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Abstract: By using 4Na2SO4·2H2O2·NaCl as a reductant, manganese oxide 

octahedral molecular sieve (OMS-2) with enhanced surface area and mixed 

valence was prepared successfully. OMS-2 showed excellent catalytic ability 

towards aerobic oxidative synthesis of 1,3,5-triazines from benzyl alcohols 

and benzamidine. Methyl benzenes, DMF and DMSO could also be 

employed as substrates to react with benzamidine offering triazines under 

the heterogeneous conditions. The catalytic system features base-free 

conditions, broad substrate scope, high chemoselectivity, operational 

simplicity, catalyst recyclability and utilization of O2 as the green oxidant. 
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1. Introduction 

1,3,5-triazines, as key skeletons of many important bioactive heterocyclic 

compounds, frequently present in insecticides, fungicides, herbicides, 

antimalarial, antitumor and antivirals.[1-3] Meanwhile, due to their chemical 

properties, they are used in organic dyes, chelating ligands for synthesis of 

organometallic materials, liquid crystals, electroluminescent materials and 

fluorescent brighteners.[4-6] Generally, synthesis of 1,3,5-triazines involves 

cyclotrimerization of nitriles, coupling of halogenated triazines over 

transition-metal catalysts and specific multicomponent reactions.[7-9] In 

recent years, amidines were found to be efficient substrates to react with 

alcohols, aldehydes, amines, DMF, DMSO or toluene for synthesis of 1,3,5-

triazines via oxidative pathway.[10-15] However, from the perspective of 

clean synthesis, very limited reports have been found on the applications of 

non-noble metals as recyclable catalysts in 1,3,5-triazines synthesis under 

base- and ligand-free conditions. 

Manganese oxide octahedral molecular sieve (OMS-2) containing 2X2 

and 1D tunnel structure with a pore size of 0.46 nm is composed by edge- 

and corner-shared MnO6 octahedra.[16] Because of its excellent properties, 

like catalysis, adsorption and semiconductivity, OMS-2 has been applied in 

organic synthesis, environmental catalysis, separation and batteries.[17-21] 

Especially, it generally exhibits mixed-valence of Mn (Mn4+, Mn3+ and 

Mn2+), which makes it superior heterogeneous catalyst and support in many 

aerobic oxidations through tuning the ratio of mixed-valent manganese to 

accelerate electron transfer during redox process.[22-26] Our group recently 

developed methods for preparation of OMS-2 to further prepare supported 

catalyst or directly use it as the catalyst in N-containing heterocycles 

synthesis under ligand- and additive-free conditions. And, chemoselective 

synthesis of 1,2-dihydro-1,3,5-triazine and quinazolines from alcohols and 

N-arylamidines via establishment of certain catalytic systems was realized 

(Scheme 1, a and b).[27,28] Very recently, we prepared OMS-2 successfully 

using 4Na2SO4·2H2O2·NaCl as a reductant via reduction of KMnO4 (denoted 

as OMS-2-SH-A). Synthesized OMS-2-SH-A which exhibited obviously 

enhanced surface area and amounts of Mn2+ compared with OMS-2 prepared 

by conventional reflux method was found to be a highly efficient catalyst for 
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oxidation of benzyl alcohols. As shown in Scheme S1 (see ESI), the 

catalytic system could tolerate various substrates and excellent conversions 

and yields were obtained when the reactions were carried out in toluene at 

110 oC under O2.  

 

Scheme 1. OMS-2-based catalytic systems for the oxidative synthesis of 

heterocycles using amidines as substrates. 

With our continuous research interest in clean synthesis of heterocycles 

over MnOx-based catalysts,[29-31] we would like to describe a procedure 

for synthesis of OMS-2 material using relatively safe and stable H2O2 

trapped reagent, 4Na2SO4·2H2O2·NaCl, as the reductant via reduction of 

KMnO4. After full characterization, obtained OMS-2 catalyst shows larger 

surface area and more amounts of Mn2+ than OMS-2 synthesized by 

conventional procedure. Importantly, as-synthesized material is an efficient 

recyclable catalyst for the aerobic oxidative synthesis of 1,3,5-triazines from 

benzamidine and alcohols via in-situ formed aldehydes. Furthermore, 

toluene and its derivatives were directly employed as substrates replacing 

alcohols to yield desired products over the synthesized catalyst (Scheme 1, 

c). 
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2. Experimental  

2.1. Catalyst preparation 

OMS-2-SH material was synthesized by the reduction of KMnO4. Firstly, a 

mixture of KOAc (2.5 g, 25 mmol), acetic acid (2.5 mL) and 

4Na2SO4·2H2O2·NaCl was stirred at room temperature to generate a buffer 

solution. The solution of KMnO4 (3.25 g, 20 mmol) was added dropwisely 

into the buffer solution with stirring at room temperature. Subsequently, the 

brown mixture was kept stirring at 100 oC for 24 h under air. The reaction 

mixture was cooled down and filtrated followed by washing with deionized 

water. Lastly, the obtained solid material was dried at 120 oC for overnight 

to yield the OMS-2-SH catalyst. The obtained OMS-2-SH catalysts were 

named OMS-2-SH-A, OMS-2-SH-B, OMS-2-SH-C and OMS-2-SH-D, 

when 4Na2SO4·2H2O2·NaCl was added in 7, 5, 3.5 and 1.75 g respectively 

into the buffer solution. 

2.2. Typical procedure for the synthesis of 1,3,5-triazine 3a 

OMS-2-SH-B (20 mg, 10 mol%), benzyl alcohol (0.3 mmol) and 

benzamidine (0.5 mmol) were added into a Schlenk tube. Then, air was 

removed and toluene (1 mL) was added by a syringe under O2 atmosphere. 

If substituted benzyl alcohol was liquid, it was added with toluene under O2 

balloon protection. If methyl benzene was used as substrate instead of 

benzyl alcohol, it was added as solvent (1 mL) into the reaction tube by 

syringe under O2 atmosphere. The mixture was stirred for required time at 

certain temperature for 20 hours. The resulting mixture was cooled down, 

filtered and washed with EtOAc, and concentrated under reduced pressure to 

give the crude product. Finally, the product was purified by silica gel 

chromatography to yield the pure product. 

 

3. Results and discussion 

Due to the excellent catalytic performance of OMS-2-SH-A in oxidation 

of benzyl alcohol (Scheme S1, in ESI), we firstly used it as the catalyst to 

optimize the reaction between benzyl alcohol and benzamidine in toluene 

under reflux conditions (Table 1). Initially, the reaction results prove that 

OMS-2-Re made by conventional method and its supported catalyst 

Cu/OMS-2-Re both failed the reaction by the use of air as the oxidant (Table 
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1, entries 1 and 2). Delightedly, 45% yield of 3a was isolated when OMS-2-

SH-A was used as the catalyst (Table 1, entry 3). According to changing the 

oxidant, O2 was the best green oxidant and 85% yield of 3a was obtained 

(Table 1, entries 3-5). These results imply that the method for preparation of 

catalyst has significant influence. In addition, it was found that decreasing 

the reaction temperature was deleterious to the reaction. The precursors of 

OMS-2 were also tested in the reaction under the standard conditions, while 

the reactions did not occur at all (Table 1, entries 6 and 7). Subsequently, 

different solvents were used in the reaction at their reflux temperatures and 

only dimethyl carbonate (DMC), PhCl and MeNO2 yielded 3a more or less 

(Table 1, entries 8-15). Therefore, non-proton and non-polar solvents and 

reaction temperature were important factors for the success of the oxidative 

cyclization. Hence, the optimized reaction condition is as shown in Table 1, 

entry 4. 

Table 1. Optimization of reaction conditionsa 

 

Entry Catalyst Solvent Oxidant Yield of 3a (%)b 

1 OMS-2-Re toluene air 0 

2 Cu/OMS-2-Re toluene air 0 

3 OMS-2-SH-A toluene air 45 

4 OMS-2-SH-A toluene O2 85 (48c) 

5 OMS-2-SH-A toluene H2O2 0 

6 KMnO4 toluene O2 0 

7 MnSO4 toluene O2 0 

8 OMS-2-SH-A DMC O2 28 

Ph OH +
solvent, oxidant, reflux, 20 h

N

N

N

Ph

PhPh

2

catalyst (10 mol%)
NH2

NH

3a
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9 OMS-2-SH-A EtOH O2 0 

10 OMS-2-SH-A DEC O2 0 

11 OMS-2-SH-A 2-Me-THF O2 0 

12 OMS-2-SH-A DMSO O2 0 

13 OMS-2-SH-A chlorobenzene O2 15 

14 OMS-2-SH-A dioxane O2 0 

15 OMS-2-SH-A MeNO2 O2 40 

a Reaction conditions: benzyl alcohol (0.3 mmol), phenyl amidine (0.5 mmol), catalyst 

(10 mol%; for OMS-2-based catalyst, 20 mg was used), solvent (1 mL), 20 h, under air or 

O2 balloon. b Isolated yields. c At 90 oC. 

To further optimize the catalytic reaction, the catalysts synthesized using 

different amounts of 4Na2SO4·2H2O2·NaCl were investigated (Figure 1). It 

was found that OMS-2-SH-B showed the best catalytic ability (95% yield of 

3a) and it exhibited the second largest surface area (114 m2/g). However, 

OMS-2-SH-D with the highest surface area (220 m2/g) only offered 15% 

yield of 1,3,5-triazine 3a under the optimal conditions. Characterization of 

catalysts via X-ray diffraction (XRD) demonstrates that OMS-2-SH-A, 

OMS-2-SH-B, and OMS-2-SH-C all possessed typical and pure 

cryptomelane phase (JCPDS 29-1020) while OMS-2-SH-D possessed 

birnessite phase (JCPDS 80–1098, Scheme S2, in ESI). So, the results from 

XRD imply that too less amounts of 4Na2SO4·2H2O2·NaCl was not enough 

to reduce KMnO4 and ordered cryptomelane phase and MnO6 units cannot 

form, which makes OMS-2-SH-D the largest surface area. The added 

loadings of 4Na2SO4·2H2O2·NaCl not only affected the surface areas, but 

also crystallinity of the final catalysts, such as OMS-2-SH-B has the largest 

surface area and relatively weaker crystallinity. Compared with OMS-2-Re 

(surface area is 67 m2/g), catalysts prepared involving 4Na2SO4·2H2O2·NaCl 

all show much larger surface area and stronger crystallinity (Table S1, in 

ESI). From our experimental results of 3a synthesis (Figure 1), it is believed 

that large surface area usually means more exposed surface reactive sites 
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which are critical in catalysis and different crystal phases of solid catalysts 

always influence the catalytic activity.[32] 

 

Figure 1. The influence of surface area of the catalysts on the catalytic 

performance.  

Characterization of as-synthesized catalysts was also performed by SEM 

and TEM. From the SEM images, we found that added loadings of 

4Na2SO4·2H2O2·NaCl could significantly affect the morphologies of 

catalysts. Obviously, OMS-2-SH-B shows longer, thinner and more uniform, 

while OMS-2-SH-A is thicker and OMS-2-SH-C is shorter (Scheme S3, in 

ESI). In addition, compared with OMS-2-Re possessing short rod-like 

morphology, OMS-2-SH-B possesses long fiber-like morphology (Scheme 

S5, in ESI). Especially, OMS-2-SH-D does not have fiber-like morphology 

and is composed by small flakes (Scheme S3 and S12, in ESI). Similarly, 

difference of morphologies of as-synthesized catalysts was confirmed by 

TEM images (Scheme S4, in ESI). From the analysis of EDX, there are not 

Na ions existed in catalysts prepared by 4Na2SO4·2H2O2·NaCl and only K 

ions are detected clearly, which indicates that manganese oxide was formed 

by MnO6 unites with K ions in tunnel to stabilize the structure (Scheme S6, 

in ESI). These results from morphologies are in agreement with the 

information of XRD very well. 
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Subsequently, the surface chemistry of obtained catalysts was studied by 

X-ray photoelectron spectroscopy (XPS). The catalysts synthesized with 

4Na2SO4·2H2O2·NaCl possess very similar oxygen species from analysis of 

O 1s (Scheme S8 and Table S3, in ESI). On the other hand, all catalysts 

synthesized with 4Na2SO4·2H2O2·NaCl show mixed-valence of Mn as the 

same as OMS-2-Re (Scheme S7, in ESI). It is obvious to find out that the 

method of catalyst preparation and the added loadings of 

4Na2SO4·2H2O2·NaCl affect the ratio of mixed-valence of manganese. 

Specifically, OMS-2 catalysts prepared with 4Na2SO4·2H2O2·NaCl all 

possess lower amounts of Mn4+ than OMS-2-Re does. Among as-

synthesized OMS-2 in this study, OMS-2-SH-B possesses the lowest 

amounts of Mn4+ and highest amounts of Mn2+ (Table S2, in ESI). Low 

amounts of Mn4+ in OMS-2 materials generally imply high concentration of 

oxygen vacancy defects which can adsorb, active and desorb the substrates 

in the reaction.[33] Therefore, low amounts of Mn4+ and high concentration 

of oxygen vacancy defects of OMS-2-SH-B might be important factors in 

catalytic performance.  

With the optimal catalyst (OMS-2-SH-B) in hand, a series of substituted 

benzyl alcohols were employed to react with benzamidine to examine the 

tolerance of the catalytic system (Table 2). Generally, electronic effect did 

not affect the reactions, while steric effect influenced the reaction 

significantly (Table 2, 3g). Benzyl alcohols which can be oxidized to 

corresponding aldehydes all participated in the reaction smoothly and led to 

1,2,3-triazines in good to excellent yields under the optimal conditions. 

Moreover, cinnamyl alcohol and the less-reactive heterocyclic alcohols 

could be tolerated successfully and gave corresponding functional 1,3,5-

triazines in high yields (Table 2, 3n, 3o and 3p). Cyano-substituted benzyl 

alcohol that has two reactive functional groups was reported to react with 

benzamidine yielding 1,2,4-triazole with an aldehyde group through copper-

catalyzed oxidative cyclization.[34,35] Interestingly, under our Mn-based 

catalytic system, desired 1,3,5-triazine with an untouchable cyano was 

obtained in excellent yields, which implies that the present reaction 

conditions have superior chemoselevtivity (Scheme 2).  
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Table 2. Scope of the reactiona 

 

   

   

   

   

   

a Reaction conditions: OMS-2-SH-B (20 mg, 10 mol%), alcohol (0.3 mmol), phenyl 

amidine (0.5 mmol), toluene (1 mL), 110 oC, 20 h, O2 balloon, isolated yields. 

R OH +
toluene

110 oC, O2, 20 h

N

N

N

Ph

PhR

2
OMS-2-SH (10 mol%)NH2

NH

N

N

N

Ph

Ph

3b, 88%

N

N

N

Ph

Ph

Et

3c, 89%

N

N

N

Ph

Ph

Me

3d, 88%

N

N

N

Ph

Ph
Me

Me

3e, 90%

N

N

N

Ph

Ph
Me

3f, 91%

N

N

N

Ph

Ph

Me

3g, 55%

N

N

N

Ph

Ph

Cl

3h, 95%

N

N

N

Ph

Ph
Cl

3i, 93%

N

N

N

Ph

Ph
Cl

Cl

3j, 90%

N

N

N

Ph

Ph
Br

3k, 90%

N

N

N

Ph

Ph

F

3l, 92%

N

N

N

Ph

Ph

F3C

3m, 90%

N

N

N

Ph

PhPh

3n, 91%

N

N

N

Ph

Ph
S

3o, 83%

N

N

N

Ph

Ph
O

3p, 78%
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Scheme 2. The chemoselectivity of the catalytic system between two 

functional groups of benzyl alcohol under the optimized reaction conditions.  

For further expanding the scope of the reaction, aliphatic alcohols were 

tried in the reaction. However, corresponding cyclic alkanes substituted 

1,3,5-triazines were not observed at all and triphenyl-substituted 1,3,5-

triazines were isolated in good yields under the optimal conditions (Scheme 

S9). Additionally, aliphatic alcohols, like cyclohexanemethanol and 

cyclohexenemethanol, did not react with OMS-2-SH-B and all alcohols were 

recovered after the reactions. These experimental facts indicate that toluene 

which was oxidized by OMS-2-SH-B proceeded into the reaction. In this 

way, some simple methyl benzenes were selected to directly react with 

benzamidine under the optimal conditions. As expected, electron-rich or 

electron-neutral toluenes proceeded the reactions very well and 

corresponding 1,3,5-triazines were obtained in good yields (Table 3, entries 

1-4). However, electron-poor toluenes were difficult to oxidize over OMS-2-

SH-B and very poor yields of final products were obtained (Table 3, entries 

5 and 6). 

Table 3. The scope of the reaction directly using substituted toluene as the 

substrates. 

 

Entry R =  Compound Isolated yield % 

1 H 3a 82 

2 4-Me 3d 71 

OH
+ toluene

110 oC, O2, 20 h

N

N

N

Ph

Ph
2

OMS-2-SH (10 mol%)

NH2

NH

NC NC

3r, 95% yield
chemoselective reaction

HN N

N

O
+

not observed

Me

+
110 oC, O2, 24 h

N

N

N

Ph

Ph2
OMS-2-SH (10 mol%)NH2

NH

R
R
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3 4-Et 3c 70 

4 3,4-diMe 3e 75 

5 4-Cl 3h 35 

6 3-Cl 3i 38 

a Reaction conditions: OMS-2-SH-B (20 mg, 10 mol%), substituted toluene (1 mL), 

phenyl amidine (0.5 mmol), 110 oC, 24 h, O2 balloon, isolated yields. 

Finally, inspired by the results of Jiang`s and Zhang`s work,[11,13] one-

carbon suppliers, such as DMF and DMSO, were used in the reactions to 

form biphenyl-substituted 1,3,5-triazines 3q (Scheme S10). The reactions 

using DMF or DMSO replacing alcohols proceeded smoothly and provided 

desired products in good yields, which offers a simple and straightforward 

pathway on synthesis.  

In order to investigate the stability of the optimal catalyst (OMS-2-SH-B), 

it was recycled and reused for 5 consecutive times with the reaction of 

benzyl alcohol and benzamidine under the optimized conditions. As shown 

in Figure 2, the catalyst shows very stable activity and could be reused for 

many times. After the first run, the reaction solution after removal of solid 

catalyst was analyzed by ICP-MS and the results imply that Mn and K were 

below 10 ug/L respectively. In addition, XRD patterns show that the catalyst 

retrieved after five recycles maintains cryptomelane phase very well 

(Scheme S11, in ESI).  
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Figure 2. The recycling experiments. 

4. Conclusion 

In summary, we developed a mixed-valent OMS-2 catalyst with enhanced 

surface area and high concentration of oxygen vacancy defects. The obtained 

catalyst exhibits excellent oxidative ability for oxidation of benzyl alcohols 

and catalytic performance in aerobic oxidative synthesis of 1,3,5-triazines. A 

broad array of benzyl alcohols and electron-rich toluenes were both tolerated 

in the reactions and offered 1,3,5-triazines in good to excellent yields. The 

catalytic system which is chemoselective, recyclable and base-/ligand-free 

provides a sustainable, simple and straightforward way to synthesize N-

containing heterocycles. 
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Highlights 

1. Heterogeneous synthesis of triazines was achieved using OMS-2 as the 

catalyst. 

2. Various substituted toluenes can be employed directly as the substrates. 

3. A broad of starting materials can be tolerated under the catalytic system. 

4. The catalytic system shows good chemoselectivity. 
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