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Ketones with multiple substitutents on the-carbon (- Scheme 1. Syntheses of a-Substitured Ketones
substituted ketonedl) represent important targets for chemical o o) 0o
synthesis. The value of this structural motif stems from its I)K(H ; g?;e ')‘\rR RM ,)‘\rx
prevalence in both natural products and pharmaceutical compounds Lo W “pathb
and from the ability ofa-substituted ketones to participate in o 1

stereoselective 1,2-additions, olefinations, and enolate reactions.

Traditionally, enolate anions have been exploited in the synthesis 7able 1. Cross-Coupling of 2a with Organometallic Reagents

of a-branched ketones. Thus, deprotonation with a strong base 9 catalyst (5 mol%) o

followed by reaction of the resultant enolate with an alkyl é/c'+ . THF/ELO é/R
it

electrophile furnishes the substituted ketone (Scheme 1, path a).
This strategy has found widespread applicaticemd catalytic 2a (1.5 eqiv)

variants have been reporté@urrently, however, enolate alkylation entry catalyst R-M time () yield (%)
remains useful primarily for the introduction of sterically unhindered

o . 1 Cu(acag) i-PrMgCH-ZnCl, 0.25 >95
alkyl groups® Additionally, enolate alkylation can be plagued by 2 cucl i-PrMgCH-ZnCl, 0.25 >95
overalkylation and poor regiocontrol stemming from equilibria 3 CuCh i-PrMgCHZnCl, 0.25 >95
between various enolate species. gc gu((acacg g!'ﬁr));g“ i 2(5*’

P : . u(acac 1-PrhZn

To_ address som_e of the limitations of enolate_ alkylatlon, we 6 Cu(aca) n-CaHeLi+ZnCl 18 o
considered alternative approaches to the synthesissoibstituted 7 Cu(acac) ¢-CsHeZnCl 18 ¢
ketones. In particular, we wondered whetlhehaloketones could 8 none i-PrMgCH-ZnCl, 18 21
undergo cross-coupling reactions with suitable organometallic )

i aGC yields relative to an internal standaP®3% conversion oRa to

reagents (Scheme 1, path@Ve report hgreln the Qevelopment unidentified productst 1,24rans-diaminocyclohexane adde#i>90% re-
of a copper-catalyzed reaction of organozinc hafiaeth a-chlo- covery of2a ©35% conversion ofa to unidentified products.

roketone$. The cross-coupling enables the introduction of primary _ _ _
and secondary alkyl groups adjacent to a ketone carbonyl in high Scheme 2. Potential Reaction Mechanisms

yield and under mild reaction conditions. MO, B\' N o}
Initial efforts to develop the cross-coupling reaction were patha @Q ~R
frustrated by competitive reductive dehalogenation and dimerization 3

of the a-chloroketones. Evaluation of various combinations of

: . o OCuR(L), o}
organometallic reagents and catalysts led to the discovery that S| pathb R
simple Cu(l) and Cu(ll) salts catalyze the addition of isopropylzinc - -
chloride to 2-chlorocyclohexanon@d) in excellent yield (Table o4 . o

1, entries +3). Generation of the alkylzinc halide through R
transmetalation of the Grignard reagent with Zn@oved critical. path ¢ QL — é

For example, Mg-free diorganozinc reagents were ineffective (entry R

4), although the use of diisopropyl zinc in conjunction withns-

1,2-diaminocyclohexane was moderately successful (entry 5). patha). Similar reactivity has been observed with Grignard reagents
Similarly, organozinc halides obtained from transmetalation of an under forcing condition® The intermediacy of a tertiary carbinol
organolithium reagent or from Zn(0) insertion into an alkyl halide in the catalytic reaction can be ruled out by the observation that

failed to provide any of the desired product (entries7§. halohydrin5 is stable to the reaction conditions (eq 1).
The copper-catalyzed cross-coupling of organozinc halides with
o-chloroketones tolerates substantial variation in both reacting HHSC\ CH I-PrZnCl-MgCl, O CHs
partners (Table 2). Both cyclic and acyckcchloroketones are < ¢t Cu(acac), (5 mol%) L
. . . . Et,O/THF, 25 °C “SCHy (1)
suitable substrates. Primary, secondary acyclic, and secondary cyclic (%)-

alkylzinc halides participate similarly well in the cross-coupling 5 <5% yield

reaction. Aryl triflates (entry 20) and aryl nitriles (entry 21) are (>90% recovered 5)

compatible with the reaction conditions, whiledisubstituted,-

unsaturated ketones provide the coupling products in substantially A second potential mechanism for the copper-catalyzed cross-

reduced yield. coupling features an alkylcopper enolate $cheme 2, path BY.
Three different mechanisms could account for the observed cross-Reductive elimination would provide the substituted ketone product

coupling. One potential pathway involves 1,2-addition to the ketone as a mixture of stereoisomers. Finally, direct substitution of the

followed by 1,2-migration with concurrent loss of QlScheme 2, alkyl chloride by an organometallic reagent (Scheme 2, path ¢, M
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Table 2. Catalytic Synthesis of a-Substituted Ketones? copper, zinc, or magnesium to thecarbon of the ketone substrate
o Cu(acac), (5 mol%) o (Scheme 2, path ¢). Metal coordination to the chloride or carbonyl
R')Jj/c' + RZnXeMgx, - c2OOrTHFERO - R may occur, although no evidence currently implicates these modes
R . " of activation. The copper-catalyzed substitutiomethloroketones
2 (1.5~ 2.0 equiv.) R thus appears mechanistically distinct from copper-catalyzed allylic
Entry Ketone RZnX -MgX;" Solvent Yield _pp_ . y PP y Y
(%)° substitution reaction®’
1 2a i-PrMgCI+ZnCl, THF/ELO 95 The copper-catalyzed cross-coupling of organozinc halides with
2 2a n-C4HsMgCI+ZnBr, Et,O 85 a-chloroketones represents a general strategy for the synthesis of
3 2a c-CoHsMgCl+ZnCl,  THF/ELO 96 a-branched ketones. Furthermore, the use of optically active
4 2a c-CsHoMgCI+ZnCl; THF/Et.O 92 ] . .
o chloroketones has enabled the preparation of enantiomerically
5 o  i-PrMgCI+ZnCl, Et:0 70 enriched substituted ketones. Notably, the products derived from
2b addition of secondary alkyl zinc reagents would be difficult to access
6 2b ¢-CeH1;MgCHZnCl, EO 79 using conventional enolate alkylation. Current efforts are directed
7 2b ¢-CsHyMgCl+ZnCl; Et,0 Al . . . . .
a toward expanding this reaction manifold to include other classes
8 UC' i-PrMgCI+ZnBr; Et,0 75 of nucleophiles and electrophiles.
2c
g 2c c-CgH1:MgCl+ZnCl, THF/E,O 84 Acknowledgment. We acknowledge assistance from Dr. Carlos
10 2¢ c-CsHgMgCl+ZnBr, Et.0 75 A. Amezcua and Dr. Sanjay C. Panchal (UT Southwestern) with
1 @/ﬂva -PrMgCI+ZnCl, THFELO 90 NMR experiments. J.M.R. is a Southwestern Medical Foundation
2d Scholar in Biomedical Research.
12 2d ¢-CeHiMgCI+ZnCl,  THF/ELO 90 ) _ _ _
13 2d ¢-CsHaMgCI1+ZnCl, THF/Et,O 83 Supporting Information Available: Experimental procedures for
i . cross-coupling reactions and eqs-2;, spectral data for all new
14 mz\guz i-PrMgCH+ZnBr; Et:O 80 compounds. This material is available free of charge via the Internet

at http://pubs.acs.org.
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