Understanding the Selectivity of a Multi-Channel Fluorescent Probe for Peroxynitrite Over Hypochlorite

Quanjuan Zhang,† Na Zhang,§ Yi-Tao Long,§ Xuhong Qian†,‡ and Youjun Yang†,‡,*

† State Key Laboratory of Bioreactor Engineering, ‡ Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, § Department of Chemistry, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China

youjunyang@ecust.edu.cn

ABSTRACT: Peroxynitrite is a prominent biological reactive nitrogen species from radical combination of nitric oxide and superoxide and fundamentally involved in a broad spectrum physiological and pathological processes. Though redox-inert itself, peroxynitrite anion (OONO⁻) attacks various biological electrophiles to generate an array of potent 2-e⁻ or 1-e⁻ oxidants, which result in cell injuries. Development of fluorescent probes for peroxynitrite, free from interferences from hypochlorite, has been an active endeavor of the chemical community. We previously reported a peroxynitrite probe (**PN600**), which could differentiate hypochlorite from peroxynitrite through a multi-channel signaling mechanism. Herein, this intriguing selectivity was accounted for through a structure-reactivity relationship study. Also, this work, together with rich literature contributions, has allowed a qualitative guideline in the use of electron-rich aromatic moieties to design probes against peroxynitrite and/or hypochlorite. The viability of this guideline was further testified by development of another list of peroxynitrite selective probes.

INTRODUCTION

Peroxynitrite (OONO⁻) biology dates back to 1986 when superoxide (O₂⁻) was shown to modulate the half-life of the endothelial derived relaxing factor (EDRF), which was identified to be nitrogen monoxide (or nitric oxide, NO) next year.¹⁻⁶ Formation of OONO⁻ from near-diffusion controlled radical combination of NO and O₂⁻ was regarded as merely a cell-detoxification mechanism of NO at the time, until Beckman suggested in 1990 that potent oxidants far more toxic than NO and "*similar to hydroxyl (HO*') *in reactivity*" were effectively derived from OONO⁻.⁷⁻¹⁰ Much of the apparent oxidative cytotoxicity of NO, i.e. antibacterial and antimicrobial activities, dysfunction of mitochondrial respiratory chain etc., was found to be actually mediated by peroxynitrite.¹¹⁻¹⁵ Immune cells harness peroxynitrite against cancer cells or other invading pathogens for the benefit of host.¹⁶⁻¹⁸ However, under pathological conditions such as autoimmune response, ischemic-reperfusion or chronic inflammation, cytotoxicity of peroxynitrite is diverted against the innocent host cells.¹⁹⁻²¹

Peroxynitrite unleashes its oxidative capacity and cell damages through multifaceted biochemical pathways, including two-electron (2-e⁻, or polar) or one-electron (1-e⁻ or radical) oxidation (Figure 1).²² Thermodynamically, OONO⁻ is undoubtedly a strong oxidant, being 36 kCal/mol higher in free energy than its structural isomer nitrate (NO₃⁻), due to the presence of a weak O-O bond.²³ However, OONO⁻ itself is in fact quite redox-inactive and functions not as an oxidant, but as a pro-oxidant.^{19,24-25} For OONO⁻ to exhibit its oxidative capacity, a nucleophile would have to attack the terminal oxygen atom, which is negatively charged, to displace NO₂⁻ as the leaving group. However, a high kinetic barrier exists because the negative charge on this terminal oxygen tends to repel the incoming nucleophile. In fact, OONO⁻ only functions as a nucleophile in biological matrices and reacts with nothing but electrophiles, including H⁺, CO₂ or various metal ion centers, to yield HOONO (pK_a = 6.8), ONOOCO₂⁻ or metal-OONO⁻ complexes respectively.²⁶⁻³⁶ In sharp contrast to OONO⁻, HOONO is a potent electrophilic, readily incorporates a nucleophilic attack to break the weak O-O bond and therefore is a potent 2-e⁻ oxidant.³⁷⁻⁴⁰ HOONO has a reduction potential of +1.4 V (OONO⁻, 2H⁺/NO₂⁻, H₂O) and efficiently oxidizes thiols, thioethers and their selenium analogs.³⁷ A fraction of HOONO homolyzes to HO⁺ and NO₂, albeit with a low rate constant.^{29,41-42} Homolysis of ONOOCO₂⁻ or OONO⁻-metal complexes is more

efficient in generating radicals, compared to HOONO.⁴³⁻⁵⁰ Depending on cell localizations, the resulting highly cytotoxic one-electron oxidants, i.e. HO[•], NO₂, and CO₃^{••}, may be scavenged by polyenes, vitamin E, BH₄, GSH, melatonin, urate or ascorbic acid.⁵¹⁻⁵⁸ However, under pathological conditions when cellular redox buffering capacity is overwhelmed, lipid modification⁵⁹⁻⁶¹ via peroxidation/nitration, protein tyrosine nitration⁶²⁻⁶⁹, DNA oxidation to nucleobase/deoxyribose,⁷⁰⁻⁷² or DNA strand breakage⁷³⁻⁷⁴ builds up and cell death is often inevitable. The bio-relevance, elusive mechanism and associated pharmacological opportunities of peroxynitrite in health, disease and aging have underscored the significance of its detection.⁷⁵⁻⁷⁶

Figure 1. Focused peroxynitrite biochemistry.

Fluorescence based techniques are advantageous for biological studies due to the paramount sensitivity, instrumentational versatility and convenient implementation to complex biological systems. A number of small molecule fluorescent probes for peroxynitrite have been reported, mainly for *in vitro* applications. In accordance with the multiplicity of peroxynitrite biochemistry, the detection mechanisms of these probes are not uniform. The trifluorocarbonyl (**HKGreen1-3**),^{77.80} phenyl boronic esters (**CBA**, or their free acids),^{81.84} or vicinal dicarbonyl^{85.86} based probes bear an electrophilic center and directly detect OONO⁻ (Figure 2A). Hydrozine^{87.88} and selenium^{89.92} based probes detect HOONO (Figure 2B and 2C). The probes (**NiSPY**s) were designed to respond to the nitrative capacity of peroxynitrite (Figure 2D).^{93.94} *In vivo* tyrosine nitration occurs via radical pathway^{68.69}, but nitration of NiSPy has not been mechanistically elucidated. Some other probes, including **DHR 123**, **APF**, **HKGreen4**, and our **PN600**, were based on an electron-rich aromatic moiety, which may be oxidized by HOONO, or alternatively by those secondary radicals derived from peroxynitrite (Figure 2E).⁹⁵⁻¹⁰²

Figure 2: Classification of existing peroxynitrite probes by their detection mechanisms.

Bioconjugate Chemistry

A major challenge in developing a peroxynitrite probe lies at potential cross-reactivity toward hypochlorite.^{96-97,99-100,103-114} We previously discovered that **PN600** was able to differentiate peroxynitrite from hypochlorite via a facile multi-channel ratiometric signal.¹⁰¹ Its differential reactivity toward hypochlorite and peroxynitrite is herein mechanistically explained. Further, a qualitative guideline was tentatively proposed regarding the use of an electron-rich benzene moiety in detection of hypochlorite and peroxynitrite.

We note that the term "peroxynitrite" has been conventionally used in a collective fashion in literature to include both the anionic OONO⁻ and its conjugate acid, peroxynitrous acid (HOONO). Also, damages from secondary species derived from OONO⁻, including nitrosoperoxycarbonate (ONOOCO₂⁻), hydroxyl radical (HO⁺), nitrogen dioxide radical (NO₂), and carbonate radical anion (CO₃⁻) were often generically attributed to "peroxynitrite". Throughout the discussions in this manuscript, these conventional and generic uses of "peroxynitrite" are followed. However, "OONO⁻" is used in this manuscript when such a generic sense does not apply, as an effort to avoid ambiguity. The term "hypochlorite" is also used in a collectively sense to include both HOCl and OCl⁻ unless noted.

RESULTS AND DISCUSSIONS

Figure 3: Overall reactivity of **PN600** toward peroxynitrite and hypochlorite.

The overall reaction scheme of PN600 toward peroxynitrite and hypochlorite. In the preceding communication, PN600 was found to be oxidized to the red-emitting 2, via the orange-emitting intermediate 1, upon addition of peroxynitrite. In comparison, oxidation of PN600 by addition of hypochlorite stopped at 1. While investigating the oxidation mechanism of PN600 by peroxynitrite and hypochlorite, an additional fluorescent species, with a maximum excitation wavelength at 380 nm and emission at 450 nm, was also found to have been generated upon addition of an aliquot of peroxynitrite stock solution, but not hypochlorite (*vide infra*). This fluorescent species was determined to be 6-amino-7-hydroxy-4-methylcoumarin (3), as its absorption and fluorescence spectra were identical with those of the independently synthesized compound 3. Therefore, a revised-overall reactivity of PN600 toward peroxynitrite and hypochlorite is now summarized in Figure 3.

Design and synthesis of PN600 analogs. Intuitively, the reactivity of **PN600** toward an oxidant is bestowed by the presence of its electron donating groups, which include a hydroxyl (-OH) and an amino (-NH₂) group. Yet, it is not obvious how the -OH and -NH₂ have determined the reactivity of **PN600**. We envisaged that a focused structure-reactivity relationship should provide mechanistic insights toward **PN600** oxidation and therefore synthesized an additional list of probes, i.e. **4a**, **4b**, and **4c**. Compounds (**4a-c**) were designed by changing the -OH of **PN600** into a less electron-donating hydrogen (-H), methoxy (-OMe) group, or a more electron-donating -NH₂ group respectively. Probes (**4a-c**) were conveniently synthesized in two steps (Figure 4). Ullmann type condensation between 7-fluoro-4-methyl-6-nitrocoumarin (**5**) and variously substituted phenols (**6a-c**) afforded **7a-c** smoothly without resorting to forcing conditions. Catalytic hydrogenation of **7a-c** furnished **4a-c**, the desired analogs of **PN600**.

Figure 4. Structures and synthesis of PN600 and a list of analogs 4a-c.

Fluorescence titrations of 4a, 4b, PN600, 4c, by hypochlorite and peroxynitrite. An aliquot of hypochlorite or peroxynitrite stock was titrated into a solution of probe 4a, 4b, PN600, or 4c (10 μ M) respectively in phosphate buffer (50 mM at pH = 7.4) with 5% DMF as a co-solvent.

All four probes (4a, 4b, PN600 and 4c) exhibited an emission band with a maximum at *ca*. 535 nm upon excitation at their absorption maximum of *ca*. 355 nm. Addition of hypochlorite led to a gradual decrease of their emissions (Figure 5A, 5B, 5C, 5E). It took *ca*. 6-10 equiv. of hypochlorite to consume the emission of probe 4a, 4b, PN600 and 4c (Figure S3). No new fluorescent species were observed to have been generated from oxidation of 4a and 4b. Oxidation of PN600 by hypochlorite led to accumulation of compound 1 (Figure S4). Further oxidation of 1 to 2 by hypochlorite was not achieved as the emission of 2 at 595 nm was not observed with excitation at its maximum absorption wavelength of 550 nm (Figure 5D). Oxidation of 4c by hypochlorite yielded a red-emitting species, with a maximum excitation at *ca*. 550 nm and emission at 605 nm (Figure 5F). The spectral properties of this red-emitting species are reminiscent of those of compound 2 and we assigned it to 9. Compound 8 should be the intermediate between 4c and 9.

Figure 5: Fluorescence titrations of probes **4a**, **4b**, **PN600** and **4c** by hypochlorite. Excitation was set at 355 nm to monitor the decrease of the probe emission of **4a** (A), **4b** (B), **PN600** (C) and **4c** (E) upon addition of hypochlorite. Excitation was set at 550 nm to monitor the formation of **2** from **PN600** (D), and **9** from **4c** (F) upon addition of hypochlorite.

Figure 6: Proposed oxidation schemes for **4a**, **4b**, **PN600** and **4c** by hypochlorite, based on titrations shown in Figure 5.

Chemical transformations of probes **4a-b**, **PN600** and **4c** induced by addition of hypochlorite, with HOCl presumed to be the active species, are summarized in the Figure 6. The oxidative capacity of HOCl is unleashed

upon breakage of the weak oxygen-chlorine bond. Mechanistically, this occurs when a nucleophile attacks the electrophilic chlorine atom (-Cl) and displaces hydroxide (OH⁻) as the leaving group. Also based on the fact that all four probes were effectively oxidized by hypochlorite with similar kinetics (Figure S5), this nucleophile is most likely -NH₂ on the coumarin moiety, which is present in all four probes. Oxidation of the coumarin moiety led to subsequent formation of an electrophilic O-acylated iminoquinone derivative (as shown in the rounded box of the Figure 6). The aroxyl moiety of **PN600** or **4c**, substituted by a strong electron donating group (i.e. –OH in **PN600** or –NH₂ in **4c**) is nucleophilic enough to furnish a cyclization to give compound **1** and **5** respectively, via an intramolecular electrophilic aromatic substitution (EAS). In case of **4a** or **4b**, whose aroxy moiety is not as nucleophilic, hydrolysis of the acyl oxonium ion presumably competed and no fluorescent products were observed to have been generated. Inability of hypochlorite to oxidize compound **1** to **2** suggests that the nucleophilicity of the diarylamino group is not potent enough to initiate an attack at HOCI. In comparison, the proposed intermediate **8** was oxidized because it has a primary aryl amino group, which is much more nucleophilic than a diarylamino group.

Figure 7. Cyclic voltammograms of probes 4a, 4b, PN600 and 4c in DMF.

Figure 8. Fluorescence titrations of probes **4a**, **4b**, **PN600** and **4c** by peroxynitrite. Excitation was set at 355 nm to monitor the decrease of the probe emission of **4a** (A), **4b** (B), **PN600** (C) and **4c** (E) upon addition of peroxynitrite. Excitation was set at 550 nm to monitor the formation of **2** from **PN600** (D) and **9** from **4c** (F) upon addition of peroxynitrite.

Figure 9. Oxidations of probe 4a, 4b, PN600 and 4c, which were mediated by peroxynitrite, but not hypochlorite.

The first oxidative potential of all four probes (**4a-c** and **PN600**) was essentially identical at *ca*. +0.8 V as determined by cyclic voltammetry despite the different nature of the substituent on the aroxy moiety of **4a-c** and **PN600** (Figure 7), suggesting that the coumarin moiety is where oxidation occurs most readily in each probe. Also, the first oxidative potential of **1** was measured to be -0.14 V.^{101(SI)} So, probe **4a-c** or **PN600**, of a higher

oxidative potential, was oxidized by hypochlorite, while **1**, of a lower oxidative potential, was not. This interesting observation clearly indicates that oxidation by hypochlorite is not under thermodynamic control.

All the transformations of probes **4a-b PN600** and **4c** induced by hypochlorite (Figure 5) were also observed to have occurred upon addition of peroxynitrite (Figure 8, gray). This is not surprising since HOONO can presumably mediate 2-e⁻ oxidation, analogously to HOCl. However, we also noticed that peroxynitrite mediated some transformations, which were not seen with hypochlorite. The first such transformation was the formation of the red-emitting compound **2** from further oxidation of the intermediate **1** (Figure 8D and 9, red). Second, an emission band at 450 nm, of compound **3**, appeared upon peroxynitrite mediated oxidation of all four probes (Figure 8A, 8B, 8C, 8E and 9, blue).

Peroxynitrite can mediate 1-e⁻ oxidations through various secondary radicals including OH⁺, CO₃⁻⁻, NO₂⁻ etc, while hypochlorite cannot. So, these transformations unique to peroxynitrite have presumably occurred via a radical mechanism. Compound **1** contains a *para*-aminophenol moiety and such electron rich polyaromatics are known radical scavengers, i.e. to be readily oxidized by radicals.

Formation of **3** was rather unexpected because this necessitates oxidation of the less electron-rich aroxy moiety in the presence of the more electron-rich coumarin moiety. However, this seemingly unexpected observation is in fact reasonable. Secondary radicals from peroxynitrite are highly oxidative. Thus, they can indiscriminately abstract an electron from whichever oxidizable substrate they encounter first. In other words, oxidation by these radicals is kinetically controlled and steric accessibility, rather than oxidative potential, determines the profile of the reaction outcome. It happened that the coumarin moiety of probes **4a-c** and **PN600** is sterically shielded by the aroxy moiety. This explains why a kinetic oxidation of the less electron-rich aroxy moiety occurred, and ultimately resulted in the formation of **3**.

Mechanistic explanation to the overall reactivity of PN600 toward hypochlorite and peroxynitrite. With the mechanistic insights from these titrations, reactivity of PN600 toward hypochlorite and peroxynitrite are well accounted for and summarized in the Figure 10. Nucleophilic attack commencing from its $-NH_2$ at HOCl or HOONO followed by a condensation to displace a chloride (-Cl⁻) or a hydroxide (-OH⁻) respectively, yields an

acyl oxonium species (10). Alternatively, this process can potentially take place via a radical pathway and be mediated by peroxynitrite. The resulting acyl oxonium ion (10) undergoes a ring closure to afford the intermediate 1. This has explained why the addition of either hypochlorite or peroxynitrite can induce the formation of compound 1. However, lack of a nucleophile on the scaffold of 1 strong enough to attack HOCl renders it stable toward hypochlorite. In comparison, the secondary radicals from peroxynitrite readily oxidize compound 1 to 2. Kinetic radical oxidation to the 3-hyroxyphenoxyl moiety can occur, in a fashion similar to the step-wise radical oxidation of phenol to quinone. Ultimately, the diaryl ether linkage breaks upon hydrolysis to generate 3.

Figure 10. A proposed mechanistic explanation to the observed reactivity of **PN600** toward both hypochlorite and peroxynitrite. Note: Magenta arrows highlight the radical reactions.

An empirical guideline for development of probes targeting at peroxynitrite or hypochlorite. With the few probes of this manuscript and rich literature work, in particular those from Yang et al. and Nagano et al., we were able to categorize various electron-rich aromatic structures based on their reported reactivity toward

Bioconjugate Chemistry

peroxynitrite and hypochlorite (Chart 1). Tentatively, this summary may serve as a qualitative guideline for future use of electron-rich aromatic rings as the recognition moiety of a fluorescent probe for either hypochlorite or peroxynitrite detection:

- 1. A phenolic hydroxyl (Ar-OH) is not nucleophilic enough to attack HOCl and initiates an oxidation.^{97,101-102,115-117}
- 2. A diarylamino (Ar-NH-Ar') group does not react with HOCl.^{101-112,115}
- 3. A monoarylamino (Ar-NH₂) group with a para-methine (-CHRR', where R and R' are alkyl or aryl) group is mildly reactive toward HOCl.⁹⁸ Removal of the *para*-methine reduces this reactivity.
- 4. A monoarylamino (Ar-NH₂) group with an oxygen or nitrogen attached to its *para* position is reactive toward HOCl.^{96-97,100,102,116} A broad spectrum of substitutions to this oxygen or nitrogen atom seems to have been tolerated, including alkyl, aryl or acyl. Further substitution of this monoarylamino group by two small alkyl groups into monoaryldialkyl amino groups (Ar-NMe₂, or Ar-NEt₂) does not seem to have greatly suppressed its reactivity toward HOCl.
- 5. A phenolate (Ar-O⁻) is reactive toward HOCl.¹¹⁸⁻¹¹⁹
- 6. All aforementioned structures are expected to exhibit reactivity toward peroxynitrite. Reaction mechanism can be 2-e⁻ or 1-e⁻ depending on the existence of a nucleophilic amino group or not.

We judiciously listed phenolate as a separate category because of **HKOCI-1**^{28a}, which seems not to agree with the rule 1. However, this inconsistency can be rationalized. A phenol is an acidic functional group with a pK_a of *ca*. 10. At physiological pH, more than 99% of a phenol should exist in form of its conjugate acid accordingly to Henderson-Hasselbach equation. However, the electron-withdrawing nature of the BODIPY core within the scaffold of **HKOCI-1** should also be considered. It might have lowered the pK_a of the *ortho* phenolic OH group, as a combined result of the inductive effect and long-range electronic interaction¹²⁰⁻¹²¹, to allow a significant portion of **HKOCI-1** stay in form of the corresponding phenolate at physiological pH. The phenolate is intuitively much more nucleophilic than the corresponding phenol and expected to be able to attack HOCl and initiate a 2-e⁻ oxidation. Though, the exact pK_a value of **HKOCI-1** was not reported, this analysis was supported by the recent report, from the same authors, that *ortho*-substitution to the phenol by electron-withdrawing halogen atoms, i.e. – Cl or –F respectively, further improved the probe reactivity toward hypochlorite.^{28b}

Development of hypochlorite specific probe without interferences from peroxynitrite will be challenging. An electron-rich aromatic substrate may survive HOONO, but not those secondary radicals from peroxynitrite. In fact, even not-so-electron-rich substrates do not survive these radicals, including umbelliferone, salicylate, and terephthalate.^{25d} In other words, electron-rich aromatics are better suited for unspecific detection of hypochlorite and peroxynitrite, or specific detection of peroxynitrite over hypochlorite.

Chart 1:Classification of probes for hypochlorite and peroxynitrite based on oxidation of an electron-rich aromatic ring.

An embodiment of the guideline. Following this guideline, we designed and synthesized 11 (Figure 11) as a selective peroxynitrite probe. It falls within the category III and is expected to display good reactivity toward

peroxynitrite, but poor reactivity toward hypochlorite. A close analog (**12**, Figure 11) of an unnamed probe of category IV, which reacted well with both peroxynitrite and hypochlorite, was synthesized (Figuer 12) and titrated side-by-side with **11** (Figure 13).

Figure 11. Oxidation pathways of probes 11, 12 and 14 by peroxynitrite.

Figure 12. Synthetic Schemes of probes 11 and 14.

Compound 11 and 12 make a good comparison as their structures differ from each other only by the position of $-NH_2$. Yet, this seemingly minor variation makes a huge difference with respect to their reactivity toward peroxynitrite and hypochlorite.

Synthesis of probes 11 and 14 started from condensation of 16 and 17 under Ullmann conditions to afford the diaryl ether 18 in a moderate yield. Demethylation of 18 in refluxing 48% HBr gave 19 nearly quantitatively. Condensation of 19 with 20 or 22 in 70% H_2SO_4 at high temperature yielded the desired coumarin (21) or Rhodol derivative (23). Reduction of the nitro group on 21 or 23 with $SnCl_2$ by refluxing in concentration HCl furnished probe 11 or 14 in good yields. Catalytic hydrogenation of 23 also partially reduced the Rhodol scaffold and therefore not suitable for preparation of 14.

Probe 11 and 12 (10 μ M) in phosphate buffer (50 mM, at pH=7.4) containing 5% DMF were titrated by hypochlorite and peroxynitrite (Figure 13A and 13B). Emission of their oxidation product, 7-hydroxy-4-methylcoumarin (13), with a maximum excitation at 360 nm and an emission at 450 nm, was monitored. The reported high reactivity of probe 12 toward hypochlorite was verified. Addition of *ca*. 6 equiv. of hypochlorite led to a near saturation of fluorescence enhancement. Probe 11 was not totally inert to hypochlorite. However, its signal enhancement was less than 2% of that from probe 12. Addition of a higher dose of hypochlorite than 6 equiv. led to a gradual bleaching of fluorescence. Two probes (11 and 12) yielded an emission of comparable intensity upon addition of peroxynitrite. Only, it took *ca*. 10 equiv. of peroxynitrite to saturate the signal enhancement of probe 12, while roughly twice as much of peroxynitrite was necessary to saturate the signal enhancement of probe 11. The spectral titrations of this pair of probes exemplified the viability of the aforementioned guideline.

Figure 13. Dose dependent fluorescence enhancement of probes 11 and 12 by hypochlorite (A) and peroxynitrite

(B).

Figure 14. Dose dependent fluorescence enhancement of probes 14 by peroxynitrite.

By attaching the 3-aminophenyl group to the oxygen atom of a rhodol fluorophore (15), a peroxynitrite probe (14) of longer wavelength, was designed (Figure 11) and synthesized (Figure 12). Probe 14 inherited the

reactivity of probe **11** toward peroxynitrite (Figure 14). Probe **14** shows no reactivity toward large excess of H_2O_2 , KO₂, NO, ¹O₂ (Figure S13). Addition excess hypochlorite turned on the emission at 550 nm by *ca*. 5 fold, while excess peroxynitrite enhanced the emission at 550 nm by over 45 fold (Figure S12). This proved that probe **14** is selective toward peroxynitrite over hypochlorite.

CONCLUSION

PN600 is an interesting fluorescent probe, which yields an unusual four-channel fluorescence signal upon oxidation by peroxynitrite. It showed cross-reactivity toward hypochlorite. Oxidation by hypochlorite could be spectroscopically differentiated from oxidation by peroxynitrite. Through combined use of spectral titrations, electrochemical studies and fundamental organic arrow-pushing mechanisms, we were able to satisfyingly explain the observed reaction profile of **PN600** toward peroxynitrite and hypochlorite. With findings of this work and previous literature publications, we have proposed a qualitative guideline for use of electron-rich aromatic rings as the reactive moiety in constructing fluorescent probes for hypochlorite or peroxynitrite. Following this guideline, we further developed two peroxynitrite probes, which are indeed only minimally reactive toward hypochlorite. This supports the viability of this guideline.

EXPERIMENTAL

All chemicals and solvents were analytical grades and used without further purification. The ¹H-NMR and ¹³C-NMR spectra were acquired on a Bruker AV-400 spectrometer. Chemicals shifts were referenced to the residue solvent peaks and listed in ppm. Coupling constants were given in Hz. ESI-HRMS was acquired on a TOF mass spectrometer and EI-HRMS on a Micromass GCT spectrometer. UV-Vis absorption spectra were acquired on a SHIMADZU UV-2600 UV-vis spectrophotometer. Fluorescence emission spectra were acquired on a PTI-QM4 steady-stead fluorimeter equipped with a 75 Watt Xenon arc-lamp and a R928 PMT. All excitation spectra were corrected. All emission spectra were not corrected with respect to the PMT sensitivity at different wavelengths. The excitation and emission slits were both 2 nm for all experiments. Fluorescence titrations were carried out by addition of an aliquot of the stock solution of hypochlorite, peroxynitrite or other species.

Electrochemical analyses were performed by using a computer controlled CHI 660c electrochemical station (Chenhua Co. Ltd, Shanghai, China). The electrochemical experiments were carried out in a three-electrode electrochemical cell under nitrogen atmosphere. Working electrodes were 3-mm diameter glassy carbon (GC) disks, used in conjunction with a Pt auxiliary electrode and an Ag/AgCl wire reference electrode. The concentration of each sample was 1mM, and was dissolved in N,N-Dimethylformamide (DMF). Tetrabutylammonium Perchlorate (TBAP) acted as supporting electrolyte and its concentration was 0.1 M. The data was obtained from the first cycle in cyclic voltammetry (CV), and the scan rate was 100 mV/s.

6-Amino-4-methyl-7-phenoxy-2H-chromen-2-one (**4a**). Mix **7a** (50mg, 0.17 mmol), EtOH (5 mL) and concentrated HCl (5 mL) in a 25 mL round bottom flask. Add SnCl₂•2H₂O (198 mg, 0.88 mmol) into the flask slowly with constant stirring. Heat the reaction mixture to 40 °C for 6 hrs before cooling to room temperature. The reaction mixture was poured in concentration NaHCO₃ solution and extracted with CH₂Cl₂. The organic layer was dried with MgSO₄, filtered, passed through a silica plug to remove the colored impurities and evaporated to dryness under reduced pressure. The crude product was recrystallized in CH₂Cl₂ to afford **4a** as a yellow solid (30 mg, 67%). ¹H NMR(400 MHz, CDCl₃): δ (ppm) 7.39 (t, *J* = 8.0 Hz, 2H), 7.20 (t, *J* = 8.0 Hz, 1H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.94 (s, 1H), 6.69 (s, 1H), 6.16 (s, 1H), 3.96 (s, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.3, 155.3, 151.8, 148.3, 147.2, 134.5, 130.1, 124.7, 119.3, 115.6, 113.3, 109.2, 105.4, 18.8; EI-HRMS (*m/z*) [M⁺] calcd. for C16H13NO3, 267.0895; found 267.0893.

6-Amino-7-(3-aminophenoxy)-4-methyl-2H-chromen-2-one (**4c**). Mixture of **7c** (140 mg, 0.41 mmol), 5% Pd/C (a spatula end) and 10 mL MeOH was stirred in an H₂ atmosphere (0.4 MPa) in a pressure vessel for 4 hrs at room temperature before the system was vented. The mixture was passed through a silica plug and evaporated to dryness under reduced pressure to afford a viscous residue. Upon recrystallization in a mixed solvent of CH₂Cl₂ and petroleum ether, **4c** was obtained as a light yellow solid (102 mg, 88%). ¹H-NMR(400 MHz, CDCl₃): δ (ppm) 7.16 (t, *J* = 8.0 Hz, 1H), 6.95 (s, 1H), 6.80 (s, 1H), 6.52 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.45 (dd, *J* = 8.0, 1.6 Hz, 1H), 6.39 (s, 1H), 6.20 (s, 1H), 2.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 161.4, 156.5, 151.9, 148.3, 148.2,

147.2, 134.6, 130.7, 115.6, 113.3, 111.4, 109.1, 108.9, 105.9, 105.7, 18.8; ES-HRMS (m/z): [M]⁺ calcd. for C16H14NO3, 283.1077; found 283.1080.

4-Methyl-6-nitro-7-phenoxy-2H-chromen-2-one (**7a**). Mix **5** (50 mg, 0.22 mmol), **6** (23 mg, 0.25 mmol), K₂CO₃ (34 mg, 0.25 mmol), fresh Cu (5 mg) and 1,4-dioxane (20 mL) in a 50 mL round bottom flask. The mixture was heated to reflux overnight with stirring before cooled and filtered through a celite pad. The filtrate was dried under reduced pressure and chromatographed with petroleum ether/EtOAc (15:4, v/v) to obtain **7a** as a light yellow solid (35 mg, 53%). ¹H NMR(400 MHz, CDCl₃): δ (ppm) 8.29 (s, 1H) , 7.47 (t, *J* = 8.0 Hz, 2H), 7.31 (t, *J* = 8.0 Hz, 1H), 7.13 (d, *J* = 8.0 Hz, 2H), 6.77 (s, 1H), 6.28 (s, 1H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 158.9, 156.8, 154.7, 153.9, 151.1, 136.5, 130.5, 126.2, 123.1, 120.4, 114.7, 114.5, 106.4, 18.6; EI-MS (*m*/*z*) [M]⁺ calcd. for C16H11NO5, 297.0637; found 297.0638.

4-Methyl-6-nitro-7-(3-nitrophenoxy)-2H-chromen-2-one (**7c**). Mix **5** (500 mg, 2.24 mmol), **6c** (311 mg, 2.24 mmol), K₂CO₃ (310 mg, 2.25 mmol), fresh Cu powder (40 mg) and 1,4-dioxane (35 mL) in a 50 mL round bottom flask. The mixture was heated to reflux overnight with stirring before cooled and filtered through a celite pad. The filtrate was dried under reduced pressure and chromatographed with EtOAc to obtain **7c** as a yellow solid (440 mg, 57%). ¹H NMR(400 MHz, CDCl₃): δ (ppm) 8.36 (s, 1H) , 8.14 (d, *J* = 8.0 Hz, 1H), 7.90 (s, 1H), 7.64 (t, *J* = 8.4 Hz, 1H), 7.47 (dd, *J* = 8.4, 2.0 Hz, 1H), 6.93 (s, 1H), 6.37 (s, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 158.4, 157.0, 155.7, 152.1, 150.9, 149.5, 137.4, 131.2, 125.3, 123.6, 120.2, 116.5, 115.8, 114.1, 108.69, 18.7; ESI-HRMS (*m/z*): [M+H]⁺ calcd. for C₁₆H₁₁N₂O₇, 343.0561; found 343.0553.

7-(3-Aminophenoxy)-4-methyl-2H-chromen-2-one (11). Mix **21** (174 mg, 0.585 mmol), EtOH (10 mL) and concentrated HCl (10mL) in a 50 mL round bottom flask. Add SnCl₂•2H₂O (700 mg, 3.10 mmol) into the flask slowly with constant stirring. Heat the mixture to 40 °C for 6 hr before cooling to room temperature. The reaction mixture was poured in concentration NaHCO₃ solution and extracted with CH₂Cl₂. The organic layer was dried with MgSO4, filtered, passed through a silica plug to remove colored impurities and evaporated to dryness under reduced pressure. The crude product was recrystallized in a mixed solvent of CH2Cl2 and petroleum ether to afford **4a** as a light yellow solid (142 mg, 91 %). ¹H-NMR(400 MHz, CDCl3) δ (ppm) 7.52 (d, *J* = 8.4 Hz, 1H), 7.15 (t, *J* = 8.0 Hz, 1H), 6.94 (dd, *J* = 8.0, 1.2 Hz, 1H), 6.89 (s, 1H), 6.52 (d, *J* = 8.0 Hz, 1H), 6.44 (d, *J* = 8.0 Hz, 1H)

Bioconjugate Chemistry

1H), 6.39 (s, 1H), 6.17 (s, 1H), 3.75 (s, 2H), 2.41 (s, 3H); ¹³C NMR (100 MHz, CDCl3) δ(ppm) 161.1, 160.9, 156.2, 154.9, 152.2, 148.3, 130.7, 125.6, 115.0, 114.3, 112.8, 111.6, 109.9, 106.7, 105.4, 18.7; ESI-MS (m/z) [M+H]⁺ calcd for C16H14NO3, 268.0968; found 268.0982.

3'-(3-Aminophenoxy)-6'-(diethylamino)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one (14). Mix **23** (160 mg, 0.314 mmol), EtOH (10 mL) and concentrated HCl (10mL) in a 50 mL round bottom flask. Add SnCl₂•2H₂O (350 mg, 1.55 mmol) into the flask slowly with constant stirring. Heat the mixture to 60 °C for 6 hr before cooling to room temperature. The reaction mixture was poured in concentration NaHCO₃ solution and extracted with CH₂Cl₂. The organic layer was dried with MgSO₄, filtered, and evaporated to dryness under reduced pressure. The crude product was chromatographed with CH₂Cl₂/MeOH (50:1, v/v) to afford **14** as a light pink solid (52 mg, 34.6%). ¹H NMR(400 MHz, CDCl₃) δ (ppm) 8.00 (d, *J* = 7.6 Hz, 1H), 7.86 (t, *J* = 7.2 Hz, 1H), 7.60 (t, *J* = 7.6 Hz, 1H), 7.21 (d, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 8.0 Hz, 1H), 6.83 (d, *J* = 2.4 Hz, 1H), 6.65~6.71 (m, 2H), 6.57 (d, *J* = 8.8 Hz, 1H), 6.42~6.48 (m, 3H), 6.37 (t, *J* = 2.4 Hz, 1H), 6.34 (d, *J* = 2.8 Hz, 1H), 3.75 (s, 2H), 3.35 (q, *J* = 6.8 Hz, 4H), 1.16 (t, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 172.1, 161.9, 159.6, 155.6, 155.4, 155.3, 152.2, 150.8, 137.3, 133.1, 132.1, 131.8, 131.4, 129.9, 127.4, 126.6, 116.5, 116.4, 113.6, 112.3, 111.0, 108.9, 108.3, 107.6, 100.1, 86.8, 47.0, 15.1; EI-MS (*m/z*) [M+] calculated for C30H26N2O4, 478.1893; found 478.1898.

4-Methyl-7-(3-nitrophenoxy)-2H-chromen-2-one (21). Mix **19** (700 mg, 3.03 mmol) and 75% H₂SO₄ (20 mL) in a 50 mL round bottom flas. Add **20** (433 mg, 3.33 mmol) dropwise and let the reaction sit with vigorous stirring at room temperature for 24 hrs. Pour the reaction mixture into crushed ice and collect the solid via suction filtration. The crude product was chromatographed with CH₂Cl₂/Petroleum ether (5:2, v/v) to afford **21** as a light yellow solid (340 mg, 37.8%). ¹H NMR(400 MHz, CDCl3) δ (ppm) 8.06 (dd, *J* = 8.4, 1.2 Hz, 1H), 7.89 (t, *J* = 2.4 Hz, 1H), 7.62 (d, *J* = 8.4 Hz, 2H), 7.58 (t, *J* = 8.4 Hz, 1H), 7.42 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.99 (dd, *J* = 8.4, 2.4 Hz, 1H), 6.96 (d, *J* = 8.4 Hz, 1H), 6.25 (d, *J* = 1.2 Hz, 1H), 2.44 (d, *J* = 1.2 Hz, 3H); 13C NMR(100 MHz, CDCl3) δ (ppm) 160.4, 158.9, 156.6, 155.0, 151.9, 130.8, 126.3, 125.5, 119.2, 116.5, 114.9, 114.3, 113.8, 106.8, 18.7; ESI-MS (m/z) [M+H]⁺ calculated for C16H12NO5, 298.0710, found 298.0719.

3'-(Diethylamino)-6'-(3-nitrophenoxy)-3H-spiro[isobenzofuran-1,9'-xanthen]-3-one (23). Mix **19** (174 mg, 0.585 mmol) and **22** (235 mg, 0.585 mmol) and 85% H3PO4 (15 mL) in a 25 mL round bottom flask. Heat the flask to 100 °C with stirring for 5 hrs. Pour the mixture into saturated NaHCO3 solution and extract with CH2Cl2. The organic layer was dried with MgSO4, filtered, and evaporated to dryness under reduced pressure. The crude product was chromatographed with CH₂Cl₂:MeOH (100:1) to afford **23** as a pink solid (310 mg, 81%). ¹H NMR(400 MHz, CDCl₃) δ (ppm) 8.00~8.03 (m, 2H) , 7.90 (t, *J* = 4.0 Hz, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 8.0 Hz, 1H), 7.53 (t, *J* = 8.0 Hz, 1H), 7.39 (dd, *J* = 8.0, 4.0 Hz, 1H), 7.25 (d, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 2.4 Hz, 1H), 6.79 (d, *J* = 8.8 Hz, 1H), 6.69 (dd, *J* = 8.0, 2.4 Hz, 1H), 6.58 (d, *J* = 8.0 Hz, 1H), 6.43 (d, *J* = 2.8 Hz, 1H), 6.37 (dd, *J* = 8.8, 2.8 Hz, 1H), 3.36 (q, *J* = 7.2 Hz, 4H), 1.17 (t, *J* = 7.2 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 169.6, 157.6, 157.4, 153.2, 153.0, 152.9, 149.8, 135.1, 130.7, 130.1, 129.8, 129.0, 127.3, 125.3, 125.1, 124.2, 118.8, 115.9, 114.5, 114.3, 108.8, 107.1, 105.0, 97.7, 44.7, 27.1, 12.6; ESI-MS (*m/z*); [M+H]⁺ calc. for C30H25N2O6, 509.1707; found 509.1716.

Supporting Information.

Additional fluorescence spectral results, NMR and HRMS spectra of new compounds. This material is available free of charge via the Internet at <u>http://pubs.acs.org</u>."

Funding Sources

The work is supported by Shanghai Rising-Star Program (No. 13QA1401200), Doctoral Fund of Ministry of Education of China (No. 20110074120008) and National Natural Science Foundation of China (Nos. 21106043 and 21372080).

REFERENCES

(1) Gryglewski, R. J.; Palmer, R. M.; Moncada, S. (**1986**) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. *Nature 320*, 454-456.

(2) Rubanyi, G. M.; Vanhoutte, P. M. (**1986**) Superoxide anions and hyperoxia inactivate endothelium-derived relaxing factor. *Am. J. Physiol. Heart. Circ. Physiol.* 250, H822-H827.

Bioconjugate Chemistry

(3) Palmer, R. M.; Ferrige, A. G.; Moncada, S. (**1987**) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. *Nature* 327, 524-526.

(4) Ignarro, L. J.; Buga, G. M.; Wood, K. S.; Byrns, R. E.; Chaudhuri, G. (**1987**) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. *Proc. Natl. Acad. Sci. U.S.A.* 84, 9265-9269.

(5) Moncada, S.; Palmer, R. M.; Higgs, E. A. (1988) The discovery of nitric oxide as the endogenous nitrovasodilator. *Hypertension 12*, 365-372.

(6) Ignarro, L. J.; Byrns, R. E.; Buga, G. M.; Wood, K. S.; Chaudhuri, G. (**1988**) Pharmacological evidence that endothelium-derived relaxing factor is nitric oxide: use of pyrogallol and superoxide dismutase to study endothelium-dependent and nitric oxide-elicited vascular smooth muscle relaxation. *J. Pharmacol. Exp. Ther.* 244, 181-189.

(7) Beckman, J. S.; Beckman, T. W.; Chen, J.; Marshall, P. A.; Freeman, B. A. (**1990**) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. *Proc. Natl. Acad. Sci. U.S.A.* 87, 1620-1624.

(8) Beckman, J. S. (1990) Ischaemic injury mediator. Nature 345, 27-28.

(9) Hogg, N.; Darley-Usmar, V. M.; Wilson, M. T.; Moncada, S. (**1992**) Production of hydroxyl radicals from the simultaneous generation of superoxide and nitric oxide. *Biochem. J.* 281, 419-424.

(10) Koppenol, W. H.; Moreno, J. J.; Pryor, W. A.; Ischiropoulos, H.; Beckman, J. S. (**1992**) Peroxynitrite, a cloaked oxidant formed by nitric oxide and superoxide. *Chem. Res. Toxicol. 5*, 834-842.

(11) Moncada, S.; Palmer, R. M.; Higgs, E. A. (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. *Pharmacol. Rev. 43*, 109-142.

(12) Nitric Oxide Biology and Pathobiology; Ignarro, L. J., Ed.; Academic Press: San Diego, CA, 2000.

(13) Fukumura, D.; Kashiwagi, S.; Jain, R. K. (2006) The role of nitric oxide in tumour progression. *Nat. Rev. Cancer.* 6, 521-534.

(14) Thomas, D. D.; Ridnour, L. A.; Isenberg, J. S.; Flores-Santana, W.; Switzer, C. H.; Donzelli, S.; Hussain, P.;
Vecoli, C.; Paolocci, N.; Ambs, S.; et al. A. (2008) The chemical biology of nitric oxide: implications in cellular signaling. *Free Radical Bio. Med.* 45, 18-31.

- (15) Martinez-Ruiz, A.; Cadenas, S.; Lamas, S. (2011) Nitric oxide signaling: classical, less classical, and nonclassical mechanisms. *Free Radical Bio. Med.* 51, 17-29.
- (16) MacMicking, J.; Xie, Q. W.; Nathan, C. (1997) Nitric oxide and macrophage function. *Ann. Rev. Immunol.* 15, 323-350.
- (17) Bogdan C. (2001) Nitric oxide and the immune response. Nat Immunol. 2, 907-916.

(18) Chakravortty, D.; Hensel, M. (2003) Inducible nitric oxide synthase and control of intracellular bacterial pathogens. *Microbes Infect.* 5, 621-627.

- (19) Beckman, J. S.; Koppenol, W. H. (**1996**) Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. *Am. J. Physiol. Cell Physiol.* 271, C1424-C1437.
- (20) Pacher, P.; Beckman, J. S.; Liaudet, L. (2007) Nitric oxide and peroxynitrite in health and disease. *Physiol. Rev.* 87, 315-424.
- (21) El Assar, M.; Angulo, J.; Rodriguez-Manas, L. (2013) Oxidative stress and vascular inflammation in aging.*Free Radical Biol. Med.* 65, 380-401.
- (22) Ferrer-Sueta, G.; Radi, R. (2009) Chemical biology of peroxynitrite: kinetics, diffusion, and radicals. *ACS Chem Biol. 4*, 161-177.
- (23) Ray, J. D. (**1962**) Heat of isomerization of peroxynitrite to nitrate and kinetics of isomerization of peroxynitrous acid to nitric acid. *J. Inorg. Nucl. Chem.* 24, 1159-1162.
- (24) Tsai, J.-H. M.; Harrison, J. G.; Martin, J. C.; Hamilton, T. P.; van der Woerd, M.; Jablonsky, M. J.; Beckman,

J. S. (1994) Role of Conformation of Peroxynitrite Anion (ONOO⁻) with Its Stability and Toxicity. *J. Am. Chem. Soc. 116*, 4115-4116.

(25) Merényi, G.; Lind, J.; Goldstein, S. (2002) The Rate of Homolysis of Adducts of Peroxynitrite to the CO Double Bond. *J. Am. Chem. Soc. 124*, 40-48.

Bioconjugate Chemistry

(26) Floris, R.; Piersma, S. R.; Yang, G.; Jones, P.; Wever, R. (1993) Interaction of myeloperoxidase with peroxynitrite. *Eur. J. Biochem.* 215, 767-775.

(27) Lymar, S. V.; Hurst, J. K. (**1995**) Rapid reaction between peroxonitrite ion and carbon dioxide: Implications for biological activity. *J. Am. Chem. Soc. 117*, 8867-8868.

(28) Squadrito, G. L.; Pryor, W. A. (**1998**) Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. *Free Radical Biol. Med.* 25, 392-403.

(29) Gerasimov, O. V.; Lymar, S. V. (**1999**) The yield of hydroxyl radical from the decomposition of peroxynitrous acid. *Inorg. Chem.* 38, 4317-4321.

(30) Hodges, G. R.; Ingold, K. U. (**1999**) Cage-Escape of Geminate Radical Pairs Can Produce Peroxynitrate from Peroxynitrite under a Wide Variety of Experimental Conditions. *J. Am. Chem. Soc. 121*, 10695-10701.

(31) Pearce, L. L.; Pitt, B. R.; Peterson, J. (1999) Interactions of bismuth complexes with metallothionein(II). J. Biol. Chem. 274, 35763-35764.

(32) Quijano, C.; Hernandez-Saavedra, D.; Castro, L.; McCord, J. M.; Freeman, B. A.; Radi, R. (2001) Reaction of peroxynitrite with Mn-superoxide dismutase. Role of the metal center in decomposition kinetics and nitration. *J. Biol. Chem.* 276, 11631-11638.

(33) Ferrer-Sueta, G.; Quijano, C.; Alvarez, B.; Radi, R. (2002) Reactions of manganese porphyrins and manganese-superoxide dismutase with peroxynitrite. *Methods Enzymol.* 349, 23-37.

(34) Romero, N.; Radi, R.; Linares, E.; Augusto, O.; Detweiler, C. D.; Mason, R. P.; Denicola, A. (**2003**) Reaction of human hemoglobin with peroxynitrite isomerization to nitrate and secondary formation of protein radicals. *J. Biol. Chem.* 278, 44049-44057

(35) Herold, S.; Shivashankar, K. (**2003**) Metmyoglobin and methemoglobin catalyze the isomerization of peroxynitrite to nitrate. *Biochemistry 42*, 14036-14046.

(36) Alvarez, B.; Demicheli, V.; Durán, R.; Trujillo, M.; Cerveñansky, C.; Freeman, B. A.; Radi, R. (2004) Inactivation of human Cu, Zn superoxide dismutase by peroxynitrite and formation of histidinyl radical. *Free Radical Biol. Med.* 37, 813-822.

(37) Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. (**1991**) Peroxynitrite oxidation of sulfhydryls: the cytotoxic potential of superoxide and nitric oxide. *J. Biol. Chem.* 266, 4244-4250.

(38) Stadtman, E. R.; Berlett, B. S. (1997) Reactive oxygen-mediated protein oxidation in aging and disease. *Chem. Res. Toxicol.* 10, 485-494.

(39) Quijano, C.; Alvarez, B.; Gatti, R. M.; Augusto, O.; Radi, R. (1997) Pathways of peroxynitrite oxidation of thiol groups. *Biochem. J.* 322, 167-173.

(40) de Silva, V.; Woznichak, M. M.; Burns, K. L.; Grant, K. B.; May, S. W. (2004) Selenium redox cycling in the protective effects of organoselenides against oxidant-induced DNA damage. *J. Am. Chem. Soc. 126*, 2409-2413.
(41) Goldstein, S.; Czapski, G. (1995) Direct and indirect oxidations by peroxynitrite. *Inorg. Chem. 34*, 4041-

4048.

(42) Goldstein, S.; Czapski, G.; Lind, J.; Merényi, G. (1998) Can O=NOOH Undergo Homolysis? *Chem. Res. Toxicol.* 11, 87-90.

(43) Denicola, A.; Freeman, B. A.; Trujillo, M.; Radi, R. (**1996**) Peroxynitrite reaction with carbon dioxide/bicarbonate: kinetics and influence on peroxynitrite-mediated oxidations. *Arch. Biochem. Biophys.* 333, 49-58.

(44) Goldstein, S.; Czapski, G. (**1997**) The effect of bicarbonate on oxidation by peroxynitrite: implication for its biological activity. *Inorg. Chem. 36*, 5113-5117.

(45) Lymar, S. V.; Hurst, J. K. (**1998**) CO₂-catalyzed one-electron oxidations by peroxynitrite: properties of the reactive intermediate. *Inorg. Chem.* 37, 294-301.

(46) Goldstein, S.; Czapski, G. (**1998**) Formation of peroxynitrate from the reaction of peroxynitrite with CO₂: evidence for carbonate radical production. *J. Am. Chem. Soc. 120*, 3458-3463.

(47) Bonini, M. G.; Radi, R.; Ferrer-Sueta, G.; Ferreira, A. M. D. C.; Augusto, O. (**1999**) Direct EPR detection of the carbonate radical anion produced from peroxynitrite and carbon dioxide. *J. Biol. Chem.* 274, 10802-10806.

(48) Goldstein, S.; Czapski, G. (**1999**) Cage-Escape of Geminate Radical Pairs Can Produce Peroxynitrate from Peroxynitrite under a Wide Variety of Experimental Conditions. *J. Am. Chem. Soc. 121*, 10695-10701.

Bioconjugate Chemistry

(49) Radi, R.; Peluffo, G.; Alvarez, M. N.; Naviliat, M.; Cayota, A. (**2001**) Unraveling peroxynitrite formation in biological systems. *Free Radic. Biol. Med. 30*, 463-456.

(50) Szabó, C.; Ischiropoulos, H.; Radi, R. (2007) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. *Nat. Rev. Drug Discov. 6*, 662-680.

(51) Cuzzocrea, S.; Zingarelli, B.; Gilad, E.; Hake, P.; Salzman, A. L.; Szabó, C. (**1997**) Protective effect of melatonin in carrageenan-induced models of local inflammation: Relationship to its inhibitory effect on nitric oxide production and its peroxynitrite scavenging activity. *J. Pineal. Res.* 23, 106-116.

(52) Balazy, M.; Kaminski, P. M.; Mao, K.; Tan, J.; Wolin, M. S. (**1998**) S-Nitroglutathione, a product of the reaction between peroxynitrite and glutathione that generates nitric oxide. *J. Biol. Chem.* 273, 32009-32015.

(53) Singh, R. J.; Goss, S. S.; Joseph, J.; Kalyanaraman, B. (**1998**) Nitration of γ -tocopherol and oxidation of α -tocopherol by copper-zinc superoxide dismutase/H₂O₂/NO₂⁻: Role of nitrogen dioxide free radical. *Proc. Natl. Acad. Sci. U.S.A.* 95, 12912-12917.

(54) Kirsch, M.; de Groot, H. (2000) Ascorbate is a potent antioxidant against peroxynitrite-induced oxidation reactions: Evidence that ascorbate acts by re-reducing substrate radicals produced by peroxynitrite. *J. Biol. Chem. 275*, 16702-16708.

(55) Alvarez, B.; Radi, R. (2003) Peroxynitrite reactivity with amino acids and proteins. *Amino Acids 25*, 295-311.

(56) Kuzkaya, N.; Weissmann, N.; Harrison, D. G.; Dikalov, S. (2003) Interactions of peroxynitrite, tetrahydrobiopterin, ascorbic acid, and thiols: implications for uncoupling endothelial nitric-oxide synthase. *J. Biol. Chem.* 278, 22546-22554.

(57) Kuzkaya, N.; Weissmann, N.; Harrison, D. G.; Dikalov, S. (**2005**) Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase. *Biochem. Pharmacol. 70*, 343-354.

(58) Crabtree, M. J.; Smith, C. L.; Lam, G.; Goligorsky, M. S.; Gross, S. S. (**2008**) Ratio of 5,6,7,8-tetrahydrobiopterin to 7,8-dihydrobiopterin in endothelial cells determines glucose-elicited changes in NO vs. superoxide production by eNOS. *Am. J. Physiol. Heart Circ. Physiol.* 294, H1530-H1540.

(59) Radi, R.; Beckman, J. S.; Bush, K. M.; Freeman, B. A. (1991) Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. *Arch. Biochem. Biophys. 288*, 481-487.
(60) Hogg, N.; Kalyanaraman, B. (1999) Nitric oxide and lipid peroxidation. *Biochimica. et Biophysica. Acta*

(60) Hogg, N., Karyanaraman, B. (1999) Nitric oxide and lipid peroxidation. *Biochimica. et Biophysica. Acta* 1411, 378-384.

(61) Rubboa, H.; Trostchanskya, A.; O'Donnell, V. B. (**2009**) Peroxynitrite-mediated lipid oxidation and nitration: mechanisms and consequences. *Arch. Biochem. Biophys.* 484, 167-172.

(62) MacMillan-Crow, L. A.; Crow, J. P.; Kirby, J. D.; Beckman, J. S.; Thompson, J. A. (**1996**) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. *Proc Natl Acad Sci USA*. *93*, 11853-11858.

(63) Ischiropoulos, H. (**1998**) Biological tyrosine nitration: a pathophysiological function of nitric oxide and reactive oxygen species. *Arch Biochem Biophys. 356*, 1-11.

(64) Souza, J. M.; Daikhin, E.; Yudkoff, M.; Raman, C. S.; Ischiropoulos, H. (**1999**) Factors determining the selectivity of protein tyrosine nitration. *Arch Biochem Biophys. 371*, 169-178.

(65) Reiter, C. D.; Teng, R.-J.; Beckman, J. S. (2000) Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. *J. Biol. Chem.* 275, 32460-32466.

(66) Greenacre, S. A. B.; Ischiropoulos, H. (**2001**) Tyrosine nitration: localisation, quantification, consequences for protein function and signal transduction. *Free Rad. Res. 34*, 541-581.

(67) Zhang, H.; Bhargava, K.; Keszler, A.; Feix, J.; Hogg, N.; Joseph, J.; Kalyanaraman, B. (**2003**) Transmembrane nitration of hydrophobic tyrosyl peptides localization, characterization, mechanism of nitration, and biological implications. *J. Biol. Chem.* 278, 8969-8978.

(68) Radi, R. (2004) Nitric oxide, oxidants, and protein tyrosine nitration. *Proc. Natl. Acad. Sci. U.S.A. 101*, 4003-4008.

(69) Radi, R. (2013) Protein tyrosine nitration: biochemical mechanisms and structural basis of functional effects.*Acc. Chem. Res.* 46, 550–559.

(70) Yermilov, V.; Rubio, J.; Ohshima, H. (**1995**) Formation of 8-nitroguanine in DNA treated with peroxynitrite in vitro and its rapid removal from DNA by depurination. *FEBS Lett. 376*, 207-210.

(71) Szabó, C.; Ohshima, H. (1997) DNA damage induced by peroxynitrite: subsequent biological effects. *Nitric Oxide 1*, 373-385.

(72) Niles, J. C.; Wishnok, J. S.; Tannenbaum, S. R. (**2006**) Peroxynitrite-induced oxidation and nitration products of guanine and 8-oxoguanine: structures and mechanisms of product formation. *Nitric Oxide 14*, 109-121.

(73) Szabó, C. (**1996**) DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. *Free Radical Biol. Med. 21*, 855-869.

(74) Burney, S.; Niles, J. C.; Dedon, P. C.; Tannenbaum, S. R. (1999) DNA damage in deoxynucleosides and oligonucleotides treated with peroxynitrite. *Chem. Res. Toxicol.* 12, 513-520.

(75) Szabó, C.; Ischiropoulos, H.; Radi, R. (**2007**) Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. *Nat. Rev. Drug Discov. 6*, 662-680.

(76) Beckman, J. S. (2009) Understanding peroxynitrite biochemistry and its potential for treating human diseases. *Arch. Biochem. Biophys.* 484, 114-116.

(77) Yang, D.; Tang, Y.-C.; Chen, J.; Wang, X.-C.; Bartberger, M. D.; Houk, K. N.; Olson, L. (**1999**) Ketonecatalyzed decomposition of peroxynitrite via dioxirane intermediates. *J. Am. Chem. Soc. 121*, 11976-11983.

(78) Yang, D.; Wang, H.-L.; Sun, Z.-N.; Chung, N.-W.; Shen, J.-G. (**2006**) A highly selective fluorescent probe for the detection and imaging of peroxynitrite in living cells. *J. Am. Chem. Soc. 128*, 6004-6005.

(79) Sun, Z.-N.; Wang, H.-L.; Liu, F.-Q.; Tam, P. K. H.; Yang, D. (**2009**) BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. *Org. Lett. 11*, 1887-1890.

(80) Peng, T.; Yang, D. (2010) HKGreen-3: a rhodol-based fluorescent probe for peroxynitrite. *Org. Lett. 12*, 4932-4935.

(81) Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. (2004) A selective, cell-permeable optical probe for hydrogen peroxide in living cells. *J. Am. Chem. Soc. 126*, 15392-15393.

(82) Lippert, A. R.; van de Bittner, G. C.; Chang, C. J. (2011) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. *Acc. Chem. Res.* 44, 793-804.

(83) Zielonka, J.; Sikora, A.; Joseph, J.; Kalyanaraman, B. (**2010**) Peroxynitrite is the major species formed from different flux ratios of co-generated nitric oxide and superoxide direct reaction with boronate-based fluorescent probe. *J. Biol. Chem.* 285, 14210-14216.

(84) Chen, Z.-J.; Ren, W.; Wright, Q. E.; Ai, H.-W. (**2013**) Genetically encoded fluorescent probe for the selective detection of peroxynitrite. *J. Am. Chem. Soc. 135*, 14940-14943.

(85) Abo, M.; Urano, Y.; Hanaoka, K.; Terai, T.; Komatsu, T.; Nagano, T. (**2011**) Development of a highly sensitive fluorescence probe for hydrogen peroxide. *J. Am. Chem. Soc. 133*, 10629-10637.

(86) Zhao, J.; Li, H.; Yang, K.; Sun, S.; Lu, A.; Xu, Y. (**2014**) A specific and rapid "on-off" acenaphthenequinonebased probe for HOCl detection and imaging in living cells. *New J. Chem. 38*, 3371-3374.

(87) Yang, X.-F.; Guo, X.-Q.; Zhao, Y.-B. (2002) Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. *Talanta* 57, 883-890.

(88) Ambikapathi, G.; Kempahanumakkagari, S. K.; Lamani, B. R.; Shivanna, D. K.; Maregowda, H. B.; Gupta, A.; Malingappa, P. (2013) Bioimaging of peroxynitrite in MCF-7 cells by a new fluorescent probe rhodamine B phenyl hydrazide. *J. Fluoresc. 23*, 705-712.

(89) Xu, K.; Chen, H.; Tian, J.; Ding, B.; Xie, Y.; Qiang, M; Tang, B. (**2011**) A near-infrared reversible fluorescent probe for peroxynitrite and imaging of redox cycles in living cells. *Chem. Commun.* 47, 9468-9470.

(90) Yu, F.; Li, G.; Zhao, g.; Chu, T.; Han, K. (2011) A near-IR reversible fluorescent probe modulated by selenium for monitoring peroxynitrite and imaging in living cells. *J. Am. Chem. Soc. 133*, 11030-11033.

(91) Tian, J.; Chen, H.; Zhuo, L.; Xie, Y.; Li, N.; Tang, B. (**2011**) A Highly Selective Cell-Permeable Fluorescent Nanoprobe for Ratiometric Detection and Imaging of Peroxynitrite in Living Cells. *Chem.-Eur. J.* 17, 6626-6634.

(92) Wang, B.; Yu, F.; Li, P.; Sun, X.; Han, K. (**2013**) A BODIPY fluorescence probe modulated by selenoxide spirocyclization reaction for peroxynitrite detection and imaging in living cells. *Dyes Pigments 96*, 383-390.

(93) Ueno, T.; Urano, Y.; Kojima, H.; Nagano, T. (**2006**) Mechanism-based molecular design of highly selective fluorescence probes for nitrative stress. *J. Am. Chem. Soc. 128*, 10640-10641.

(94) Song, C.; Ye, Z.; Wang, G.; Yuan, J.; Guan, Y. (**2010**) A Lanthanide-Complex-Based Ratiometric Luminescent Probe Specific for Peroxynitrite. *Chem.-Eur. J. 16*, 6464-6472.

Bioconjugate Chemistry

(95) Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P. (**1997**) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte nadph oxidase and other oxidases. *Anal. Biochem.* **1997**, *253*, 162-168.

(96) Setsukinai, K.-I.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. (**2002**) Fluorescence switching by odearylation of 7-aryloxycoumarins. development of novel fluorescence probes to detect reactive oxygen species with high selectivity. *J. Chem. Soc., Perkin Trans.* 2 2453-2457.

(97) Setsukinai, K.; Urano, Y.; Kakinuma, K.; Majima, H. J.; Nagano, T. (2003) Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species. *J. Biol. Chem.* 278, 3170-3175.

(98) Wardman, P. (2007) Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. *Free Radical Biol. Med.* 43, 995-1022.

(99) Shepherd, J.; Hilderbrand, S. A.; Waterman, P.; Heinecke, J. W.; Weissleder, R.; Libby, P. (2007) A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. *Chem. Biol.* 2007, *14*, 1221-1231.

(100) Panizzi, P.; Nahrendorf, M.; Wildgruber, M.; Waterman, P.; Figueiredo, J.-L.; Aikawa, E.; McCarthy, J.;
Weissleder, R.; Hilderbrand, S. A. (2009) Oxazine conjugated nanoparticle detects in vivo hypochlorous acid and peroxynitrite generation. *J. Am. Chem. Soc. 131*, 15739-15744.

(101) Zhang, Q.; Zhu, Z.; Zheng, Y.; Cheng, J.; Zhang, N.; Long, Y.-T.; Zheng, J.; Qian, X.; Yang, Y. (**2012**) A three-channel fluorescent probe that distinguishes peroxynitrite from hypochlorite. *J. Am. Chem. Soc. 134*, 18479-18482.

(102) Peng, T.; Wong, N.-K.; Chen, X.; Chan, Y.-K.; Ho, D. H.-H.; Sun, Z.; Hu, J. J.; Shen, J.; EI-Nezami, H.;
Yang, D. (2014) Molecular imaging of peroxynitrite with HKGreen-4 in live cells and tissues. *J. Am. Chem. Soc.*, *136*, 11728-11734.

(103) Chen, X.; Wang, X.; Wang, S.; Shi, W.; Wang, K.; Ma, H. (**2008**) A highly selective and sensitive fluorescence probe for the hypochlorite anion. *Chem. Eur.-J.* 14, 4719-4724.

(104) Jin, X.; Hao, L.; Hu, Y.; She, M.; Shi, Y.; Obst, M.; Li, J.; Shi, Z. (**2010**) Thiospirolactone as a recognition site: rhodamine B-based fluorescent probe for imaging hypochlorous acid generated in human neutrophil cells. *Sens. Actuator B-Chem. 150*, 774-780.

(105) Lippert, A. R.; Van de Bittner, G. C.; Chang, C. J. (**2011**) Boronate oxidation as a bioorthogonal reaction approach for studying the chemistry of hydrogen peroxide in living systems. *Acc. Chem. Res.* 44, 793-804.

(106) Chen, W.; Bay, W. P.; Wong, M. W.; Huang, D. (2012) Selenium Blue-α and-β: turning on the fluorescence of a pyrenyl fluorophore via oxidative cleavage of the Se–C bond by reactive oxygen species. *Tetrahedron Lett.* 53, 3843-3846.

(107) Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. (**2013**) A reversible fluorescence probe based on Se–BODIPY for the redox cycle between HClO oxidative stress and H₂S repair in living cells. *Chem. Commun.* 49, 1014-1016.

(108) Liu, S.-R.; Wu, S.-P. (**2013**) Hypochlorous acid turn-on fluorescent probe based on oxidation of diphenyl selenide. *Org. Lett. 15*, 878-881.

(109) Lou, Z.; Li, P.; Pan, Q.; Han, K. A reversible fluorescent probe for detecting hypochloric acid in living cells and animals: utilizing a novel strategy for effectively modulating the fluorescence of selenide and selenoxide. *Chem. Commun.* **2013**, *49*, 2445-2447.

(110) Wang, B.; Li, P.; Yu, F.; Chen, J.; Qu, Z.; Han, K. (2013) A near-infrared reversible and ratiometric fluorescent probe based on Se-BODIPY for the redox cycle mediated by hypobromous acid and hydrogen sulfide in living cells. *Chem. Commun.* 49, 5790-5792.

(111) Li, G.; Zhu, D.; Liu, Q.; Xue, L.; Jiang, H. (**2013**) A strategy for highly selective detection and imaging of hypochlorite using selenoxide elimination. *Org. Lett. 15*, 2002-2005.

(112) Manjare, S. T.; Kim, J.; Lee, Y.; Churchill, D. G. (2014) Facile meso-BODIPY annulation and selective sensing of hypochlorite in water. *Org. Lett. 16*, 520-523.

(113) Cheng, G.; Fan, J.; Sun, W.; Cao, J.; Hu, C.; Peng, X. (**2014**) A near-infrared fluorescent probe for selective detection of HClO based on Se-sensitized aggregation of heptamethine cyanine dye. *Chem. Commun. 50*, 1018-1020.

(114) Hou, J.-T.; Wu, M.-Y.; Li, K.; Yang, J.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. (**2014**) Mitochondria-targeted colorimetric and fluorescent probes for hypochlorite and their applications for in vivo imaging. *Chem. Commun. 50*, 8640-8643.

(115) Zhou, M.; Diwu, Z.; Panchuk-Voloshina, N.; Haugland, R. P. (**1997**) A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte nadph oxidase and other oxidases. *Anal. Biochem. 253*, 162-168.

(116) Koide, Y.; Urano, Y.; Kenmoku, S.; Koijma, H.; Nagano, T. (**2007**) Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells. *J. Am. Chem. Soc. 129*, 10324-10325.

(117) Shepherd, J.; Hilderbrand, S. A.; Waterman, P.; Heinecke, J. W.; Weissleder, R.; Libby, P. (2007) A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. *Chem. Biol.* 14, 1221-1231.

(118) Sun, Z. N.; Liu, F. Q.; Chen, Y.; Tam, P. K.; Yang, D. (**2008**) A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. *Org. Lett. 10*, 2171-2174.

(119) Hu, J. J.; Wong, N. K.; Gu, Q.; Bai, X.; Ye, S.; Yang, D. (**2014**) HKOCl-2 series of green BODIPY-based fluorescent probes for hypochlorous acid detection and imaging in live cells. *Org. Lett. 16*, 3544-3547.

(120) Pearson, J. G.; Oldfield, E.; Lee, F. S.; Warshell, A. (**1993**) Chemical shifts in proteins: a shielding trajectory analysis of the fluorine nuclear magnetic resonance spectrum of the Escherichia coli galactose binding protein using a multipole shielding polarizability-local reaction field-molecular dynamics approach. *J. Am. Chem. Soc. 115*, 6851-6862.

(121) Benniston, A. C.; Copley, G.; Elliott, K. J.; Harrington, R. W.; Clegg, W. (2008) Redox-Controlled Fluorescence Modulation in a BODIPY-Quinone Dyad. *Eur. J. Org. Chem.* 2705-2713.

TOC graphic

Do they react?	ĕ	0"0	$\bigcup_{H}^{NH_2} \circ r \bigcup_{H}^{NH_2}$	$\bigcup_{N=1}^{NR_2} \text{ or } \bigcup_{O_{n}}^{NR_2} \text{ or } \bigcup_{R=H,Me,Et}^{O^*}$
Hypochlorite	NO	NO	Border line	Yes
Peroxynitrite	Yes	Yes	Yes	Yes