CHEMISTRY LETTERS, pp. 1007-1010, 1978. Published by the Chemical Society of Japan

A SYNTHESIS OF 1,3-DIKETONES BY ELIMINATION OF SELENIUM FROM Se-ACYLMETHYL SELENOCARBOXYLATES

Hideharu ISHIHARA and Yoshio HIRABAYASHI Faculty of Engineering, Gifu University, Nakamonzencho, Kakamihara, Gifu 504

Se-Acylmethyl selenocarboxylates, prepared by a reaction of potassium selenocarboxylates with &-bromoketones, readily extruded elemental selenium by a treatment with potassium tert-pentoxide to form 1,3-diketones in good yields.

Recently, selenobenzoic acid was obtained by Jensen et al.¹, however, it was very unstable oil. In previous report², we described that potassium selenocarboxylates(stable in dry nitrogen), prepared in good yields by a treatment of diacyl selenides with methanolic potassium hydroxide³, were useful as starting material for preparations of selenocarboxylic acid derivertives. In this paper, we wish to report that Se-acylmethyl selenocarboxylates(3), prepared in good yields from potassium selenocarboxylates(1) and α -bromoketones(2), were easily converted to 1,3-diketones by a treatment of potassium tert-pentoxide at room temperature.

Durst⁴⁾ described that acylmethyl carboxylates such as phenacyl carboxylates were conveniently prepared by a reaction of metal carboxylates with d-haloketones in the presence of crown ether as solubilizing catalyst. On the other hand, the reaction of potassium selenocarboxylates with d-bromoketones without catalyst readily afforded the corresponding selenoesters(3) in good yields at room

	Compound	Yield	Мр	IR,	cm ⁻¹
	<u>3</u>	%	°C	∂ C=0	∂C-Se
a	C ₆ H ₅ COSeCH ₂ COC ₆ H ₅	93	61.5 - 62.0	1680, 1668	894
b	p-C1C ₆ H ₄ COSeCH ₂ COC ₆ H ₅	81	89.3 - 90.0	1685, 1665	892
с	C ₆ H ₅ COSeCH ₂ C ₆ H ₄ CH ₃ (p)	84	69.3 - 69.7	1690, 1665	890
d	p-CH ₃ OC ₆ H ₄ COSeCH ₂ COC ₆ H ₅	83	77.0 - 77.5	1685, 1662	895
e	n-C ₁₇ H ₃₅ COSeCH ₂ COC ₆ H ₄ CH ₃ (p)	88	51.5 - 52.5	1716, 1682	940
f	C ₆ H ₅ COSeCH ₂ COCH ₃	80	a)	1708, 1664	880
g	с _б н ₅ соsесн ₂ соос ₂ н ₅	77	a)	1732, 1678	887

Table 1 The preparation of Se-acylmethyl selenocarboxylates

a) liquid

temperature. For example, a reaction of potassium selenobenzoate(1.12g, 5.0mmol) with \not{A} -bromoacetophenone(1.00g, 5.0mmol) in dry ether(20 ml) at room temperature for 2 hr gaves Se-benzoylmethyl selenobenzoate(3a)(1.41g, 93%); IR spectrum(KBr disk) \lor C=0 1668, 1680 cm⁻¹, \lor C-Se 894 cm⁻¹, NMR spectrum(CCl₄) 7.1-7.5, 7.7-8.1(10H), 4.43 ppm(s, 2H), and elemental analyses; C 58.65, H 4.02, Se 25.58% (Calcd. for $C_{15}H_{12}O_2$ Se: C 59.42, H 3.99, Se 26.04%).

Similarly several selencesters(3) were readily prepared in good yields as shown in Table 1.

The selenoesters(3) were easily converted to 1,3-diketones with elimination of elemental selenium by a treatment with potassium pentoxide at room temperatere. That is, to the solution of Se benzoylmethyl selenobenzoate(0.91g, 3.0 mmol) in dry benzene was added an equimolar amount of potassium tert-pentoxide in tert-pentyl alcohol (2N). The mixture was stirred for 4 hr at room temperature. After the resulting precipitate(elemental selenium, 0.24g, quant.) was filtered off, the filtrate was washed by a cold hydrochloric acid(5%) and water, and dried. The crude product was chromatographed and dibenzoyl methane(0.56g, 83%) was isolated; mp 77 - 78°C, IR spectrum(KBr disk) \Im C=0 1520 cm⁻¹, NMR spectrum(CCl₄) 6.80(s, 1H), 7.3-7.6, 7.8-8.1 (10H), 16.85ppm(b, 1H).

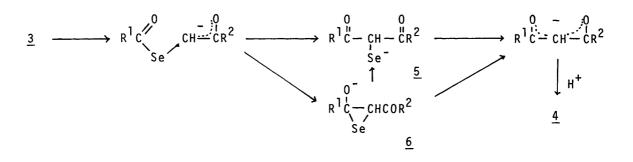
Similarly several 1,3-diketones(4) were readily obtained in good yields as

	Compound	Yield	Mp (lit.)
-	<u>4</u>	%	°C
a	с ₆ н ₅ сосн ₂ сос ₆ н ₅	83	77 - 78 (77 - 78) ⁵⁾
b	p-C1C ₆ H ₄ COCH ₂ COC ₆ H ₅	77	86 - 88 (89) ⁶⁾
с	с ₆ н ₅ сосн ₂ сос ₆ н ₄ сн ₃ (р)	86	83 - 84 (84 - 85) ⁷)
d	p-CH ₃ 0C ₆ H ₄ COCH ₂ COC ₆ H ₅	80	130 -131 (130-131) ⁷)
e	n-C ₁₇ H ₃₅ COCH ₂ COC ₆ H ₄ CH ₃ (p)	70	70 - 71
f	с ₆ н ₅ сосн ₂ сосн ₃	46	57 - 59 (60 - 61) ⁸⁾
g	с ₆ н ₅ сосн ₂ соос ₂ н ₅	65	a)

Table 2 The preparation of 1,3-diketones

a) liquid

shown in Table 2.


 β -ketoester(4g) was, also, prepared in a good yield from the corresponding selenoester and potassium tert-pentoxide in tert-pentyl alcohol; IR spectrum(KBr disk) $\sqrt{C=0}$ 1715, 1683 cm⁻¹, NMR spectrum(CCl₄) 1.21(t, 3H), 3.28(s, 2H), 4.11(q, 2H), 7.2-7.6, 8.0-8.2ppm(m, 5H) and 6.05 and 12.45ppm(enol form).

$$C_{6}H_{5}COSeCH_{2}COOC_{2}H_{5} \xrightarrow{\text{tert}-C_{5}H_{11}OK} C_{6}H_{5}COCH_{2}COOC_{2}H_{5} + Se$$

$$4g$$

Eschenmoser et al.⁹⁾ had shown that S-acylmethyl thiocarboxylates were converted to 1,3-diketones by desulfurization with trivalent phosphine in the presence of lithium salts or potassium tert-pentoxide at 50-80°C. In contrast with the thioesters, Se-acylmethyl selenocarboxylates(3) were easily converted by tert-pentoxide to 1,3-diketones without phosphine at mild conditions.

This reaction¹⁰⁾ may be initiated by an attack of tert-pentoxide anion to active methylene, and the resulting enolate anion may cause intramolecular attack on carbonyl carbon, and then elimination of selenium from the resulting intermediate(5 or 6) give 1,3-diketone as shown following scheme.

References and Notes

- 1) K.A.Jensen, L.Bøje and L.Henriksen, Acta Chem. Scand., <u>26</u>, 1465(1972).
- 2) H.Ishihara and Y.Hirabayashi, Chem. Lett., 1976, 203.
- 3) Potassium selenocarboxylates were, also, prepared in good yields by the reaction of diacyl diselenides with methanolic potassium hydroxide.
- 4) H.D.Durst, Tetrahedron Lett., <u>1974</u>, 2421.
- 5) C.F.H.Allen, R.D.Abell and J.B.Normington, Org. Synth., Coll.vol. 1, 205(1967).
- 6) W.Bradley and R.Robinson, J. Chem. Soc., <u>1926</u>, 2356.
- 7) C.Weygand, E.Bauer, H.Gunther and W.Heynemann, Justus Liebigs Ann. Chem., <u>459</u>, 99(1927)
- 8) F.W.Swamed and C.R.Hauser, J. Am. Chem. Soc., <u>72</u>, 1352(1950).
- 9) M.Roth, P.Dubs, E.Götschi and A.Eschenmoser, Helv. Chim. Acta, 54, 710(1971).
- 10) The selenoester(3) hardly converted to 1,3-diketone in the presence of catalytic amount of tert-pentoxide.

(Received June 14, 1978)