[CONTRIBUTION FROM THE CHEMISTRY DEPARTMENT, DREXEL INSTITUTE OF TECHNOLOGY]

n-Heptylhalosilanes and *n*-Heptylsilane

By Herbert H. Anderson and Abdolah Hendifar

RECEIVED JUNE 23, 1958

Lithium aluminum hydride and $n-C_7H_{15}SiCl_3$ in diethyl ether yield $n-C_7H_{15}SiH_3$, b.p. 140.7°. In apparently the first formation of RSiH_2Cl or RSiH_2Br through the use of HgCl_2 or HgBr_2, a deficiency of HgCl_2 or HgBr_2 converts $n-C_7H_{15}SiH_3$ into $n-C_7H_{15}SiH_2Cl$ or $n-C_7H_{15}SiH_2Br$, respectively. Reaction with the proper amount of iodine converts $n-C_7H_{16}SiH_3$ ether into $n-C_7H_{15}SiH_3$ or into a mixture of $n-C_7H_{15}SiH_2$ and $n-C_7H_{15}SiH_2$. Antimony trifluoride and $n-C_7H_{16}SiH_3$ furnish pure $n-C_7H_{15}SiF_3$ and $n-C_7H_{16}SiH_2$ yield $n-C_7H_{16}SiH_7$ with a small amount of $n-C_7H_{16}SiF_8$ evidently present while a little metallic antimony forms. Table I lists the properties of 12 new compounds containing the $n-C_{17}H_{16}-Si$ bonding.

Introduction

Three earlier papers establish the use of halides of certain transitional elements and elements in regular groups in the replacement of hydrogen attached to tin^1 in $(C_2H_5)_3SnH$, to germanium² in $(C_2H_5)_3GeH$ or to silicon³ in $(C_2H_5)_3SiH$.

regular groups in the replacement of hydrogen attached to tin¹ in $(C_2H_6)_3$ SnH, to germanium² in $(C_2H_5)_3$ GeH or to silicon³ in $(C_2H_5)_3$ SiH. Gradual addition of HgCl₂, AgCl, CuCl₂ or HgBr₂ to an excess of $(C_2H_5)_2$ SiH₂ allows straightforward preparation³ of $(C_2H_5)_2$ SiHCl or $(C_2H_5)_2$ -SiHBr. This gradual addition of certain inorganic chlorides and bromides to an excess of $(C_2H_6)_2$ -SiH₂ in the previous paper or to an excess of *n*- C_7H_{15} SiH₃ in this publication apparently is a new modification for preparation of compounds containing the bonds Si-C, Si-H and Si-Cl or Si-Br.

Other investigators of alkylsilanes with Si-H bonding use reagents which do not include halides of transitional elements.

This paper, in turn, reports the reactions of $n-C_7H_{15}SiH_3$ with HgCl₂, HgBr₂ and iodine, also the preparation of three *n*-heptylfluorosilanes and *sym*-bis-(*n*-heptyl)-disiloxane from other *n*-heptyl-halosilanes.

Experimental Results

Iodine and an excess of n-C₇H₁₅SiH₃ yield a mixture of n-C₇H₁₅SiH₂I and n-C₇H₁₅SiHI₂; 3 moles of iodine and one mole of n-C₇H₁₅SiH₃ furnish n-C₇H₁₅SiI₃.

Evidently $n-C_7H_{15}SiH_2Br$ has a higher purity than have $n-C_7H_{15}SiH_2F$, $n-C_7H_{15}SiH_2Cl$ and $n-C_7H_{15}SiH_2I$. Different preparative methods in the future may yield purer center fractions of $n-C_7H_{15}SiBr_3$ and $n-C_7H_{15}SiHF_2$.

All three *n*-heptylfluorosilanes have especially penetrating odors and hydrolyze very slowly in pure water at 25° ; in contrast, the *n*-heptyliodosilanes all hydrolyze very easily.

Experimental

Equipment for all reactions included units with ground joints, micro-pycnometers, a 0.02460-ml. micropipet for the measurement of liquids and the subsequent titration of available acidity, transfer pipets and also special equipment for determining H present as Si-H.

available acidity, transfer pipets and also special equipment for determining H present as Si-H. *n*-Heptyltrichlorosilane.—After addition of 2 liters of 1.8 M n-C₇H₁₈MgCl in diethyl ether over a period of 3 hr. to 600 g. of SiCl₄ dissolved in 0.5 liter of ether, the mixture stood overnight. Next came filtration and washing of the MgCl₂ with CCl₄; fractional distillation furnished approximately 460 g. of crude n-C₇H₁₅SiCl₈, a 54% yield; the center fraction served for measurements and for other preparations.

n-Heptylsilane.—Two hours of reflux followed after addition of 350 g. of $n-C_7H_{15}SiCl_8$ over a period of 1 hr. to 56 g.

(1) H. H. Anderson, THIS JOURNAL, 79, 4913 (1957).

(2) H. H. Anderson, ibid., 79, 326 (1957).

(3) H. H. Anderson, ibid., 80, 5083 (1958).

of LiAlH₄ dissolved in 500 ml. of diethyl ether. Next came addition of water, then making slightly acidic with aqueous HCl, then separation of layers and washing of the ether layer with water. Distillation of the ether and then fractional distillation furnished 150 g. of $n-C_7H_{18}SiH_3$, a 77% yield, and 45 g. of higher-boiling contaminated $(n-C_7H_{16}SiH_2)_2O$. Redistillation gave pure $n-C_7H_{18}SiH_3$.

n-Heptylchlorosilane and *n*-Heptylbromosilane.—Metallic mercury and gaseous HCl or HBr formed during 2 hr. of gentle reflux of 6.65 g. of $n-C_{T}H_{15}SiH_3$ with 14.2 g. of Hg-Cl₂ or 17.1 g. of HgBr₂, each added in four lots. Pipetting, centrifuging or a preliminary distillation removed liquid mercury. Either 7.5 g. of $n-C_{T}H_{15}SiH_2Cl$, an 89% yield, or 9.6 g. of $n-C_{7}H_{15}SiH_2Br$, a 97% yield, resulted. All yields herein depend on the starting material present in the lesser amount. After rejection of the lowest-boiling 60% of the $n-C_{7}H_{15}SiH_2Cl$, the next 25% was taken for study. The middle third of the $n-C_{7}H_{15}SiH_2Br$ served for study.

n-Heptyltribromosilane.—Seventeen g. of aniline and 5.05 g. of n-C₇H₁₆SiCl₃ in 100 ml. of CCl₄ stood overnight; next came filtration and washing of the precipitated anilinium chloride. Passage of excess dry HBr gas through the solution of n-C₇H₁₆Si(HNC₈H₆)₃ furnished soluble n-C₇H₁₅SiBr₃ and precipitated anilinium bromide, which was later filtered and washed. Distillation of CCl₄ and then fractional distillation of the n-C₇H₁₆SiBr₃ gave a center fraction of 2.1 g. out of a total of 5.3 g., or a 63% yield. *n*-Heptyliodosilanes.—Addition of 40 g. of powdered iodine in small lots during 3 hr. of reflux to 14.9 g. of n-C₇H₁₆SiH₃ furnished 15.4 g. of n-C₇H₁₆SiH₃ and 17.5 g. of

n-Heptyliodosilanes.—Addition of 40 g. of powdered iodine in small lots during 3 hr. of reflux to 14.9 g. of *n*- $C_7H_{16}SiH_3$ furnished 15.4 g. of *n*- $C_7H_{16}SiH_2$ I and 17.5 g. of *n*- $C_7H_{16}SiH_2$, center fractions of which had the properties in Table I. Addition of 83 g. of powdered iodine in small lots during 2 hr. of reflux to 14.0 g. of *n*- $C_7H_{15}SiH_5$ furnished crude *n*- $C_7H_{16}SiI_3$. Fractional distillation with a little copper wire present gave 0.5–1.0 g. of solid SiI_4 and 48.6 g. of *n*- $C_7H_{16}SiI_3$, a yield of 89%, the highest-boiling 60% having the properties in Table I.

n-Heptylfluorosilane.—Crude *n*-C₇H₁₅SiH₂F resulted through reaction of 4.3 g. of *n*-C₇H₁₅SiH₂I with 30 g. of 48% aqueous HF in a polyethylene plastic container, with 1 hr. of intermittent shaking, then removal of the aqueous acid by pipetting, followed by a quick shaking with a small amount of pute water. After transfer to a glass vial containing some powdered dry KF, there followed pipetting and fractional distillation, with rejection of the lowestboiling 0.3 g. and collection of the next, iodine-free, 0.63 g. for study. A residue of 0.83 g. remained; the yield was 70%. In contrast, 13.7% F was present in the less pure *n*-C₇H₁₅SiH₂F obtained from SbF₃ and *n*-C₇H₁₅SiH₂Br.

n-Heptyltrifluorosilane.—Addition of 8 g. of resublined SbF₃ to 14.8 g. of *n*-C₇H₁₅SiI₃ furnished orange-yellow SbI₈ and 4.95 g. of crude n-C₇H₁₅SiI₃ furnished orange-yellow SbI₈ and 4.95 g. of crude n-C₇H₁₅SiF₃, first distilled under 150 mm. pressure and later treated with dry powdered KF and copper wire and fractionally distilled taking a 2.0-g. center fraction with the properties in Table I. This is a yield of 92%.

sym-Bis-(n-heptyl)-disiloxane.—Shaking of 7.66 g. of n- $C_7H_{18}SiH_2Br$ with 8 g. of water was followed by transfer of the resulting aqueous acid with a pipet; a second shaking with 8 g. of water and later pipetting followed. After drying over Na₂SO₄, 4.23 g. of $(n-C_7H_{15}SiH_2)_2O$ was present, a yield of 84%. Table I lists the properties of the 1.6-g. center fraction obtained in distillation.

Analytical.—Table I lists determinations of silicon through weighing SiO_2 after treating each compound with concentrated nitric and fuming sulfuric acids, lists halogen

TABLE	I
-------	---

	PROPERTIES OF NEW <i>n</i> -HEPTYLSILANE DERIVATIVES													
Compound ^a	B.p., ^b °C.	d 204	n 20 0	Calcd.	refr.— Found	\overline{Calcd} .	Found	$\overline{\operatorname{Calcd}}$.	alogen— Found	$\overline{\operatorname{Calcd}}$.	l. wt.— Found	~-Distilled a °C.	t Mm	
n-C7H15SiH3	140.7	0.737	1.4199	44.95	44.73	21.56	d			130.3	139	140.7-140.9	760	
n-C7H ₁₅ SiH ₂ Cl	176.8	0.884	1.4354	48.89	48.67	17.05	16.8	21.5	21.65°	164.8	175	113-115	98	
n-C7H15SiCl3	212.4	1.095	1.4465	56.77	56.83	12.02	12.0	45.5	45.3	233.7	244	104-106	19	
n-C ₇ H ₁₅ SiH ₂ Br	194.5	1.097	1.4571	51.86	51.95	13.43	13.37	38.2	38.2	209.2	229	131-132	98	
n-C7H15SiBr3	260.5	1.625	1.5027	65.68	66.74	7.65	7.40	65.3	65.65	367.0	382	146 - 148	18	
n-C7H ₁₅ SiH ₂ I	219.3	1.303	1.4945	57.60	57.30	10.96	10.8	49.5	49.3	256.2	258	110-112	15	
n-C ₇ H ₁₅ SiHI ₂	269	1.730	1.5503	70.25	70.39	7.35	7.53	66.4	66.4	382.1	392	110 - 112	1	
n-C7H15SiI3	326	2.118	1.6108	82.90	83.25	5.53	5.44	74.9	74.95	508.0	511	159 - 161	1	
n-C ₇ H ₁₅ SiH ₂ F	138.1	0.828	1.3997	43.73	43.42	18.94	• • •	12.8	13.0	148.3	156	138 - 138.5	763	
n-C7H15SiHF2	132.6	.916	1.3759	42.51	41.65	16.89	• • •	22.8	23.4	166.3	182	133.3-133.5	768	
n-C7H15SiF2	127.0	.983	1.3601	41.29	41.39	15.24		30.9	30.8	184.3	193	126.5 - 127.5	76 0	
(n-C7H15SiH2)2O	282	.827	1.4374	87.15	87.05	20.46	20.4			274.6	262	126-128	1	

^a All compounds are colorless. ^b Boiling points under 760 mm. pressure. ^c In white light. Use of Si-F as 1.95 and Si-I as 15.82 in calculating mol. refractions. ^d Calcd.: C, 64.52; H, 13.92; H present as Si-H, 2.32. Found: C, 64.58; H, 13.70; H present as Si-H, 2.30. ^e All determinations are averages of two closely agreeing values. ^f Calcd.: H present as Si-H, 1.46. Found: H present as Si-H, 1.43, 1.43.

obtained by closely agreeing duplicate titrations of the individual compound with ethanolic NaOH, lists molecular weights obtained by lowering of freezing point of naphthalene solutions and also lists determinations of H present as Si-H, as well as a commercial analysis for carbon and hydrogen.

Discussion

Preparative Methods.—Gradual addition of a deficiency of HgCl₂ or HgBr₂ to excess n-C₇H₁₅-SiH₃ yields n-C₇H₁₅SiH₂Cl or n-C₇H₁₅SiH₂Br, respectively, plus metallic mercury. Fortunately, the formation of *liquid* mercury indicates the progress of the reaction, and this is an advantage over the possible use of AgCl or CuCl₂, both of which should react³ with n-C₇H₁₅SiH₂ to produce n-C₇H₁₅SiH₂Cl.

Preparations of monoalkylsilanes appear to be most satisfactory through the straightforward use of LiAlH₄⁴ and the proper alkyltrichlorosilane, rather than through the painstaking preparation first of SiH₄ and second of SiH₃Br from SiH₄ using HBr and AlBr₃,⁵ followed by reaction of SiH₃Br and n-C₄H₉MgBr to yield n-C₄H₉SiH₃.⁶

Gradual addition of 1.39 moles of iodine to one mole of n-C₇H₁₅SiH₈ yields a mixture of n-C₇H₁₅-SiH₂I and n-C₇H₁₅SiHI₂; gradual addition of 3 moles of iodine to one mole of n-C₇H₁₅SiH₈ furnishes n-C₇H₁₅SiI₃. Here both the gradual addition and the stoichiometry are vital.

There are difficulties in preparing pure *n*-heptylfluorosilanes with Si-H bonding. Although SbF₃ and *n*-C₇H₁₅SiI₃ furnish rather pure *n*-C₇H₁₅SiF₃, yet SbF₃ and *n*-C₁H₁₅SiHI₂ yield less-pure *n*-C₇H₁₅SiHF₂, apparently containing a little *n*-C₇H₁₅SiF₃; a little metallic antimony forms in the reaction. This formation of antimony resembles that in the reaction⁷ 3SiHCl₃ + 4SbF₃ = 3SiF₄ + 2Sb + 2SbCl₃ + 3HCl, or that in the reaction³ 6(C₂H₅)₃SiH + 2SbCl₃ = 6(C₂H₅)₃SiCl + 2Sb + 3H₂. Similarly, SbF₃ and *n*-C₇H₁₅SiH₂I furnish fairly impure *n*-C₇H₁₅SiH₂F (Found: F, 13.7. Calcd.: F, 12.8). However, reaction of *n*-C₇H₁₅Si

- (5) A. Stock and C. Somieski, Ber., 50, 1739 (1917); 51, 989 (1918).
- (6) H. E. Opitz and others, THIS JOURNAL, 78, 292 (1956).
- (7) O. Ruff and C. Albert, Ber., 38, 53 (1905).

SiH₂I with 48% aqueous HF yields fairly pure *n*-C₇H₁₅SiH₂F, as listed in Table I.

Preparation of n-C₇H₁₆SiBr₃ by the Ruff process^{8,9} apparently gives a slightly impure product. In this process there is a possibility of obtaining a slightly contaminated n-C₇H₁₆SiBr₃ containing excessive bromine. In contrast, the reaction of n-C₇H₁₆-MgBr with SiBr₄ should yield a purer product.

Molar Refractions and Bond Refractions.—Some explanation is necessary for the calculated molar refractions in Table I. There is serious disagreement in published values of the Si–F bond refraction: 2.10 from SiF₄ gas,¹⁰ 1.50 listed in 1946¹¹ and 1.7 listed in 1954.¹² For the time being, 1.95 appears to be a fair over-all average for the Si–F bond refraction, covering all fluorosilanes with one to four fluorine atoms present, and serving in the calculations in Table I. Vogel's bond refractions¹² for C–H, C–C, Si–C, Si–Cl, Si–Br, Si–O and Si–H serve in the calculations.

No bond refraction of Si–I is present in the early listings.^{11,12} However, calculations based on the available data and Vogel's values furnish the following information: CH₃SiCl₂I, *MR* 37.53¹³ and Si–I 15.76; CH₃SiCl₂, *MR* 46.39¹³ and Si–I 15.81; (C₂H₅)₂SiI₂,⁹ unpublished n^{20} 1.578₀¹⁴ and thus *MR* 56 17, also Si–I 15.90. These three compounds, including only monoiodo and diiodo compounds, give an average value of 15.82 \pm 0.06 for the bond refraction Si–I used in calculations in Table I. Later inclusion of triiodo compounds or tetraiodosilane may raise the value of the Si–I bond refraction slightly.

Excluding the molar refractions of slightly impure $n-C_7H_{15}SiHF_2$ and $n-C_7H_{15}SiBr_3$, the average error in calculated molar refractions in Table I is 0.3%.

PHILADELPHIA 4, PA.

(8) O. Ruff, ibid., 41, 3738 (1908).

(9) H. H. Anderson and others, THIS JOURNAL, 73, 2144, 5802 (1951).

(10) W. Klemm and P. Henkel, Z. anorg. Chem., 213, 115 (1933).

(11) E. L. Warrick, THIS JOURNAL, 68, 2455 (1946).

- (12) A. I. Vogel and others, J. Phys. Chem., 58, 174 (1954).
- (13) H. H. Anderson, THIS JOURNAL, 73, 5804 (1951).

(14) Measurement by H. H. Anderson on May 2, 1950, not included in carlier paper, Reference 9.

⁽⁴⁾ A. E. Finholt and others, THIS JOURNAL, 69, 2692 (1947).