >1).

We need to show that the pointsiw; = H* (w;), i = 1, 2, 3, areroughly
equidistant as well.

Assume w1, wy, wz al belong to the boundary of either " or of
some k. Then we are done because H* is quasisymmetric on the real line,
distorts distances by a bounded factor on 92, andthemap F : Q@ — Q has
definite Koebe space.

Hence, we can assume that at least one and at most two of the points w
liein one of the curves €. Denote by B;,i = 1, 2, 3, the domain ; of F
such that w; € aB; (for example, one of the sets B is Q; if w; isoutside all
the domains 2;, then w; € R and we take B; to be the point w;). Let U; (X)
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be a neighbourhood of an endpoint x of B N R, such that F(U;(x)) =Y,
where Y is the above mentioned neighbourhood of one of the endpoints of
Q N R from the domain of definition of H*. There are two main cases

o 1(09)**
to distinguish.

(@) all points w; lie in Uj(x), for some j between 1 and 3. Then pass to
big scale. Themap gN o F = g™ : Uj(x) — Z has bounded distortion,

and Z is the neighbourhood of the repelling fixed point a of g. Then the
point z; = gMt(w;) liesin the arc 1. So we can iterate the map g (keeping
bounded distortion) until the distances of images of w become larger than

auniversal positive number. (We usethat thereisauniversal € > 0 such that
the Euclidean distance between any two components €, ; is larger than

e - {minimal diameter of €2, 2;}, see Fact 11.3 for detail; the same holds for
the images of i, ©; until one of the images is Q2. Hence, g'(Bj),i # j,

lieina (1 + ¢)-neighbourhood of Z, i.e. are still close to the fixed point a).
Hence we can transport all this by the map K, and then by an inverse tog™t,

and get again that the property that these three points are roughly equidistant
is preserved.

(b) for every j = 1,2, 3, a least one of the points wi, wy, w3 is outside
the neighbourhood U;(x). To avoid to deal with many scales and cases
(i.e. dl possible diameters and mutual distances of B, B,, B3), we do the

following. Remember that H ., istherestriction of the quasiconformal

map t of the plane. Hence, the pointsw; = t(w;), i = 1, 2, 3, are roughly
equidistant, and we finish the proof by showing that for every i, j, the
distances| = |w; — w;| and |" = |w] — a/j| are roughly the same: | < I.

Let B; be the component of F with 8B, = H*(3B;), and B/ = 7(B;). Let
di, di, d’ be the diameters of B, B;, B/, and let D, D, D’ be the distances
between B; and Bj, B; and B;, B/ and Bj respectively. Consider threesimple
subcases. (1) if max(d, d;) < D, then max(d;. d;), D, max(d/., dj), D' are
al roughly the same (because the real traces of B, B;, B are comparable
with their diameters, and the map 7 is quasisymmetric on R). Thereforel, [’
are roughly equal to D; (2) if d and dj are much smaller than D, the same
holds for d;, d; and D, and for d, a; and D'. But D < D/, hence, I, " are
roughly D; (3) d is much bigger than d; and than D. Let x be an endpoint
of B N R closest to B;. The neighbourhood U;(X) = Flgil(Y) is roughly
around disc, and thediameters of U (x) and B; areroughly the same. Hence,
there exists a round disc U'(x) inside U; (x) and centered at x, with radius
roughly d, such that w; ¢ U’(x), because otherwise al points un, w,, w3
would be in U;(x). Hencel = |wj — wj| =< d;. Also, w] ¢ ©(U’(X)), hence
I < d/. Moreover, sincew; = F~o H !, . o F(wi), the point @; isoutside
a definite neighbourhood of X = H*(x), and again | < d.. But d; < d
(since B;, B/ are comparable and have common real trace), and so we are
done.
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Thus ()20 HT o ¢t: 9D — 9D is quasisymmetric, and therefore
there exists a quasiconformal extension H' : closure(A™) — closure(At)
which is a conjugacy whenever this makes sense. The quasiconformal ex-
ternal conjugacy H: closure(A) — closure(A) is constructed as follows:
H(z) = HY(2) iff W(z2) > 0and H(z2) = H (2) = H+(2) iff () < O.

Step 3: In this step we construct a sequence of quasiconformal extensions
of H: closure(A) — closure(A).

Fact 11.1
F~1(E) U closure(U; 92 N R)

isclosed for any closed subset E of closure(£2).

Proof: Let x, € F~1(E) and x, — a. If a subsequence of {x,} belongs to
one component €2, then F(a) € E, because F : closure($2j) — closure(2)
is continuous. Hence, a € F~1(E) in this case. If there are infinitely many
components €; containing points of the sequence, then a is the only limit
point of such sequence of components because their diameters tend to zero.
Hence, a € closure(U;022i N R). |

Forn > 0, let
Ay =AUF 1A U---UFA) and A, = Un=0A,.

Since A is closed and closure(Uod2i N R) C A, we have from Fact 11.1
that A, isclosed. Moreover, let

Up=Q, U= F X)) =UQi,...,U, = F"(Q).

Since U; C Ug thisis a decreasing sequence of open sets. These sets form
the analogue of the Yoccoz puzzle pieces: the components of U, = F~"(Q)
are said to be the pieces of level n. It is easy to see that

A, UUp 1 =closure(2),n=0,1,....
One can extend H: A — Ato aconjugacy
H: A, — A,

see the following fact. Restrictions of H to A, even extend to a quasicon-
formal homeomorphism (but the dilatation of ¢, can depend on n):

Fact 11.2 H: A — A can be extended:

1 Foreachn=0,1,..., H: A— Aextendstoaconjugacy H: A —
A. (We shall also denote this homeomorphism by Ha,.)

2. Foreveryn=0,1,...,thereexists K, suchthat H: A, — A, extends
to a K,-quasiconformal homeomorphism ¢, of 2 onto €.
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Proof: Usethe pullback construction (seee.g. [MS]). More precisely, given
n one can choose a K,-quasiconformal mapping ¢ : © —  which is
symmetric with respect to R such that ¢, = H and such that ¢(F' (c)) =
Fr@®,r =1,...,n+ 1, where c, € are the critical points of F and F.
(Note that K, could tend to infinity as n — oo.) Next set ¢, = H]a,
on A, and define ¢, = F"1 0 ¢ o F™! on U4 in such away that ¢,
becomes continuous and so that X = ¢,(X) means that FX(x) e ;, iff
FXX) € Qi,.k = 1,...,n. (Continuity of ¢, determines which preimage
of the branched covering map of F: €, —  one should take and also
implies that ¢, will be symmetric with respect to R.) Then ¢,: @ — Q
is ahomeomorphism which is K -quasiconformal on interior(F¥(A)), k =
0,...,n, and Ky-quasiconformal on Upy1. ¢n: An — A, conjugates F
and F. Let us consider the remaining set L, := Ul FX(0A) = Q\
(UR_,interior(F7%(A)) U Upy1). Note that by Fact 11.1, L, is closed in
closure($2). Moreover, L, is acountable union of

(@) rectifiable arcs: 9 and components of F~(32))
(b) subsets of components of FX(R N ).

Therefore, Ly, isaclosed subset of the plane with o-finite linear measure,
and, by [Stre], or see Theorem V.3.2 of [LeVi], L, is removable for any
homeomorphism which is quasiconformal outside L. O

Since the dilatation K, can tend to infinity, we need to study the geom-
etric structure of the sets €2, in more detail. To do this, if x € U, let
Q"(x) be the component of U, containing this point (so "(x) is the level
n piece which contains x). Note that for each n > 0, there are infinitely
many pieces of level n, and (what isworse) their ‘ diameters' are, in general,
incomparable with each other. The following fact describes the geometry
of these setsin more detail. Let ¢ be the critical point. For n > 0, let '(c)
be the critical piece (i.e., the piece of level n containing c). Then define the
base point con(, Of this critical piece to be c. For any non-critical piece '
define its base point con inductively so that F(can) = Cran).

Denote by mod (C) the modulus of an annulus C, by diam(M) the
Euclidean diameter of aplanar set M, and by d(M, N) the Euclidean distance
between two planar sets M, N.

Fact 11.3 For each n > 1, there exist positive constants M,, R, and «p,
€n.n—1, Such that the following properties hold.

1. Every level n piece Q" has a simply connected neighbourhood W(2)
for which
a) mod (W(Q") \ ") > My,
b) F maps W(2") into W(F(R™)) and restricted to W(2") \ Q" isan
(unbranched) covering onto itsimage,
c) W(2") isa subset of the unique level (n— 1) piece which contains 7',
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d) Q" isroughly a disc:

Sup |z — Cqn|/ inf |Zz—cqon| < R,.
ze9Qn zedQn

2. a) for every piece Q" of level n and every piece Q" of level (n — 1), if
Q" c Q"1 then d(Q", Q" 1) /diam(Q") > €pn_1.
b) for every two different pieces &, Q5 of level n, if diam(Q]) >
diam(2}), then d(Q2], %) /diam(25) > €.

Proof: Let usfirst prove assertions 1a)—1d) by induction on n > 1. Prop-
erty (4) of Theorem A’ implies these assertions hold for n = 1. So assume
la)-1d) hold for 1, 2, ..., n — 1. Take apiece " of level n, and consider
the piece Q"1 = F(Q") of level (n — 1). We need to show that M, and

R, do not depend on " (but only on n). If W(Q"~1) does not contain the
critical value ¢;, then define W(Q") to be the preimage of W(Q"1) by F

(remember that all branches of F~* are defined on a fixed neighbourhood
of ). Statements 1a)—1d) then hold; (for statement 1d) use the induction
assumption and Koebe). Now consider the case that g € W(Q"1). Let

a > 0 bethe distance between ¢, and 3Q"~1(c;). By the induction assump-
tion 1d) for n — 1, there are only finitely many pieces of level (n — 1) with
diameter > a. Hence, one can choose corresponding neighbourhoods so
that 1a)—1d) hold for these finitely many pieces.

If the diameter of Q"1 is smaller than a and Q"1 N Q" 1(c;) = ¢,
then one can choose M,_; < M,_; and a smaller neighbourhood W' of
Q"1 insde W(Q"1) such that mod (W \ ") > M/ , and so that
diam(W) < (3/2)a. Then ¢; ¢ W' and W(Q2") can be taken as the dif-
feomorphic preimage of W. This proves 1a)-1c) for n with M, = M/ _;.
From Koebe, induction and 1a)-1b) we get a constant K, in 1d) which does
not depend on Q. If findly Q" = Q"1(c,) then 1a)-1c) follows with
Mp = Mp_1/£. Again 1d) follows.

Statement 2a) is adirect corollary of the statements 1a) and 1d) we just
proved.

L et us now prove assertion 2b) by induction. Letn = 1. Let , ©2; be
two different level 1 pieces, and W, W; the corresponding neighbourhoods,
see Theorem A’ (4). If W, W; are digoint, then some uniform choice for
€1 > 0 exists because the distance between the pieces is comparable or
larger than their diameters. If W, W; are not disoint, then W, C W, (or
Wi C W, if thediameter of the piecesis comparable), and again the distance
between the pieces is larger than the distance between & and dW;, which
islarger than e; - diam(£2j) where ; > 0 depends only on the lower bound
for the mod (W; \ ;). (We aways use that mod (W, \ ;) is universally
bounded from below.) This proves 2b) for n = 1. So assume 2b) hold
for n — 1. If QF, @3 are in different pieces of level n — 1, then one can
put en = en_1. If QF, Q5 c Q"1 then apply F and use the induction
assumption (one should consider two cases: '~1 iscritical or not). ]
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Step 4: In this step we approximate the desired conjugacy by the K-
quasiconformal mappings H, constructed below.

To do this, we need the following fact which uses that there are pieces
Qim) of level 1 with diam(2im)) — 0 asm — oo which intersects o(c)
(because w(c) isnon-minimal). This allows us to prove a statement similar
to Proposition 3.3 of [LS1]:

Fact 11.4 There exist a sequence of integers n, — oo, a heighbourhood
Q of therange €2, such that, for every ny:

(a) there exists a neighbourhood @, of the critical piece Q" (c), such
that F™ maps Qp,, onto Q in a ¢ to one fashion, and F'(c) liesin the
central component €2 of the map F;

(b) if x isso that F!/(x) € Q"(c) with j minimal, then there exists a uni-
valent branch of F~! on Q,,, to a neighbourhood of x.

Proof: Choose a sequence of distinct level 1 components Qm, such that
FKM () € Qim for some minimal integer k(m) and so that the length of
Qim NR issmaller than the length of Q(F/(c)) NR for 0 < j < k(m). By
Fact 11.3, this implies that the distances between F (c) and Qi is larger
than e -diam(£2;(m)) for someuniversal e > Oandal 0 < j < k(m). Because
c is recurrent, there exists aminimal K > 1 so that FK™+K (¢) € Q. Let
Qi(m) bethee-neighbourhood of €, . By Property 4 of Theorem A’, thereis
afixed neighbourhood Q of © and atopological disc Q,, > FX™ (c) with
Qim C Qim such that F¥: Q,,, — C isinjective and F¥(Q;,) = Q.
Defining ny, = k(m) + K’ gives part (a). To prove (b) notice that Q,, C €2
and therefore Q,,, € 2" ~(c). This completes the proof of Fact 11.4. O

Denote
Qo(m) = Q™ (c).

On the boundary of ©29(m) (and on part of itsinterior) H isaready defined
by the previous pullback construction. We now madify the definition of
H on Qo(m) and also on al its preimages. We do this as follows. Choose
a quasiconformal homeomorphism H: € — € which coincides with H
on the boundary of € and which maps F'™(c) to F™(€). Since F™(c)
is roughly in the middle of @ (and the same holds for the other map),
one can choose H so that its quasiconformal dilatation is at most some
universal number K. Now redefine the partially defined map H to a map
Hm: Qo(m) — Qo(m) sothat Hy = F~™ o H o F™. Since H(F™(c)) =
F"m (@), Hy is well-defined and has quasiconformal dilatation < K. Next
define Hy, from a preimage of ©u(m) to the corresponding preimage of
Qo(m) as a conjugacy, but only consider those preimages Fi(S2o(m))
whose forward iterates up to j — 1 do not enter £,(m). Outside all these
preimages let Hy, coincide with the map H constructed by the pullback
construction in the previous section.
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Fix m and partition 2 into the following 4 sets:

Xm(@) isthe set of points x such that there exists n > 0 so that F'(x)
liesin the (open) central piece (m);

Xm(b) isthe set of x such that there existsaminimal n > 0 so that F"(x)

liesin the interior of the annulus A and F<(x) ¢ Qo(m),k=0,. -1,
Xm(c) isthe set of x such that there existsaminimal n > Osothat F'(x)
liesin the boundary of A and F¥(x) ¢ Qo(m), k=0, . -1

Finally, Xn(d) is the set of x such that F"(x) is WeII deflned and lies
outside Qqo(m), foreveryn=20,1,2,....

Until now, Hy, has been defined on the sets X (), Xm(b), Xm(C). Ex-
tend Hy, naturally to the set X, (d) as follows. Any point X € Xy (d) is
contained in a nested sequence of the puzzle pieces ¥'(x), n > Ny, such
that each Q"(x) is mapped by F"~" univalently onto some non-critical
piece of some fixed level n, (where n,, does not depend on x but only
on m), and moreover, this map extends univalently onto one level up, i.e.,
from Q"~1(x) onto some piece of level n,, — 1. Note that the distortion of
this map does not depend on the point x (but only on m) because the mod-
ulus of the annuli between n,, — 1 and ny, levelsis bounded from below by
some positive constant m_ (whichisfixed if misfixed). All n,-components
are roughly discs with respect to their base points, see Fact 11.3(1d). We
conclude that al Q"(x) are also roughly discs (with respect to their base
points): theinequality of Fact 11.3(1d) holdsfor them but with aconstant R
which only depends on m (i.e. it does not depend on n and x). In particular,
the (Euclidean) diameters of ©"(x) tend to zero asn — oo uniformly for
al x € Xpm(d). For x € Xn(d) define Hy,(X) dynamically as the unique
point y € Q with the same itinerary, i.e., for every n > 0, F'(x) € Q;, if
and only if F'(y) € ;.. Thus we have that

Hn:Q — Q

is a well-defined homeomorphism, which is a conjugacy between F andF
everywhere except in the central domain €(m). Observe that the sequence
{Hm}m=1 converges uniformly to a conjugacy h between F,F.

So we now need to show that h is quasiconformal. To thisend, fix again
m and consider Hy, at different points. First of all, Hy, is K-quasiconformal
onthe open sets Xy (a), Xm(b), where K does not depend on m (because Hy,
is K-quasiconformal on £9(m); on the interior of A one hasthat H, = H
is K-quasiconformal). Thus it is enough to prove the following three facts
(where the dilatations of H,, in the last two facts can depend on m).

Fact 11.5 X (c), Xm(d) are of zero Lebesgue measure.
Fact 11.6 Hp, isquasiconformal at any point from X, (d).

Fact 11.7 H, isquasiconformal at any point from Xy(c).
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By quasiconformality in the last two of these statements we mean that
(***) below holds at any point from X, (c) and Xn,(d).

Let usfirst show that these three factsimply Theorem B’. Note that these
facts imply (cf. [GS2]) that the homeomorphism H, is K-quasiconformal
everywhere (see e.g. Theorem V.3.3 of [LeVi]). On the other hand, the
sequence { Hm}m=1 converges uniformly to aconjugacy h: Q@ — Q between
F and F. Hence h is quasiconformal on €2. So let us prove these facts.

Proof of Fact 11.5: That the Lebesgue measure of X,(c) is zero is trivial:
Xm(c) isequal to Un-oF ~"(dA). Here 9 A has Lebesgue measure zero since
it isacountable union of rectifiable curves 02 and asubset of thereal axis.
So let us show by contradiction that | X,,(d)| = 0. Solet y beaL ebesgue
density point of X, (d). Consider the same nested sequence of pieces 2'(y),
n > np, as before. We know that the distortion of "™ : Q"(y) —
Q™ (y,), where y, = F""m(y), is uniformly bounded (it only depends
on m), and al Q"(y) are roughly discs. Therefore (since Xn(d) is for-
ward invariant under F) the density of X,(d) in Q"(y), i.e, |Q2"(y) N
Xm(d)|/1£2"(y)| and also [Q™(Yn) N Xm(d)[/[$2"(yn)| both tend to 1 as
n — oo. On the other hand, each piece ™ (y,) of level ny, is mapped by
an F-iterate for the first time either to a central piece (of alevel < ny,) or
to 2, and the distortion of this map is uniformly bounded because n, is
fixed. Therefore, there exists afixed piece Q which iseither a critical piece
of level < ny, or which is equal to 2 so that the density of the set X,(d) in
Q isequal to one. In particular, Xy (d) N Q20(M) # 0, acontradiction. This
completes the proof of Fact 11.5. |

Proof of Fact 11.6: To provethat H;, is quasiconformal we are going to use
the following recent surprising result by Heinonen-Koskela, see [HK].

(***) A homeomorphism ¢ of the plane (more general, of /) is
guasiconformal, if there exists L such that for any point x there
exists a sequence of radii r, — 0, such that, for any n,

Sup fe(y) —e)l/ inf le(y) —e0l <L (11.1)

[y—X|=rn
Soit makes senseto call ¢ quasiconformal at apoint x if (***) holds.

Inour case we shall take ¢ = Hy, and x € X (€) U Xin(d). Note that we
do not mind if L from (***) does depend on m. (In fact, for pointsin X%,(c)
we can take any sequencer — 0.) In order to prove (***), we will use that
Hn, is strongly related to quasiconformal extensions ¢, of H: A, — A,
when nislarge.

So fix mand consider apoint X € Xy (d). Our aim isto show that (***)
is satisfied when we take r, equa to 2d,(x), where d,(x) is the diameter
of Q"(x). (The factor 2 is because we need space between 2'(x) and the
circle{y: |y — x| = 2d,}, since x can be close to the boundary of '(x).)
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Note that all ‘universal’ constants below as well as statements on the
shapes of discs can depend on m but these constants will not depend on x.

Asbefore, thereexistsm_ = m_(m) > Osothat foreachn > Oand each
X € Xm(d), the modulus of the annulus "~1(x) \ "(x) is bounded from
below by m_. (These moduli may not be bounded from above.) Hence there
exists j (which only depends on m), such that for any n, the modulus of the
annulus Q"1 (x)\ 2"(x) isso big that the Euclideandisc B, := B(X, 2d,(X))
centered at X with radius equal to 2d,(x) is contained in "!(x) (and
certainly contains "(x)). Thisis because mod (B, \ 2"(x)) lies between
two universal positive numbers.

Fn—1="m maps B, to a set between pieces of levelsn, + j and n,,. Note
that theseiterates of B, do not intersect the critical piece (m), because the
latter piece has level ny,. Since the map F"~)~" has universally bounded
distortion on Q"~! (x), theimage B' = F"~!~"m(B,,) isroughly a Euclidean
disc centered at _

X' = F"I7m(x),
is contained in a piece of level n,, and its diameter is comparable with the

diameter of '
P:= Q" (x).

One can take everything back by the corresponding branch of F—("—i—nm
withbounded distortiontoX = Hp,(X), and hence (***) holdsfor x € Xn(d)
(and therefore Fact 11.6 is proved) provided we can prove the following

Claim 1: For each set B’ asabove, theimage B’ = Hy,(B’) isroughly adisc
centered at X = Hp,(X).

Proof of Claim 1: Note that
P=Q"™(x)c B c Q™X).

The levels of the two puzzle pieces only depends on m, but since their
diameters can be incomparable, this does not help much. The idea of the
proof of the claim is to compare the set B with a larger set which has
dynamical meaning by adding to B certain puzzle pieces. Thus Hn(B')
is contained in a set whose boundary is the image by some map ¢ (the
quasiconformal extension of thepullback map H: A, — A, from Step 3).
The quasiconformality of ¢ will then allow us to conclude the claim.

Let usstart by noting that B isroughly adisc around X and mod (B'\ P)
isuniversally bounded from above and from zero (asbefore universal at least
for agiven choice of m). Hence, there exists universal r > r > 0 such that

r'-diam(P) < d(y, P) <r -diam(P),

for every y € 9B'. '
Fix apoint y € aB', and consider itsiterates up to F! (y). The following
three cases can occur:
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1. There exists a minimal ip, 0 < ig < j, such that Fo(y) € A,,_1 and
F'(y) ¢ Qo(m) := Q™(c) for 0 < i < ip (as remarked before A,,_1 =
UﬂgglF*k(A) is the complement to the pieces of level n,,, and Qq(m) =
Q"m(c) isthe critical piece of the level n,). One can write:

Hin(Y) = F7° 0 H|ay, 4 0 FO(Y) = Hlaq, 1., (¥)
= Gnp—1+io(Y) = Onp+j+1(Y),

where ¢, is the quasiconformal extension of H|s, to € constructed in
Fact 11.2. In this case define Q(y) = 4.

2. Foreachi with 0 < i < j theiterate F (y) iswell-defined, F/(y) € Uy,
(i.e, liesin Q™(F!(y))), and F'(y) ¢ Qo(m) for0 <i < j. Theny e
Q/(y) := Q"mtl(y). Notethat Q'(y) N P = ¢ because otherwise two pieces
of the same level n,, 4+ j coincide which isimpossible because P does not
intersect 9B'. Next let uslook at one level down and consider two subcases.

(@) yisouside the pieces of level n, + j + 1. Then Fi+1(y) isoutside the
pieces of level ny,, and

Hmn(Y) = ¢npj+2(Y)-

Then define Q(y) = @.

(b) yisinsideapiece Q™ *i1+1(y) of level (N +j +1). Thendefine Q(y) :=
QMti+l(y), Note that Hy(y) € Q™ ti+1 where the latter is the piece
of F of level (N + j + 1) for which 0QM™ 1+ = His . (0Q(Y)).
In other words,

Hn(Y) € ¢nmtj+1(Q(Y)).

It is useful to note at this point that the sets F(P),0 < i < |, do
not intersect Qq(m) (because the iterates of x do not meet y(m)).
Therefore, as above,

Hm(X) € Hn(P) = D+ (P) = dnpyj41(P),
where X' = F"~i="m(x) as before.
3. There exists aminimal ip, 0 < ig < j, such that F‘O(y) € Qo(m). Then
y lies in Q"*'o(y), which is a preimage of the critical piece $(m) by
abranch of F~'o, Consider again two subcases.

(a) diam(Q"*°(y)) < (1/10)-r"-diam(P). Thendefine Q(y) = Q"o (y).
Note that Hm(y) € Q"™*o, where 9Q™¥o = Hia, ., (3Q(Y)) =
HI Aps 12 (0Q(Y)). In other words, again

Hmn(Y) € ¢nmtj+1(Q(Y)).
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(b) If diam(Q™*o(y)) > (1/10) - r’ - diam(P), then define Q(y) = . By
construction Hy, is K -quasiconformal on Q"+ (y), and ¢n,+j+1 = Hm
on the boundary of Qmto(y): Moreover, there are at most finitely
many Q"*'o(y) as in this subcase, see Fact 11.3(1d) and Fact 11.4.
In addition, Q"*o(y) N P = ¢ because otherwise the level ny, + j
piece P is contained in the level n, + ig piece Q"™*o(y) and then
Flo(x) € Flo(P) C Flo(Q™tlo(y)) = Qq(m), acontradiction.

Now define a new map ¢/. Let ¢’ be equal to ¢n,,+j+1 everywhere in
except for pieces Q"o (y) asin 3(b), on which we define = Hy,,. Define
also

C'=0B'U{Q(y); yedB}.
We have proved that
Hm(3B") C ¢'(C")
and
Hm(X) € ¢'(P).

Observe that ¢/ is a homeomorphism of Q onto 2, which is Ky, 4 j1-
quasiconformal on any open set U for which ¢|U = ¢n,+j+1 and K-
quasiconformal when ¢/|U = Hy,. Hence, ¢’ is K, +j+1-quasiconformal
everywhereexcept along finitely many piecewiseanalytic curves(the bound-
aries of the pieces Q"*to(y) as in Case 3b). Therefore, ¢ is K’'-quasi-
conformal on 2, where K" = K, +j+1 depends only on m. In order to use
this, we need to show that C' has a good geometric structure;

Claim 2: There exist two universal constants 0 < b < a, such that, for
everyze C/,
b.diam(P) < d(z, P) < a- diam(P).

Before we prove Claim 2, let us show that it implies Claim 1. Indeed,
take X" = (¢') Lo Hn(X) € P. Assuming Claim 2 istrue, for every z € C,

b.diam(P) < d(z, X") < (1 + a) - diam(P).

Hence, H(0B") surrounds the set ', = ¢/(B(X”, b - diam(P))) and is
contained inthe set I, := ¢'(B(x”, (1 + a) - diam(P))), where B(z,r) =
{y;ly—12z] <r}.Let X = Hnh(X) = ¢'(X"). Since ¢’ is K’'-quasiconformal,
there exists D = D(K’), such that

B(X, 1) Cc I'1 € B(X, D -y),
wheref; = min{|X — y|; y € I'1}, and
B(X,f2/D) C I'z C B(X, F2),

wheref, = max{|X — y|; y € I'2}. Hence

mod (I'; \ I'1) > 27 - log <r|23/rD> .
1
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We need to prove that 7>/ is universally bounded from above. But since
¢’ is K’ gquasiconforma and (I, \ I'y) is the ¢’ image of the annulus
{z; b-diam(P) < |z— X"| < (1 + &) - diam(P)}, we get

(27/K’) -log((1 +a)/b) < mod (T2 \ I'1) < (27 - K’) - log((1 4 a)/b).

This and the above inequality for log(I% \ I'1) imply that the ratio f,/f1
cannot belarger than D?-[(1+a)/b]¥". Solet usprove Claim 2. First of all, it
holdsforany z € 0B": takeb =r"anda =r. It aso holdsfor any z € Q(y)
for any Q(y) (asabove) for which diam(Q(y)) < (1/10) -r' - diam(P). This
isbecause inthat caseitisenoughtoputb = 9/10-r anda=r +1/10-r'.
In particular it holds for al z € Q(y) with Q(y) asin Case 3(a).

Soitremainsto consider z € Q(y) where Q(y) isasin2(b). To provethe
right-hand side inequality of Claim 2, we need to show that any such level
nm+j+1piece Q(y), y € aB',isnottoolargecomparedtodiam(P). Indeed,
for thelevel ny, + | piece Q'(y) definedin Case 2, wehave Q(y) NP =0
and, by Fact 11.3(2a),

e.-diam(Q(y)) < d(Q(y), 9Q'(y)) < d(Q(y), P) < d(y, P) <r-dian(P),

where e, = €nm+j+Lnm+ij- Hence
diam(Q(y)) < (r/e,) - diam(P)

which proves the right-hand inequality of Claim 2. Let us now prove the
left-hand side inequality. Since we consider Q(y) such that diam(Q(y)) >
(1/10) - r’ - diam(P), we get by Fact 11.3(2b):

d(Q(y), P) = d(Q', P) > en,,+j - min{dian(Q’), diam(P)} >
> €nyj - Min{diam(Q), diam(P)} > e, - min(1, r’/10) - diam(P).

This proves that one can also choose b > 0 uniformly in the left-hand side
inequality of Claim 2. This completes the proof of Claim 2 and therefore
also the proof of Claim 1. O

Proof of Fact 11.7: Now consider H,, a points X € Xn(c). By definition,
for somen > 0, y:= F"(x) liesin the inner boundary of A, i.e. inthe
closure of the union of 3%, and FK(x) ¢ Qo(m),k=0,...,n. There are
two substantially different cases:

(@) yisnot rea, belongs to the boundary of some €, and F(y) is not real
aswell,

(b) either y e 9ANR or y € Q(c) and F(y) isreal (i.e. one of the end
points of Q2 NR).

Inturn, for both () and (b), there are two subcases:

(1) there existsk, 0 < k < n, such that F¥(x) € 9Qq(m)
(2) F¥(x) ¢ Qo(m),foral k=0,...,n.
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In the Cases (al)—(a2) there exists a neighbourhood U of z = F(x) in
Case(al) and of z = yinCase(a2), suchthatU C A_xin(al)andU C A
in (a2) (remember that A = U}‘ZOF*'(A)). Hence, the homeomorphism
Hnm, is quasiconformal at each point of U except for a piecewise analytic arc
(whichis either U N Q(m) or U N ;). Since such arcs are removable, Hy,
isquasiconformal at z € U.

In Case (b), the Subcases (1)—2) are very similar. Let us first consider
the most difficult Case (b2) assuming also that y € dA N R (the second
possibility that y € Q(c) with F(y) real is easier). Since F¥(x) ¢ Qo(m)
for k < n, wehave Hy, = F~" o Hy o F™ in asmall neighbourhood of the
point x (the size of the neighbourhood depends on n). Hence, it is enough
to show that Hy, is quasiconformal at y € dA N R. In particular, y is not
inside any 2; but can be apoint of 3¢ NIR. Takearound disc B = B(y, r)
with the center at y and a small radius r. Similar to the proof of Claim 1
above, consider

C =9BU{Q?% Q%N oB £ ¥},

where Q? are the level 2 pieces. We have: Hy(y) = ¢2(y) and Hy,(9B) C
$-(C). Since ¢, : Q@ —  is quasiconformal, it is enough to prove that C
isroughly a‘circle around vy, i.e. that there exist , > r; > 0 such that
CNn{z |z—y|=ri} =@,i =1, 2andsuchthatr,/r, isuniversaly bounded
from above. To prove this, let % N 9B # @, and let Q* be the level 1 piece
containing 2. Note that y ¢ Q. As it follows from Fact 11.3(1c), for
example, there exists auniversal ¢, > 0, such that

d(£22,99Y) > e - diam(Q?).

Thisimplies that diam(2?) < r/ep, because d(Q?, Q) > em - (I/em) =T
and since y ¢ Q! this would imply that (©?,y) > r, a contradiction.
Similarly, d := d(Q?%,y) > r - €m/(1 + em) because otherwise we would
have:d = d(Q?, y) > d(Q?, 3Q1) > e-diam(Q?) > e-(r—d) > r-¢/(1+e€),
i.e. acontradiction. Thusonecantaker; =r-¢/(14+¢)andr, =r +r/c =
r-(1+e)/e.

If yisasin Case b(1) then H, = F ¥ o Hy, o F¥ and so it is enough to
show that (***) holds for H,, near z= FX(y) € 3Qo(m). Using again a set
C asabove, (***) again follows at z.

Thus we have proved that (***) holds at any point of X,(c) and before
we proved (***) for any point of X,(d) with a specia choice of r, — 0.
The proof of Theorem B’ is completed. O

Remark. Combining the considerations used in the cases X € X,(d) and
X € Xm(c), one can show that (***) holds at x € X (d) for an arbitrary
small enough r, i.e. show that Hy, is quasiconformal without the use of the
deep result of [HK].
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12 Proof of Theorem C: density of Axiom A mapsin families

Let g, : U:OIOI‘(/\) — | be a family of maps of the class AC, where
A€ A :=[A1, As]. Denote ¢, € 1°(1) the critical point of g, and w, (C)
the omega-limit set of c(1) by g,. Assume that:

a) theitineraries of the critical point of gy, and g, are different;

b) g.(x)isred analyticon (A, x) inaneighbourhood of every point (%, Xo),
where g € [A1, Az] and X € closure(U 17 (o));

¢) thereexists A € (A1, Ay) such that g, has no parabolic periodic orbits.

Let A={x € A : g, isAxiom A map} and S be its complement.
Given Ag € S, let S(Ag) be connected component of Scontaining Ag. In this
section, we address the important question whether the set A is dense (or
equivaently, S(A) = {1} for every A € S).

Observe that if g.(X) = go(X) + A, then A is dense in this family,
because all the branches “move up” with A (see Sect. 8 and also Lemmas
12.2-12.3 below). In particular, Axiom A maps are dense in the family
X = kX + A — K/27 sin(27x), » € R, of Arnold’s maps, and in the family
of Blaschke products of Example 2 of the Introduction. For the same reason,
Axiom A maps are dense in the space of all maps g € AC.

Let us consider this problem for a family g, satisfying the conditions
a)—c) from the beginning of this section. It is very easy to see that S(%) =
{ro} if c is attracted to an attracting or parabolic periodic orbit of g,
(see Lemma 12.2) or eventually periodic (use condition @) from above and
Lemma12.3).

The cases when w(c) is infinite are much more difficult to consider. We
use Theorems A, B, A’, B’, and a method of [Ko, Sect. 7.2, p. 69-70] to
prove the following slight generalization of Theorem C:

Theorem C’. Assume w;,(C) isinfinite.

o If w,,(c) is minimal, then S(xo) = {Ao}, i.€, Q;, IS approximated by
Axiom A maps g;..

e If w,,(c) isnot minimal then again S(A) = {Ao}, provided the following
condition (*) holds:
(*) w, (c) does not contain parabolic periodic orbits, where A is at least
one end point of S(Xp).

For more information see Lemmas 12.4-12.5.
In particular, we have

Corollary 12.1. Let P, beaholomor phicfamily of polynomial sof Example 1
from the introduction. Then either all polynomials R are conformally con-
jugate or Axiom A maps are dense in this family.
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The proof of Theorem C' is contained in the following Lemmas. Let us
start by fixing a closed subinterval [, €] of (A1, Aj).

Lemma 12.1. For every n > 1, theset N, = {A € [e,e] : ¢} has
a parabolic fixed point} is finite. In particular, the set N = U,>1N, is at
most countable.

Proof: Useb) and c¢). (Actually we have much more, see Theorem IV.B’ in
[MS].) O

Lemma 12.2. Fix an arbitrary parameter o € (€1, ). If g, has an
attracting or parabolic periodic orbit B, which attracts ¢, then there
are parameters A arbitrary close to )g on either side of Aq, such that g, is
Axiom A map.

Proof: Assume for simplicity that Ao = 0. Consider several cases.

1). Ry isattracting. Thenfor every A close enough to 2y, g, has an attracting

periodicorbit P, , which changescontinuously with 4, tendsto B asi — Ag,

and attracts ¢, . By Lemma12.1, one can choose A arbitrary closeto g, such

that g, has no parabolic periodic orbits. Then, by Méar€'s theorem [MS,

p. 222-223], this g, isAxiom A.

2). Py is atwo-sided attracted parabolic periodic orbit (like O for x — X).

Then, because of the previous lemma, for any A close enough to %, there
exists an attracting periodic orbit (close to R) which attracts ¢, . For this A,

we apply 1).

3). Py is aone-sided attracted parabolic periodic orbit (like O for x + X).

There are two subcases:

3a). For A arbitrary close to 2y, g; has a periodic orbit near Ry. Then,

again because of the previous lemma, one of these orbits is attracting, and
it attracts the critical point. Then we apply 1).

3b). If 3a) does not hold, then we proceed asin [Lel]. Let p be the period
of Py. Then gg' (Co) = @ asi — +oo, where & € Po. Moreover, since
Py is the one-sided attracted orbit, one can assume that ¢ (o) < ao,

i =1,2,....0n the other hand, since there are no wandering intervals,
there exists a sequence g, " (co) of preimages of ¢, which tend to & from

the right side. By continuity, for every small € > O there exist i (large) and
3 > 0, such that for every X' € (Ag — 8, Ao + 9),

g, (Cy) € (89 — €, 3 + €).

But since there are no fixed points of ¢ in aneighbourhood of a, if 4 # o
iscloseto Ao, there exists (for the above X') an integer i, such that

gf/il(ck/) > gy + €.
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Changing now A from Ao = 0to A/, we must meet A such that

g, °(c) =g’ (cy).

Therefore ¢, is periodic, and we can again apply 1). O

Lemma 12.3. If theitinerary of ¢, isnot constant for any A in a neighbour-
hood of Ag, then there exists A arbitrary close to Jo, such that ¢, isattracted
by an attracting or neutral periodic orbit of g.

Proof: By the continuity of the itinerary on A, one can choose A arbitrary
close to %, so that the itinerary is periodic. It implies g, has a periodic
interval containing the critical point. O

Lemma 12.4. Assume that [Aq, A»] isa closed subinterval of (g, &), such
that:

1) the itinerary of ¢, isthe same for each A € [A1, A,] and not periodic,

2) w;, (c) does not contain parabolic periodic orbits, for A equal to either X
or to As.
Then theinterval [Aq, A,] isnot maximal obeying these properties.

In other words, if [A, Ap] isamaximal non-trivia interval satisfying 1),
then: w;, (c) isnon-minimal for each A € [A1, A»], contains a periodic orhit,
and in addition, w, () contains a parabolic periodic orbit for both A equal
to A1 and to As.

Moreover, we have

Lemma 12.5. Assume that [A4, A,] is as in the previous lemma and A’ C

(A1, A2) is an open interval such that w, (c) contains no parabolic cycles
for all » € A’. Then for every & € A/, there is a first return map G, to

aniceinterval around c (depending on 1), such that all G, areincluded in

afamily of box-mappings depending complex-analytically on A inacomplex
neighbourhood €2 of the open interval A, @ "R = A’, and all maps
G, A € Q, are pairwise quasi-conformally conjugate.

Proof of Lemmas 12.4-12.5. If w(c) isminimal, we use Theorems A and B,
and the further proof is a repetition of the proof of the infinitely renor-
malizable case of real analytic family of real analytic unimodal maps, see
Sect. 7.2 of [Ko]. Note that condition 2) holds automatically in this case.

If w(c) is not minimal, there is a substantial difference caused by the
fact that the box mapping we constructed in Theorem A" hasinfinitely many
branches, and in order to apply an idea of [Ko], we need to include this map
in acomplex analytic (on the parameter) family of such maps.

Let us assume that A, = 0 and that wo(C) contains no parabolic cycles.
Then the map g, satisfies the conditions of Theorems A" and its addendum,
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and Theorem B’. Therefore, the first return map of @ to a nice interval

P(0) around ¢, Ry : UP'(0) — P(0), can be extended to a box mapping
Fo : UV'(0) — V(0), suchthat V' (0)NR = P'(0), V(O)NR = P(0).’ Zero’

in the notations indicates that all thisis constructed for the map @. Let us
note that Theorem A’ shows that all intervals P (0) are very deep inside
P(0), so that we can take V(0) to be D(P(0); = — 6), where§ > 0 issmall.
We need the modification of V(0) as made in the addendum to Theorem A’,
see Sect. 10. Namely, we replace (and fix, from now on) V(0) by V, where
V is D(P(0); = — ), except for two small neighbourhoods 7, Z, of theend

pointsay, a, of thereal trace P(0) of V, sothat 9V in Z1, Z, isgc“,"-prei mage
of two leavesl,,, |, (invariant under an iterate of @) of the foliation defined
in Sect. 10. As explained in the addendum to Theorem A’, with the new
range V(0), the first return map to V(0) is still well-defined and forms the
initial box map. Let us denote this box mapping by K : UV'(0) — V(0)

(forgetting about the box mapping before this maodification).

Let us consider the Yoccoz puzzle pieces of the map k as defined
in the Step 3 of the proof of Theorem B’ (see the previous section): the
pieces of level | > 0 are by definition the components of I{'(V(O)).
In particular, we consider the critical pieces V{(0), j = 1,2,..., of this
partition (i.e., V;(0) is the component of F, J(V(0)) containing c). Denote
by Fjo : Ui VJ-i (0) — V;(0) the first return map to V;(0) containing the
points of w(c) N V;(0). Our aimisto show that, provided j islarge enough,
one of the maps F; o can be included in aholomorphic family F ; (induced
by g,), for A inasmall (complex) neighbourhood of A = 0. Theideaisthe
following. We include each individual component of F ¢ in a holomorphic
motion which agrees with the g,-dynamics. On the other hand, provided |
is large, the dynamics of F; o is concentrated on a small neighbourhood of
thereal axis, and this persists for any individual motion. If now two maotions
intersect each other for some A, then this intersection can be transferred
to a fixed neighbourhood of the periodic point g of g,. Since the loca
dynamics of g, repels adomain to afixed distance away from the real axis,
we abtain a contradiction.

1. Let us include oV(0) in a holomorphic motion ¢, : aV(0) — aV()L),
L] < €, asfollows.

Denote by a; the periodic point of g, which isaholomorphic extension
of the periodic point a = & of go, which was used to generate the real
partition. Since ap(c) contains no parabolic points, & isrepelling. One can
even assume that & is afixed point.

First of al, using that the linearization Boéttcher coordinates around a
depend holomorphically on 1, the leaves |, , |,, are naturally included in
motions|,, (1), ,,(1), so that |, (1) are invariant under g, ! in aneighbour-
hood Z of &, which is fixed once and for all. This holomorphic motion is
transferred by some branches of ¢ M to neighbourhoods of a (1), where
the branches are chosen so that gy M(ap) = & (0) with & (0) the end points
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of P(0). In particular, the end points ¥, (1) of g;'v' (I, (1)) (other than & (1))
are holomorphic functions of A. The rest of 9V(0) between ¥(0),i = 1, 2,
is an arc of the circle (and its complex conjugate). It can be included in
a holomorphic motion as well within a family of arcs of circles joining
Yi (A). We choose a complex neighbourhood W of & = 0 so small that the
end points of |,,,i = 1, 2, are some definite distance away from the rea
axisfor all A € W. Then any point x € |,,, X # &, isrepelled by iterates of
0. inside the neighbourhood Z eventually to a definite distance h > 0 away
from the real axis, where h is independent of 1 € W,. Note that here we
use that we work with the modified range V with pieces of ‘external rays
in the boundary, rather than the origina range.

We shall constantly use the following obvious fact: Consider aunivalent
map gy : Ao — By, where Ag, By are domains with piecewise analytic
boundaries and let ¢, : 9By — 9B, be a holomorphic motion. Then, for
any A in a complex neighbourhood of » = 0,themap d' : A, — B; is
also a well-defined univalent map such that the domain A, tendsto Aq as
A — 0. In particular, Step 1 gives a holomorphic motion of each individual

domain V} (0) defined by g " oprogy : V! (0) — VI (%), where %"
maps VJ-i (0) onto V(0). However, a priori, each such maotion is defined on
its own neighbourhood of A = 0.

2. Choose j so large that the following holds: if V/ (0) is any component of
the map F; o then all iterates of Vji(O) by go until the range V;(0) of Fjo
lie within a h/10-neighbourhood of the real axis (where h > 0 has been
defined in the Step 1). To seethis, use Fact 11.4, and take j = ny, be large.
Indeed, then the moduli of the annuli Q,, \ V;,, are uniformly away from
zero, and in particular ,,,(0) shrinks to the critical point. By part (b) of
Fact 11.4, with X € R, the statement follows.

3. With j chosen as in the previous step, we forget about all other maps.
So let us write Fy, V'(0) instead of F; o, VJ-I (0) (and so on). If (as for the
minimal case) the number of components V (0) isfinite, then finitely many
holomorphic motions already give us the desired extension. In our case, we
also will obtain a holomorphic motion, because all, except finitely many,
components V' (0) of Fy are concentrated around areal set X(0), on which
0o isexpanding, and this situation persists for all A complex near 0.

To make this precise, we consider the piece P = P(0), and for this piece
we consider the sets X(0) = X and X(0) = X defined in the end of Sect. 10,
and the corresponding complex map

G(@0) : UB(J) — UD(l; = — B),
where B(J) are finitely many pairwise digoint topological discs al con-

tained properly inside UD(Il; = — B). Note that all G(0)-iterates of points
of the set X(0) remain in the domain of definition of G(0).
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Now, let us construct the family F.. For any component VI (0) of the
map Fo, choose my > 0 minimal, such that ¢"(V'(0)) is not properly
contained in any domain B(J). Let N(i) be so that d:'(')(V'(O)) V(0).
Then, since we havefixed ng in the construction of themap G in Sect. 10 and
since al iterates of all V' (0) until the range V(0) of F, are either disjoint or
coincide, and are roughly discs, the number of different domains Q(Vi (0)),
for arbitrary i and all j = m, ..., N(i), is bounded. Hence, the inverse
branches of g, from V(1) to these finitely many domains are well-defined
in some small complex neighbourhood of A = 0. On the other hand, the
inverse branches of ¢y mapping from %“ (V'(0)) back to V'(0) persist for
A in asmall complex neighbourhood of A = 0. The reason for this is that
the map G(0) is included in a complex analytic family G(i), when A is
closeto . = 0 and fix the range of G(1) for all such A, because the number
of components of the domain of the map G(0) is finite and their closures
are pairwise digoint. Therefore G(A) is uniformly expanding (where the
expansion factor is bounded by some constant which does not depend on
A and on the points). It follows that there exists a small enough complex
neighbourhood of A = 0 such that any V/(0) and g(')“")(v 0)) = V(0) is
included in a holomorphic motion Vi (1), such that g (Vi(h) = VL),

and all gk(V'(A)) k=0,1,..., N(), remain in a h/5-neighbourhood of
the real axis.

4. It remains to show that these holomorphic motion of the individual
components are pairwise digjoint with each other and with V(1) for every A
inafixed neighbourhood of A = 0. Assumethat the boundaries of V(1) and
VI (1) arenot digoint, for some X (closeto 0). In order to be definite assume
that m; < m;. By assumption, the diameter of gfi (V'(2)) is comparable to
the diameter of V(1) (so N — my is bounded by some number which does
not depend oni). If ¢ (V1 (1)) has asimilar diameter then (since there are
only a finite number of such domains, and their closures are digoint), we
can make sure that they are disjoint by taking A sufficiently closeto 0. Soin
that case, we can use the map G(A) from above to conclude that V(1) and
V! () aredigoint also, acontradiction. So we may assumethat the diameter
of g;"(VI(x)) is small compared to the diameter of V(). As before let M
be so that gM maps the boundary points of V(1) N R to the fixed point 3,

of g, and consider g *™(Vi(i)) (whose diameter is small compared to
V(2)). Because of the last sentence of Step 3, we can take A so closeto zero,
so that g ™ (Vi (1)) liesin a small neighbourhood of the fixed point 3,

and, moreover intersects, say, the leaf I, (1) of the foliation (because we
assumed that V' (1), VI (1) did intersect and because |, (1) is a piece of the
boundary of g "™ (Vi(1))). It follows that someiterate of g, repels a point

of the domain g "™ (Vi(1)) (staying inside the neighbourhood Z of 3) to

distance h from the reaI axis before returning to V(1) (here we use that the
leaf |, (1) isinvariant under g,). However, as shown in Step 3 this does not
happen, and so we proved by contradiction that domains remain digoint.
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The same argument al so shows that domains are digjoint with the boundary
of the range, provided A is sufficiently closeto O.

The rest of the proof repeats the consideration of Sect. 7.2 of [KQ] (the
infinitely renormalizable case), using Theorem B’. If cisnot recurrent, then
wereplace F by the map G constructed in Proposition 10.1 (so that it isnot
related to the piece P anymore, but the Cantor repeller of G contains w(c)
isthis case), and again repeat the construction of [Ko]. O

13 Proof of Theorem B”

In this section we want to prove Theorem B”, which states that one has
a quasisymmetric conjugacy on the entire dynamical interval when there
are no parabolic or attracting periodic points.

Proof of Theorem B” : Let us for simplicity assume that the maps g,§ are
induced by covering maps of thecircle R/Z. If there are gapsin the domain
of these maps, then the proof is even simpler. The proof goes in four steps.

Step 1. Let usfirst deal with the minimal case. Then in Theorem A we con-
structed acomplex extension of thefirst return map to someniceinterval U,

but only considered the domains containing points in w(c). Now consider
the domains associated to extensions of ALL real domains of thefirst return
map to the nice interval Uy. Let us show that we get a quasi-box mapping
Po: UVy — Wk (asin Theorem A, but with infinitely many branches).
That the domains V intersecting w(c) are contained in \k follows from

lw(c)| = 0, see the proof of Theorem A. So consider any other branch J of
thefirst return map RtoU, = VkNR. Let R|J = gandlet J o J besothat

g°: J — closure(V) N R is a homeomorphism. This map is a diffeomor-
phism except possibly when ¢ is the central branch of the previous return
map, and then ¢®1: g(J) — closure(Vk) N R is a diffeomorphism (by

construction). Because one has Koebe space and by the choice of real trace
of V, there exists auniversal constant C > Osuch that | (J)| < C-|gi(J)|

foral 0 < j <s. LetV bethe pullback of Vi corresponding to J. In order
to see that \; is well-defined and contained in \, we need an improvement
to the Schwarz Lemma 2.3, which is due to E. de Faria and W. de Melo,
see Lemma 2.4 in part |1 of [FM]. This improvement states that there ex-
ists € > 0 so that the spoiling factor in the Schwarz Lemma in the angles
of the Poincaré domains when going from g +%(V)) to g/ (V}) is at most

(1 + K|g! (J)|**¢) for some universal constant K. Since the orbit of J up
to its first entry in \k is disioint, since |g' (J)| < C - |g!(J)| and since the
maximum size of the intervalsin this orbit is small when k is large, we get

.....

want. Hence V! is well-defined, and inside a disc with angle close to /2
(with some dlits). Because the real trace of \} is well inside the real trace
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of Vi, wethen obtain that \j, isinside Vi. Asin Theorem A wetherefore ob-

tain aquasi-box mapping with infinitely many domains, which can intersect
and are contained (but not necessarily properly) inside . The range V is
adisc with some dlits: Vi N R = Uy. Let us from now on fix k and remove
the k from the notation. Consider areal one-parameter family of ranges V(t)
by dlightly changing the radius of the disc in such away that V(0) = V but
so that the real trace isindependent of t. Then we get afamily of quasi-box
mappings P(t): U V'(t) — V(1) fort € R sufficiently closeto 0. Now we
want to obtain a box mapping from this. For this we proceed as in Sect. 6.
Asin Step 1 of Sect. 6, construct a smooth box mappingg: U B — A,

where B; N R are the (finitely many) domains of the definition of g. As
above, consider the sequence of (all branches of the) first return maps to

the central domains §;: Uj éi' — Al. In fact, we can choose ¢ so that
AINR=U j foral j.Todo this, take aninvariant curve through one of the

fixed points p of g (transversal to R), then choose A so that close to p, A
coincides with the invariant curve. Then extend g smoothly asin Sect. 6 so
that ¢ coincides with g for all pointsin A close to the red line.

Next, asin Step 2 of Sect. 6, intersect the smooth box mappingg; with
the quasi-box mapping P(t) (where we assume that j is chosen so that two
ranges Al and V correspond to the same level). By the Theorem of Sard
(which states that the set of critical values of asmooth mappingh: R — R
has L ebesgue measure zero), it follows that we can find t close to zero, so
that the ranges of P(t) and §; (which are both piecewise smooth curves)
aretransversal. In fact, the range P(t) had two dlits, but since we made sure
that Al N R = U;, we get that the component of Al N V(t) containing c is
atopological circle consisting of afinite number of smooth arcs and without
cusps (this follows from the transversality). So we obtain a box mapping
P: U @ — Q sothat 92 isaquasicircle. P is an iterate of g on each
of the domains, the domains are all digjoint, and properly contained in €2.
The modulus of the annuli 2 \ €' need not be bounded away from zero
uniformly in i. However, by passing to the first return map to the central
domain this modulus condition will be satisfied: the * safe-space’ condition 4
from Theorem A’ in Sect. 10 holds. If we are in the non-minimal case, then
we can also extend the box mapping from Theorem A’ to a box mapping
P: U Q' — Q such that the closure of U Q' N R again contains 2 N R.
To prove this, we do not need the smooth polynomial-like mappings, but
only that the real domains @ N R are deep inside 2 N R (see the proof
of Theorem A’). Both in the minimal and non-minimal case let A", A~ be
the set of points in the upperhaf (lowerhalf) plane which are inside  but
outside all the domains &' and let A= A" U A~

Step 2: Now observe that the boundaries of A" and of A~ are quasicircle.
The proof of this is identical to that in Step 1 of Sect. 11 because the
boundary of Q2 is a quasicircle, and because each of the domains € is
mapped with uniformly bounded distortion to €2.
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Step 3: In TheoremsB and B’ wedid obtain aquasi conformal map ¢ : Q@ —

conjugating P: Uiy Q' — Qand P: Uiy Q' — © wheretheindex set J

corresponds to the domainsintersecting w(c). Take any quasiconformal map
¥ Q — Qextendingtherestriction of ¢ to 9. Let K beitsquasiconformal
dilatation. By pulling back once, we obtain also K-quasiconforma maps
Vit Q' — Qi foreachi ¢ J.Asin Step 2 of the proof of Theorem B’ wecan
find aquasiconformal conjugacy H : A — Awhichagreeswith¢ on Q' for

i € Jandwith 4 ondQ' fori ¢ J.Nowextend H: A — AtoH: Q — Q

as follows. On U;c;Q' let H be equal to the conjugacy ¢ and on € with

i ¢ Jlet H beequal to ;. Asin Fact 11.2, we obtain that H: @ — Qis
quasiconformal. H is a conjugacy on the domains € intersecting w(c). If

g isminimal, then the domains where H is aconjugacy cover w(c) N 2. So
by taking subsequent pullbacks (as in the proof of Fact 11.2 but since we
aready have aquasiconformal conjugacy on w(c) thedilatation now will not
depend on n), we obtain a sequence of quasiconforma homeomorphisms
Hn: € — € with the same quasiconformal dilatation and converging to
a conjugacy ® between P: U — Q and P: Q' — . If gis non-

minimal, then the construction of a conjugacy is already done in Steps 3
and 4 of the proof of Theorem B’ (simply also include the domains which
do not intersect w(c); the proof isidentical).

Step 4: There exists a minimal N so that the g¥ maps © N R injectively

onto thewhole dynamical interval. By taking, if necessary, puzzle pieces of
deeper level in  which intersect the real segment 2 N IR, we can make sure
that the image under g\ of all these puzzle pieces are disjoint. Their union
is the necklace neighbourhood mentioned in the statement of the theorem.
Of course the conjugacy can be naturally defined (extending the previous
conjugacy) quasiconformally to this neighbourhood by usinggN o ® o g~N.

Using the same composition, it also follows that any point of the real line
has aneighbourhood on which the conjugacy extends quasiconformally, but
not necessarily as a conjugacy. By compactness of the dynamical interval,
it follows that this quasiconformal map is defined on a neighbourhood of
the dynamical interval. Therefore, the conjugacy on thereal lineis a quasi-
symmetry. ]

14 Appendix

As before, let J be areal interval and D,(J) the disc with diameter J.
Consider theinverse by P(z) = Z of D,([—1, K{]) \ R~ with Kg > 1. The
next lemma states that the component of thisinverse which contains [0, K]
iscontained in D, ([—1, Ko]).

Lemmal4.l Let P(z) = Z* where¢ > 2, -1 < 0 < 1 < Kg and

W ={zeC; ag(z) e [-7/¢, 7/C]}.
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Then
Peil(D*([ -1 Ké])) NW C D.([-1, Kg)).

In particular, some subset of
D.([-1, Ko) "W
is mapped diffeomorphically onto

D.([—LKG)\R™.

Proof: Rescale[—1, Kg]to[—A, 1] and so consider the disc D with diam-
eter [—A, 1], where A < 1, and define P(z) = Z. Let us show that D
is contained in P(D) (and that the only intersection points are z = 1 and
zZ = —A). Let us parameterize the boundary by « — r(«) - . We want to
show that r?(«) > r(2«) except that equality holdsifr = 1 (i.e.« = 0) and
r=A(.ea=mn/2.

Using the cosine rule we get

d 4A) —r()(1— A)cos(a) = @ +4A) , 1.8,

r2(e) — r(e)(1 — A)cos(a) — A = 0.

r(o) +

Hence,

cos )_—rz(a)—A and
@ =0 -a-n

) — A\ L
ra)-(1—A) '
Similarly, the point r (2«) - 62 satisfies

cos(2u) = 2(

r2(2e) — r(2e)(1 — A) cos(2x) — A = 0.

Let us write A = r?(a) and B = r(2«) and substitute the expression for
cos(2wx) in the last expression. Then we get

BZ— B(1— A) [ZH — 1] —A=0. (14.2)
This means
(1+B(B-A) B-A _2(A—A)?
B(1—A) B(1— A) Al — A2
If A= B :=Ctheneither C= A or
(C—A)

1+C) =2

1-24)
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which is only satisfied if C = 1. This means that the only intersection of
oD with 9P(D) areat z = 1 and z = —A. To show that dP(D) is outside
oD (except at z = —A and z = 1), let us analyze the situation close to
z= 1. Soregard in (14.2) B asafunction of A and differentiate B w.r.t. A
at A =1 (and so alsotake B = 1). Thisgives

(A= Ay

2B'B— B'(1— A) [27 _ } B~
AL — A)2 (1—A)

[1-A%/A%] =0,

i.e,sinceA=B=1,

(1-4a% _
1-A)
which gives B'= 2 and so B(A) < Afor A < 1.

This, and the proof of Lemma 15.2 from [LS1] imply the proof of this
lemma. o

2B —B'(1—A) -2
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