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A convenient and selective oxidation of alcohols with aqueous hydrogen peroxide to give the correspond-
ing carbonyl compounds under solvent-free conditions has been developed. By applying ruthenium-
bis(benzimidazole)pyridinedicarboxylate complex [Ru(bbp)(pydic)] as catalyst, primary, and secondary
alcohols were oxidized to aldehydes and ketones in good yield and excellent selectivity under mild
conditions.

� 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
Introduction Ruthenium complexes with nitrogen-based ligands have been
Oxidation of alcohols to corresponding carbonyl compounds is
of great importance for both laboratory and synthetic industrial
applications.1 In traditional oxidation processes, large amounts of
toxic and volatile organic solvents and metal oxidants were exten-
sively used. The need for environmentally benign and clean oxida-
tion reactions remains an important goal of chemical research.2

Hence, developing green selective oxidation process of alcohols is
still a challenging task in catalysis.3 By comparing different oxida-
tion methods, it is apparent that the oxidant used in the respective
transformation defines the quality and applicability of the method.
In addition to molecular oxygen, hydrogen peroxide is an environ-
mentally benign oxidant, which theoretically generates only water
as a by-product.4 Therefore, the discovery of new protocol catalyst
using H2O2 is gathering much attention. In this content, variety of
transition metal-based catalysts has been intensively investigated
toward the oxidation of alcohols so far.5
intensively investigated in order to develop catalysts for organic
oxidation processes.6 We ever reported an efficient oxidation pro-
cess of alcohols catalyzed ruthenium porphyrins in the presence of
molecular oxygen.7 Nishiyama first reported the asymmetric epox-
idation by one kind of ruthenium complex based on bis(oxazoli-
nyl)pyridine, that is, ruthenium-(pyridinebisoxazoline)
(pyridinedicarboxylate) complex [Ru(pybox)(pydic)].8 Through
modification of Nishiyama’s catalyst, Beller research group devel-
oped efficient asymmetric epoxidation processes with a greener
oxidant such as tert-butylhydroperoxide (TBHP) or hydrogen per-
oxide in recent years.9

We looked for ruthenium complexes that should be efficient for
the oxidation of alcohols. Inspired by the efficiency of Nishiyama’s
catalyst in the epoxidation, we adopted the introduction of 2,6-
bis(benzimidazole)pyridine as the counterpart to synthesize new
catalyst with dual closed meridional stereotopes around an active
metal. Hence, based on 2,6-bis(benzimidazole)pyridine and
pyridinedicarboxylate, the novel kind ruthenium complex
[Ru(bbp)(pydic)] (Scheme 1) was successfully synthesized and
was applied as catalyst in the oxidation reactions. Interestingly to
find this ruthenium complex is efficient for the selective oxidation
of alcohols to corresponding carbonyl compounds with hydrogen
peroxide as oxidant. Meanwhile, the noteworthy feature for this
catalytic system could be that the selective oxidation of alcohols
can be achieved under solvent-free conditions.

http://dx.doi.org/10.1016/j.tetlet.2013.05.055
mailto:jihb@mail.sysu.edu.cn
mailto:lsgui@sohu.com
http://dx.doi.org/10.1016/j.tetlet.2013.05.055
http://www.sciencedirect.com/science/journal/00404039
http://www.elsevier.com/locate/tetlet


N

H
N

H
N

N
N

Ru
O O

N OO

Scheme 1. The structure of Ru(bbp)(pydic).

Table 3
Oxidation of various alcohols with H2O2 catalyzed by Ru(bbp)(pydic)a
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Table 1
Oxidation of benzyl alcohol catalyzed by Ru(bbp)(pydic) with aqueous H2O2

a

Entry Solvent Conv.b (%) Yieldb (%)

1 Toluene 5 4
2 Ethyl acetate 12 10
3 CH3OH 66 63
4 CH3CN 78 74
5 Solvent free 97 96

a Reaction condition: benzyl alcohol (2 mmol), catalyst (2 � 10�3 mmol), 30%
H2O2 (10 mmol), 60 �C, 60 min. solvent (2 mL).

b Determined by GC.

Table 2
Optimization of reaction conditions under solvent free conditionsa

Entry Substrate: H2O2
b T (�C) Conv.c (%) Yieldc (%)

1 1:5 40 37 35
2 1:5 80 >99 87
3 1:2 60 43 40
4 1:3 60 64 62
5 1:6 60 98 93

6d 1:5 60 5 3
7e 1:5 60 83 80
8f 1:5 60 >99 92

a Reaction condition: benzyl alcohol (2 mmol), catalyst (2 � 10�3 mmol), 60 min.
b Molar ratio.
c Determined by GC.
d In the absence of catalyst.
e Catalyst (2 � 10�4 mmol).
f Catalyst (2 � 10�2 mmol).
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Results and discussion

To explore the reactivity and selectivity of the Ru(bbp)(pydic)
catalyst,10 benzyl alcohol was used as a model substrate. Various
solvents were examined in the presence of Ru(bbp)(pydic) catalyst
and H2O2 (Table 1, entries 1–8).11 After much experimentation on
optimizing solvent, it was found that the use of a less-polar solvent
like toluene and ethyl acetate afforded benzaldehyde in low yields
(entries 1 and 2). Higher yield of benzaldehyde was obtained using
polar solvents like methanol and acetonitrile (entries 3 and 4).
Gratifyingly, it was found under solvent free conditions, the cata-
lyst gave excellent conversion to benzaldehyde with 96% yield (en-
try 5).

The effect of reaction parameters was examined by performing
the reaction in solvent-free conditions, as listed in Table 2. Only
35% yield of benzaldehyde was obtained when the reaction was
conducted at 40 �C, while the selectivity would become poor as
further rising the temperature to 80 �C (entries 1 and 2). Therefore,
the optimized temperature was proved to be 60 �C. The yield of
benzaldehyde increased with increasing the molar ratio of H2O2/
benzyl alcohol (entries 3 and 4). The large excess amount of
H2O2 could promote the over-oxidation of benzaldehyde, which re-
sulted in the slight decreasing of selectivity toward benzaldehyde
(entry 5). The reaction almost did not occur in the absence of cat-
alyst (entry 6). Similarly, the yield of benzaldehyde increased with
the rising amount of catalyst. And the excess amount of catalyst
caused decrease of selectivity to benzaldehyde (entry 8).

To examine the scope of the alcohol reaction with H2O2–
Ru(bbp)(pydic) system, we extended our studies to various pri-
mary alcohols. The results are summarized in Table 3.

It was found that most primary alcohols were smoothly con-
verted to corresponding carbonyl compounds with high conversion
rate and excellent selectivity. Compared with the electron-with-
drawing groups at para-position for benzylic alcohols, the elec-
tron-donating groups seemed more favorable to the formation of
carbonyl compounds (entries 1–4, Table 3). For basic substrates
like 4-pyridinemethanol (entry 5, Table 3), additional amounts of
catalyst are needed to improve reaction rates and to ensure good
conversions. The catalytic system is also efficient for the oxidation
of saturated primary aliphatic alcohols such as 2-phenylethanol
and 1-octanol (entries 6 and 7, Table 3).

As shown in Table 3, the H2O2-Ru(bbp)(pydic) system was
found to be selective, efficient for the oxidation of secondary
Time (h) Conv.b (%) Yieldb (%)

1 97 96

1 98 96

1 96 93

2 82 81

3 76 74
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Table 3 (continued)

Entry Substrate Product Time (h) Conv.b (%) Yieldb (%)

6

OH O
1 95 92

7 OH O 1 98 94

8

OH O

1 92 92

9

OH O

3 82 82

10

OH O
3 78 76

11

OH O
1 94 93

12
OH O

1 89 87

13
OH O

1 97 95

a Reaction condition: substrate (2 mmol), catalyst (2 � 10�3 mmol), 30% H2O2 (10 mmol), 60 �C.
b Determined by GC.
c Catalyst (4 � 10�3 mmol).
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Figure 1. UV–vis spectra of Ru(bbp)(pydic) catalyst in the solution of benzyl
alcohol oxidation in the presence of hydrogen peroxide, benzyl alcohol (2 mmol),
catalyst (2 � 10�3 mmol), 30% H2O2 (10 mmol), 60 �C.
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alcohols. The reaction works well with sterically hindered alcohols
such as diphenylmethanol and 2-adamantanol (entries 9 and 10,
Table 3). Many other secondary cyclic alcohols were efficiently oxi-
dized in the catalytic system (entries 11 and 12, Table 3). The cat-
alytic oxidation can also be successfully performed with aliphatic
secondary alcohols (entry 13, Table 3).

Ru(bbp)(pydic) catalyst was monitored by in situ UV–vis spec-
troscopy during the reaction with H2O2 (5 equiv) under solvent-free
conditions. The in situ UV–vis spectroscopy was recorded on the
AvaSpec-2048�14 with a fiber optic probe. As shown in Figure 1,
the initial characteristic absorption peaks of Ru(bbp)(pydic) were
at 325 and 346 nm. Addition of H2O2 resulted in the immediate con-
version of the original spectrum containing the two characterized
peaks into a new spectrum displaying absorption peak at 320 nm.
This spectrum as well as the spectroscopic features supports the
conclusion that the complex has been converted into a ruthe-
nium(III) species.12 As reported previously by Beller, ruthenium
oxo complex was the active catalyst in the asymmetric epoxidation
system.9d As to Ru(bbp)(pydic)-catalyzed alcohols oxidation, the
reaction mechanism could also involve the participation of Ru-oxo
species generated from the reaction between Ru(bbp)(pydic) and
hydrogen peroxide. The formation of carbonyl compounds was
attributed to the reaction of alcohols with Ru-oxo species, followed
by the b-hydride elimination. Further mechanistic studies on the ac-
tive species are under investigation.

In conclusion, the Ru(bbp)(pydic) catalyst system described
herein is efficiently oxidizing alcohols in solvent free conditions
when hydrogen peroxide is used as an oxidant. Both primary and
secondary alcohols were oxidized into their corresponding car-
bonyl compounds in good yield. Further studies to improve the
reaction rate through catalyst modifications and detailed mecha-
nistic studies are ongoing.
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