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Summav: The anions of sulfonate esters derived from acidic alcohols oleflnate catbonyl compounds. The 
dependence of the yield and stereochemistry of olefinatiin on the sulfonate estefs aikoxy substituent are 
consistent wlth a mechanism where apfcophilic atkoxy groups promote oieflnatbn via 10-S-8 intermediie 3. 

Electronegative apical ligands can stabilize five-coordinate trfgonal-blpyramidal main group element 

structures.’ For example, 1 has a five-coordinate hypervalent 10-S-5 geometry,2 while 2 has a four- 

coordinate sulfur.’ The electron withdrawing trifluoromethyl groups am considered to stabilize the fiie- 

coordinate structure of 1 by making the apical alkoxide ligands more electronegative. We sought to determine 

whether electronegative alkoxides could stabilize the fiiecoordinate structure not of an isolable product. but 

of a reactive intermediate in order to promote a new reactbn pathway, the olefinatlon of carbonyl corrpounds 

with sulfonate ester anions. 

The mesylates of “ordinary” alcohols (e.g. methanol) can be depmtonated adjacent to sulfur and the 

corresponding carbanions add to ketones.4 The resulting alkoxldes am stable and can be pmtonated to yield 

akfol-like products In high yield (e.g. eq 1). For sulfonate esters derived from more acidb alcohols, we 

hypothesized that the alkoxide resulting from carbonyl addition might add to sulfur giving a hypervalent 

trigonal-bipyrarnidal 10-S-5 Intermediate, 3, the more electron withdrawing alcoholderived fragment favoring 

this species due to its enhanced apicophiliiity. Intermediate 3 could then eliminate a stable alkytsulfate anion 

giving the requisite olefin (Scheme I, path a ).5*10 In this study, we explored the effect of suffonate ester 

alkoxy groups on the oleflnatbn of carbonyl compounds wth metallated sulfonate esters. 
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Selected methanesulfonate esters were lithiited with fert -butyllithium” in tetrahydrofuran at -78%. 

treated with bemophenone. and allowed to warm to mom temperature for one hour (Table I). As expected 

from eq 1, methyl methanesulfonate did not yield any dlphenylethylene (entry 1). The 2,2,24rlfluoroethyl 

ester, however, gave a 58% yield of the ofefinatbn product (entry 2). Use of 1 .l as opposed to 2.0 equlv- 
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alents of the suffonate ester anion decreased the yield to 33% (entry 3); some of the anion may be decom- 

posing to sulfene (Scheme I, path b).12 2,2,2-Trichloroethyl methanesulfonate gave a similar yield of 

diphenylethylene as the trifluoro compound (entry 5). In contrast, the hexafluoroisopropyl ester did not yield 

any of the olefin (entry 6). Hexafluoroisopropoxide may be a sufficiently good leaving group to cause the 

carbanion to undergo f3-elimination (path b ) before it can add to the ketone. An increase in the size of the 

trifluoroalkyl group resulted in a decrease in the yield of the olefin (entries 7-9). 

Table I. Methylenatlon Of BenzDphenone with Afkyl and Aryl MethanesUlfonate Anfone 
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a GC yield wtth respect to internal standard. b Reaction with I .I equiv of suffonate ester anion. c Reac- 
tion in DME at -63 to 25°C. dReaction with NaH as the base at 23°C anion generated in the presence of 
benzophenone, isolated yiekf. e Reaction in toluene. f Reaction wfth NaN(TMS)2 as the base. 
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Aryl methanesulfonate anions were also tested. The parent phenyl ester gave a 1 iI% yield of the olefin 

(entry 10). Electron withdrawing and donating para substltuents had a small effect (entries 12 and 13). The 

size of the ortho substltuents had a much greater effect (entries 14 and 15). In contrast to the trend observed 

with the fluorinated alkyl substituents, increasing the size of the ortho substftuents increased the yield of 

diphenylethylene from 10% (H) to 32% (Me) to 57% (IPr). The extreme case, tBu, gave OIW 2% (entry 18) 

probably due to elimination of the very hindered phenoxide giving sulfene.13 

Alternate solvents (LIME and toluene) did not improve olefinatfon yields (entries 4 and 18) and use of 

NaN(TMS)2 as the base lowered the yiekl (entry 17). Generation of the sulfonate ester anion in the presence 

of benzophenone with NaH, however, greatly improved the yield of diphenylethylene (73%, entry 11). 

Generation of the anion in the presence of the ketone may circumvent sulfene formation by allowing the anion 

to be trapped as it is formed. 

Quenching the reaction mixture from the 2,2,2-trifluoroethyl methanesulfonate anion and benzo- 

phenone with one equivalent of acetic acid at -78°C allowed the isolation of the corresponding 

j3-hydmxysulfonate ester (eq 2). Deprotonation of this species gave diphenylethylene upon warming to room 

temperature (eq 3). Deprotonation and then warming in the presence of 4-methylbenzophenone again gave 

diphenylethylene with only a trace amount of the crossover product (eq 4). This establishes that the 

P-hydroxide (4, Scheme I) is an intermediate in the reaction. 
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The stereochemistry of olefinatton was examined by treating metallated ethanesulfonate esters with 

benzaldehyde (eq 5). Although the yields of 1-phenylpropene were low, the olefin geometry showed a 

dependence on the sulfonate ester’s alkoxy group wlth a 15:l E/Z ratio arising from the bulky aryl derivative. 

1) 2 tBuLI, THF, -7W’C 

2 
2) PhCHO, -78 to 25’C 
3) 2 HOAc, Hz0 RI CH,CF,: 1:l (23%) 

Rr : 15:l (8%) 



The results described ahove am consistent with oleflnatbn according to path s of Scheme I. Apicophilic 

alkoxy substltuents favor olefin formatbn provided that RO- b not prone to elimination. Electmnbally, these 

are competing effects which must be carefully balanced since increased ebctmnegativity promotes both 

apbophilfflty and eliminatbn. The incorporatbn of apicophiltt ftgands such as fluortnated alkoxtdes may alter 

other main group element based organic reactions. 
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