T. Hu et al.

Letter

Metal-Free sp³ C–H Functionalization: PABS/I₂-Promoted Synthesis of Polysubstituted Oxazole Derivatives from Arylethanones and 2-Amino-2-alkyl/arylacetic Acid

2866

Ting Hu^a Hao Yan^b Xingxing Liu^a Chaoyang Wu^a Yuxing Fan^a Jing Huang^c Guosheng Huang^{*a}

^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China

hgs@lzu.edu.cn

^b College of Pharmacy, Shaanxi University of Chinese Medicine, Shaanxi

Province, 712046, P. R. of China

^c Department of Chemistry, and Macromolecules and Interfaces Institute, Virginia Tech, Blacksburg, VA 24061, USA

Received: 21.07.2015 Accepted after revision: 13.09.2015 Published online: 14.10.2015 DOI: 10.1055/s-0035-1560660; Art ID: st-2015-w0563-l

Abstract A nonmetal-catalyzed process for the synthesis of polysubstituted oxazoles from inexpensive and readily available α -amino acids and methyl ketones is established. This reaction is proposed to achieve oxidative cleavage of C(sp³)–H bonds, followed by decarboxylation and annulation. The mild reaction conditions employed in both cases enable the tolerance of a wide range of functional groups as well as high reaction efficiency.

Key words nonmetal-catalyzed, oxazoles, sp 3 C–H functionalization, high yield, amino acids

Oxazoles represent an important class of five-membered N-heterocyclic aromatic compounds.¹⁻³ They have attracted remarkable attention not only because they serve as one of the key building blocks in various natural products, pharmaceuticals, and synthetic intermediates, but also due to their biological activities such as bacteriostatic and fungistatic activities, fluorescent whitening activities, and scintillator properties.⁴⁻¹⁹ In addition, oxazole derivatives are also employed as corrosion inhibitors^{20,21} and in photography.¹⁵ A wide variety of synthetic routes have been developed for oxazole derivatives.²²⁻²⁹ Classical synthesis of oxazole derivatives includes the Robinson-Gabriel synthesis, the Fischer synthesis, and the Van Leusen reaction.³⁰ In 2010, an elegant work for the synthesis of polysubstituted oxazoles using copper salts were reported by Wang and coworkers.²³ And then, the excellent preparations of substituted oxazoles from benzylamines were consecutively reported.²⁴⁻²⁷ More recently, amino acids as a sort of inexpensive, environmentally friendly, and highly atom-efficient starting materials have attracted the attention of many chemists. The exploitation of the cyclization reaction that enables the realization of transformation in good yields and mild-condition manner still remains challenging. We found a kind of additive (*p*-aminobenzenesulfonic acid) to greatly increase the efficiency of a similar reaction in the product. Herein, we report a facile synthesis of 2,5-disubstituted oxazoles from α -amino acids via PABS/I₂-promoted oxidative cyclization of ketone C(sp³)–N bonds (resulting in C–N bond formation). This nonmetal-catalyzed reaction with easily available starting material and high yields can potentially serve as a new practical route to the synthesis of oxazole derivatives.

Initial experiments were carried out using acetophenone (1a) and phenylglycine (2a) as model substrates. The mixture was stirred without any protection gas. A range of oxidants, such as I₂ (1.0 and 2.0 equiv), CuI (1.0 equiv), and NIS (1.0 equiv) were examined, and I_2 (2.0 equiv) showed the best capability to promote the reaction and gave the desired 2,5-diphenyloxazole in 66% yield (Table 1, entries 1-4). Unexpectedly, the yield decreased when using more than 2.5 equivalents of I_2 as oxidant (Table 1, entry 5). In the optimization of the reaction temperature, it was found that the reaction has the best yield at 100 °C (Table 1, entries 4, 6 and 7). After that, we examined three different solvents (Table 1, entries 8 and 9), interestingly, none of the other aprotic polar solvents afforded the product except DMSO. Since acid can promote the formation of intermediate **D**, including PivOH (1.0 equiv), TsOH (1.0 equiv), AcOH (1.0 equiv), and PABS (1.0 equiv), were tested to improve the yield. The reaction with PABS (0.5 equiv) produced 2,5-di-

T. Hu et al.

phenyloxazole (3a) in high yield (90%, Table 1, entries 10-15). Gas atmosphere, such as O₂ and N₂, was also tested but neither gave better yields (Table 1, entries 16 and 17).

^a Reaction conditions: 1a (0.32 mmol), 2a (0.38 mmol), solvent (2 mL), 4 h. ^b All yields are isolated products.

^c PABS = *p*-aminobenzenesulfonic acid.

^d The reaction was carried out under a O₂ atmosphere.

^e The reaction was carried out under a N_2 atmosphere; DMF = N,N-dimethylformamide, DMSO = dimethylsulfoxide, DMA = N,N-dimethylacetamide.

Using the molecular iodine/p-aminobenzenesulfonic acid oxidant system in DMSO (Table 1, entry 14), we examined the substrates scope of this oxidative cyclization for the synthesis of 2,5-diphenyloxazole, the results are shown in Table 2. Generally, acetophenone and its derivatives with either electron-withdrawing or electron-donating groups on the aromatic rings could readily participate in the reactions and result in high yields (3ba, 95%; 3ca, 84%; 3ea, 94%; 3fa, 99%; 3la, 85%; 3oa, 90%; 3pa, 88%). A halogen at the 2-, 3- or 4-position imparted mild reactivity furnishing the corresponding products in perfect yields (3da, 87%; 3ga, 93%; 3ha, 95%; 3ma, 97%; 3na, 98%) with decent recovery of the unreactive precursors. A favorable yield was observed in the case of 2-substituted phenyl (3qa, 89%), which indicated that steric hindrance did not affect the reaction efficiency. Likewise, $3,4-(MeO)_2$ and $3,4-Cl_2$ were

suitable substrates for this process, which produced the corresponding compounds in excellent yields (3ja, 99%; **3ka**, 93%). Besides, variation of the R¹ substituent of **1** showed that 1-naphthyl and 2-naphthyl groups (3ra, 82%; 3sa, 92%) can also be converted into the corresponding 2,5diphenyloxazole through the same reaction conditions. Notably, the reaction with 4-methylpentan-2-one could also proceed to furnish the desired product 3ta in 42% isolated

duce the corresponding products. This oxidative decarboxylative annulation was further expanded to a range of substituted α -amino acids **2** (Table 2). The introduction of alkyl groups $[R^2 = n$ -Pr, *i*-Pr, and *i*-Bu] at

yield, thus indicating that alkyl methyl ketone could pro-

Table 2	Reaction Scope of Methyl Ketones and Amino Acid ^a			
	СООН	I ₂ (2.0 equiv) PABS (0.5 equiv)		-N
R ¹	$+ R^{2}$ NH ₂	DMSO (2 mL), air	R'- \	o∕ ^R²
1	2		3	
Entry	R ¹	R ²	Product	Yield (%) ^b
1	1a Ph	2a Ph	3aa	90
2	1b 2-MeC ₆ H ₄	2a Ph	3ba	95
3	1c 2-MeOC ₆ H ₄	2a Ph	3ca	84
4	1d 2-CIC ₆ H ₄	2a Ph	3da	87
5	1e 3-MeC ₆ H ₄	2a Ph	3ea	94
6	1f 3-MeOC ₆ H ₄	2a Ph	3fa	99
7	1g 3-ClC ₆ H ₄	2a Ph	3ga	93
8	1h 3-BrC ₆ H ₄	2a Ph	3ha	95
9	1i 3-O ₂ NC ₆ H ₄	2a Ph	3ia	91
10	1j 3,4-(MeO) ₂ C ₆ H ₃	2a Ph	3ja	99
11	1k 3,4-Cl ₂ C ₆ H ₃	2a Ph	3ka	93
12	1I 4-MeOC ₆ H ₄	2a Ph	3la	85
13	1m 4-FC ₆ H ₄	2a Ph	3ma	97
14	1n 4-ClC ₆ H ₄	2a Ph	3na	98
15	1o 4-O ₂ NC ₆ H ₄	2a Ph	3oa	90
16	1p 4-F ₃ CC ₆ H ₄	2a Ph	Зра	88
17	1q 4-PhC ₆ H ₄	2a Ph	3qa	89
18	1r 1-naphthyl	2a Ph	3ra	82
19	1s 2-naphthyl	2a Ph	3sa	92
20	$\mathbf{1t} \operatorname{Me}_2 \operatorname{C}_2 \operatorname{H}_3$	2a Ph	3ta	42
21	1a Ph	2b <i>n</i> -Pr	3ab	75
22	1a Ph	2c <i>i</i> -Pr	3ac	70
23	1a Ph	2d MeCH(OH)	3ad	39
24	1a Ph	2e MeSCH ₂ CH ₂	3ae	58
25	1a Ph	2f <i>i</i> -Bu	3af	82
26	1a Ph	2g Bn	3ag	48

^a Reaction conditions: **1** (0.32 mmol), **2** (0.38 mmol), I₂ (2.0 equiv), PABS (0.5 equiv). DMSO (2 mL), at 100 °C, under air 2–5 h. ^b All vields are isolated products.

Letter

Synlett T. Hu et al.

Letter

the α -amino acids were well tolerated in the reaction (**3ab**, 75%; **3ac**, 70%; **3af**, 82%). Meanwhile, it was noteworthy that an unprotected hydroxyl group could also undergo this process, although in lower yield (**3ad**, 39%). Additionally, yields of oxazoles **3ae** (58%) and **3ag** (48%) with MeSCH₂CH₂ and benzyl substituents were distinctly lower even under different reaction conditions, which appear to be sensitive to the transformation time.

On the basis of the previous reports,^{23–29} a plausible mechanism was proposed in Scheme 1. It may undergo according to the following procedures. Initially, the substrates **1** were converted into the intermediate α -iodo acetophenone **A** in the presence of I₂. Subsequently, **A** was oxidized by DMSO to **B**. Then, amino acids **2** reacted with **B** to afford C, C isomerized to D via a [1,5]-H shift. p-Aminobenzenesulfonic acid (PABS) acts as acid that promoted the reaction by increasing the electrophilicity of C-1 on **D** through coordination with nitrogen, providing a good electrophilic section for the nucleophilic hydroxyl group, which underwent an intramolecular cyclization furnishing the intermediate E. Consequently, E converted into F through deprotonation, and an iodine-mediated oxidative decarboxylation of G generated the desired product **3** through the release of CO₂ and HI.

In conclusion, we have developed a new strategy for the synthesis of 2,5-diphenyloxazole derivatives via the nonmetal-catalyzed C–H activation. Besides, the amenability of a wide variety of functional groups, the superiority of using readily available initial substrates greatly boosts the reaction's utility of this protocol. Furthermore, the transformation proceeds with perfect yields to a variety of functional groups.

Acknowledgment

The authors are grateful for financial support by the Fundamental Research Funds for the Central Universities, P. R. of China.

Supporting Information

Supporting information for this article is available online at http://dx.doi.org/10.1055/s-0035-1560660.

References and Notes

- Wang, B.; Hansen, T. M.; Weyer, L.; Wu, D.; Wang, T.; Christmann, M.; Lu, Y.; Ying, L.; Engler, M. M.; Cink, R. D. J. Am. Chem. Soc. 2011, 133, 1506.
- (2) Hopkins, C. D.; Schmitz, J. C.; Chu, E.; Wipf, P. Org. Lett. **2011**, *13*, 4088.
- (3) Lucas, B. S.; Gopalsamuthiram, V.; Burke, S. D. Angew. Chem. Int. Ed. 2007, 46, 769.
- (4) Smith, A. B.; Razler, T. M.; Ciavarri, J. P.; Hirose, T.; Ishikawa, T.; Meis, R. M. J. Org. Chem. 2008, 73, 1192.
- (5) Hass, D.; Mosrin, M.; Knochel, P. Org. Lett. 2013, 15, 6162.
- (6) Lautens, M.; Roy, A. Org. Lett. 2000, 2, 555.
- (7) Wipf, P.; Aoyama, Y.; Benedum, T. E. Org. Lett. 2004, 6, 3593.
- (8) Wipf, P. Chem. Rev. 1995, 95, 2115.
- (9) Davyt, D.; Serra, G. Mar. Drugs 2010, 8, 2755.
- (10) Hoarau, C.; Kerdaniel, A. D. F. D.; Bracq, N.; Grandclaudon, P.; Couture, A.; Marsais, F. *Tetrahedron Lett.* **2005**, 46, 8573.

A 2869

Synlett

T. Hu et al.

- (11) (a) Jin, Z. Nat. Prod. Rep. 2005, 22, 196. (b) Jin, Z. Nat. Prod. Rep. 2006, 23, 464.
- (12) Lewis, J. R. Nat. Prod. Res. 1995, 12, 135.
- (13) Weyrauch, J. P.; Hashmi, A. S. K.; Schuster, A.; Hengst, T.; Schetter, S.; Littmann, A.; Rudolph, M.; Hamzic, M.; Visus, J.; Rominger, F.; Frey, W.; Bats, J. W. *Chem. Eur. J.* **2010**, *16*, 956.
- (14) Pankova, A. S.; Stukalov, A. Y.; Kuznetsov, M. A. Org. Lett. 2015, 17, 1826.
- (15) Turchi, I. J.; Dewar, M. J. S. Chem. Rev. 1975, 75, 389.
- (16) Merkul, E.; Müller, T. J. J. Chem. Commun. 2006, 4817.
- (17) Zhang, X. X.; Teo, W. T.; Chan, P. W. H. J. Organomet. Chem. 2011, 696, 331.
- (18) Verrier, C.; Lassalas, P.; Théveau, L.; Quéguiner, G.; Trécourt, F.; Marsais, F.; Hoarau, C. *Beilstein J. Org. Chem.* **2011**, *7*, 1584.
- (19) Yeh, V. S. C. Tetrahedron **2004**, 60, 11995.
- (20) Li, Y. F.; Guo, F. F.; Zha, Z. G.; Wang, Z. Z. Sustainable Chem. Proc. **2013**, *1*, 8.
- (21) Tang, J. S.; Verkade, J. G. J. Org. Chem. 1996, 61, 8750.
- (22) Liu, X.; Cheng, R.; Zhao, F. F.; Zhang-Negrerie, D.; Du, Y. F. Org. *Lett.* **2012**, *14*, 5480.
- (23) Wan, C. F.; Zhang, J. T.; Wang, S. J.; Fan, J. M.; Wang, Z. Y. Org. Lett. 2010, 12, 2338.
- (24) Gao, Q. H.; Fei, Z.; Zhu, Y. P.; Lian, M.; Jia, F. C.; Liu, M. C.; She, N. F.; Wu, A. X. *Tetrahedron* **2013**, 69, 22.
- (25) Huang, H. W.; Ji, X. C.; Wu, W. Q.; Jiang, H. F. Adv. Synth. Catal. 2013, 355, 170.

- (26) Jiang, H. F.; Huang, H. W.; Cao, H.; Qi, C. R. Org. Lett. **2010**, *12*, 5561.
- (27) Xu, Z. J.; Zhang, C.; Jiao, N. Angew. Chem. Int. Ed. 2012, 51, 11367.
- (28) Xiang, J. C.; Wang, J. G.; Wang, M.; Meng, X. G.; Wu, A. X. Tetrahedron 2014, 70, 7470.
- (29) (a) Keni, M.; Tepe, J. J. J. Org. Chem. 2005, 70, 4211.
 (b) Yoshizumi, T.; Satoh, T.; Hirano, K.; Matsuo, D.; Orita, A.; Otera, J.; Miura, M. Tetrahedron Lett. 2009, 50, 3273.
- (30) Typical Procedure for the Preparation of 2,5-Diphenyloxazole
 - A test tube was charged with **1a** (0.32 mmol), **2a** (0.38 mmol), I₂ (2.0 equiv), and PABS (0.5 equiv). Then DMSO (2 mL) was added to the reaction system. The reaction was stirred at 100 °C for 5 h. After cooling to r.t., the solvent diluted with EtOAc (10 mL) and washed with brine (5 mL) and dried over anhydrous Na₂SO₄. After the solvent was evaporated in vacuo, the residues were purified by column chromatography, eluting with PE-EtOAc to afford pure **3aa** as a yellow solid (64 mg, 90%); mp 58–60 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.11–8.08 (m, 2 H), 7.70–7.68 (m, 2 H), 7.48–7.39 (m, 6 H), 7.30 (t, *J* = 7.2 Hz, 1 H). ¹³C NMR (100 MHz, CDCl₃): δ = 161.02, 151.14, 130.20, 128.81, 128.70, 128.31, 127.91, 127.37, 126.18, 124.08, 123.37. ESI-HRMS: *m/z* calcd for C₁₅H₁₂NO [M + H]⁺: 222.0914; found: 222.0916.

© Georg Thieme Verlag Stuttgart · New York – Synlett 2015, 26, 2866–2869

Letter