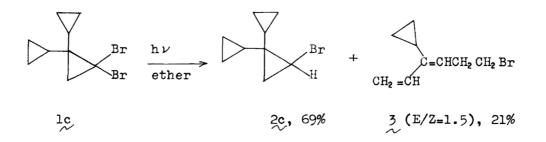
CHEMISTRY LETTERS, pp. 839-842, 1977. Published by the Chemical Society of Japan

PHOTOCHEMICAL REDUCTION OF gem-DIBROMOCYCLOPROPANES

Nobujiro SHIMIZU and Sinya NISHIDA Department of Chemistry, Faculty of Science, Hokkaido University Sapporo 060


Photo-irradiation of nine gem-dibromocyclopropanes in ether solution leads to the corresponding monobromocyclopropanes in moderate to good yields. The stereochemical observation indicates that the partial reduction proceeds via an α -bromocycloproryl radical.

Thermally gem-dihalocyclopropanes are known to undergo the skeltal rearrangement to 1,2-dihaloprop-2-ene derivatives.¹ In contrast, 1,1-dichloro-2-phenylcyclopropane produces a dichlorocarbene on irradiation of uv light.² Little is known, however, on the photochemical behavior of other gem-dihalocyclopropanes. The photochemistry of organic halides has been the subject of current interests,³ and we wish to report here the result that the gem-dibromocyclopropanes 1 were easily converted to the corresponding monobromocyclopropanes 2 when irradiated in ether solution, indicating that this photochemical partial reduction may provide a useful alternative of transforming gem-dibromocyclopropanes to bromocyclopropanes to the chemical methods with R, SnH,⁴ LiAlH, ⁵ NaBH, ⁶ and methylmagnesium bromide.⁷

Thus an ethereal solution (ca. 0.02 M, 200 ml) of 1,1-dibromo-2,2,3,3-tetramethylcyclopropane la was irradiated (>210 nm) in a quartz reaction vessel with a low-pressure mercury lamp at ca. 5° for 3 hr under nitrogen atmosphere. The mixture was concentrated, and the residue was passed through a short alumina column eluting with a small amount of pentane to remove a colored material and distilled to give 1-bromo-2,2,3,3-tetramethylcyclopropane 2a in 75% yield along with a small amount of the unchanged la (15%).

In a similar procedure various dibromocyclopropanes 1 were irradiated in ether solution for 3 hr.⁸ In all cases, partial reduction occurred smoothly giving the monobromides 2, as shown in Table. The monobromide 2 also absorbs some light under the present conditions, but owing to a low extinction coefficient relative to 1 in a region of the wavelength above 210 nm the dibromide can be selectively reduced to the monobromide.⁹ Two cases should be commented: In the case of 1g, a small amount of the completely reduced product, phenylcyclopropane, was also isolated (11%) besides 2g (80%).¹⁰ A ring-cleaved product 3 and 2c were isolated from the photolysate of 1c. However, the former was found to be a rearranged product derived from 2c during the isolation process.¹¹

The photoreduction occurred also in other solvents such as pentane, methylene chloride or methanol, however, the best yield was obtained in ether solution.

Apparently photoreduction seems to be a common behavior of the gem-dibromocyclopropanes even in the case where an aromatic chromophore is present. This is interesting because the irradiation of such a compound would involve the excitation of the aromatic chromophore leading to fragmentation of the cyclopropane ring.^{2,12} The remarkable difference in the photochemical behavior between 1,1-dichloro-2phenyl- and 1,1-dibromo-2-phenylcyclopropane presumably arises from the weak C-Br bond relative to the C-Cl bond.¹³ The fact that the photoexcitation of l, yielded 2 without accompanying the skeltal rearrangement is in contrast with the thermal behavior of 1,1,1,1 and the present photoreduction may involve the excitation of the C-Br bond resulting in the homolytic cleavage to give an α -bromocyclopropyl radical which undergoes hydrogen abstraction from the solvent yielding the observed product. The stereochemical observation that the photoreduction of 1 gave predominantly a thermodynamically less favorable isomer seems to support this mechanism. Although it is not clear whether photoexcitation of the dibromide 1 results in the selective cleavage of the less hindered C-Br bond, the present stereochemistry may be rationalized in terms of the steric requirement that the hydrogen

Table 1.

substrate	% con- version	% yield of	rel. rate ³	isomer ratio (E/Z) ^{4,5}
la	85	88	1.1	
1b	75	88	1.1	4.65 (4.0)
ļç	43	69 °		
lg	36	74	1.3	1.207
ļe	32	75	(1.0)	2.87 (2.5)
ļę	128,9	67 8,9		4.35 8,9
ļę	229,10	44 9,10		3.27 ^{9,10}
le	31 9, 11	50 9 , 1 1		2.75 9 1 1 1
ļe	85 9,12	189,12		3.639,12
ļę	589,13	22 ^{9,13}		4.89 9,13
	79	76	1.1	all endo (all endo)
lg	52	80 ^{1 4}	2.4	3.16
પુ પુષુ પુષુ પુષુ	85	80	1.1	4.3
li	7C	79	0.6	2.04
li	28 ⁸ , 9	45 ^{8,9}		2.728,9

Photochemical Reduction of gem-Dibromocyclopropanes

1. Irradiation was carried out in ether solution (0.02-0.04 M) with a 100W low-pressure mercury lamp at ca. 5° for 3 hr under nitrogen atmosphere except otherwise noted. 2. Isolated yield based on the converted dibromide. 3. Relative rate of disappearance of 1 determined by competition experiments. 4. Determined by glc analysis (4 mm x 2 M glass column packed with 12% Apiezon grease L on Celite 545). 5. Figures in parentheses are the ratio obtained in the reduction of 1 with tributyltin hydride; D. Seyferth, H. Yamazaki, and D. L. Allestone, J. Org. Chem., <u>28</u>, 703 (1963). 6. The second product 3 (21%) was accompanied. 7. The stereochemical assignments are tentative. 8. At -70°. 9. A 500W medium-pressure mercury lamp was used. 10. In n-pentane. 11. In methylene chloride. 12. In methanol. 13. In acetone. 14. Phenylcyclopropane was also isolated in 11% yield.

abstraction of the equilibrated α -bromocyclopropyl radicals occurs predominantly at the less hindered site. Similar stereochemical results have been observed also in the chemical reductions of 1 with trialkyltin hydride and other metal hydrides where a free radical mechanism has been postulated.⁴—⁷ The small substituent effect on the photochemical reactivity of 1, which is parallel to the fact that all the dibromides 1 except 1g showed a quite similar uv absorption pattern,⁹ seems to indicate that the rates of the processes involving in the present photoreduction, excitation, dissociation of the C-Br bond, recombination, and hydrogen abstraction, are not affected significantly by the change of substituent groups at the C-2 and C-3 carbons. The enhanced reactivity of the aromatic bromides lg and $2g^{10}$ as compared to the aliphatic bromides may suggest the participation of the excitation of the aromatic chromophore in the present photoreduction, particularly in the case of the monobromide 2g.

References and Notes

- D. C. Duffey, J. P. Minyard, and R. H. Rane, J. Org. Chem., <u>31</u>, 3865 (1966);
 M. S. Baird, D. C. Lindsay, and C. B. Reese, J. Chem. Soc. (C), 1173 (1969).
- M. Jones, Jr., W. H. Sachs, A. Kulczcki, Jr., and F. J. Waller, J. Am. Chem. Soc., <u>83</u>, 3167 (1966).
- 3) G. S. Poindexter and P. J. Kropp, ibid., <u>96</u>, 7142 (1972); S. J. Cristol and R. P. Micheli, J. Org. Chem., <u>40</u>, 667 (1975); S. A. McNeely and P. J. Kropp, J. Am. Chem. Soc., 98, 4319 (1976).
- 4) D. Seyferth, H. Yamazaki, and D. L. Allestone, J. Org. Chem., 28, 703 (1963).
- 5) C. W. Jefford, D. Kirkpatrick, and F. Delay, J. Am. Chem. Soc., <u>94</u>, 8905 (1972).
- 6) C. T. Groves and K. W. Ma, ibid., <u>96</u>, 6527 (1974).
- 7) D. Seyferth and B. Prokai, J. Org. Chem., 31, 1702 (1966).
- 8) Conversion was not improved by the longer irradiation in some cases owing to the formation of a polymeric material on the surface of the lamp.
- 9) Except lg, the dibromides showed a single uv absorption (λ_{max} in hexane ranging from 199 nm (ε = 2500) for li to 207 nm (ε = 4130) for la) with end absorptions up to about 280 nm. The extinction coefficients at 254 nm were in the region 340 (for lc)—130 (for li), whereas those of the monobromides 2 were less than 15 at 254 nm: The partial reduction of le (0.005 M) completed in 3 hr, whereas only 9% of the monobromide 2e was reduced under an identical condition.
- 10) Irradiation of an ethereal solution (0.005 <u>M</u>) of 2g (<u>cis/trans</u> = 1.8) for 3 hr gave phenylcyclopropane in 40% yield besides the uncharged 2g (<u>cis/trans</u> = 3.4, 45%).
- 11) Similar thermal rearrangements were also observed in <u>lc</u> and <u>ld</u>: They underwent a facile skeltal rearrangement affording 2,6-dibromo-3-cyclopropylhexa-1,3diene and 2,6-dibromo-3-methylhexa-1,3-diene, respectively when heated above 130°.
- 12) G. W. Griffin, Angew. Chem. Int. Ed. Engl., 10, 537 (1971).
- 13) P. G. Sammes, "The Chemistry of the Carbon-Halogen bond," S. Patai, Ed., John Wiley & Sons, London, 1973, Chapter 11.

(Received May 18, 1977)

842