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Scheme 1. Pathways to d-keto ester synthesis.
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A sequential condensation of a-cyano esters, aldehydes, and ketones with catalytic amount of pyrroli-
dine/HOAc at room temperature has been developed. This method offers a chemoselective, one-pot cas-
cade access to d-keto a-cyano esters with moderate to good yields under mild conditions.
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d-Keto esters, as a class of 1,5-dicarbonyl compounds, are very
common, yet important synthetic intermediates, especially in ter-
penoid synthesis and d-lactone/lactam preparation.1 The classic
synthetic pathway (Scheme 1, pathway A) entails the disconnec-
tion leading to a malonate type synthon that functions as a highly
reactive nucleophile under basic conditions, and an a,b unsatu-
rated ketone as the corresponding electrophile.2 Retrosynthetical-
ly, the latter usually goes further back to an aldehyde and a
ketone by Claisen–Schmidt condensation.3,4

Another logically reasonable disconnection (Scheme 1, pathway
B) is the Michael addition of a ketone enolate, or the equivalent
thereof, to an alkylidene malonate type conjugate electrophile.
The principal challenge of pathway B lies in the generation of a
reactive yet selective nucleophile from ketones under mild condi-
tions. Formation of a ketone enolate (X = OM) normally requires
a strong base. This type of nucleophiles is highly reactive but not
selective. The 1,4 addition to conjugate electrophiles is compli-
cated with the addition to carbonyl groups of the conjugated sys-
tem (1,2 addition) and further addition to the keto groups of the
initial 1,4 addition products. Vinyl silyl ether or enamine formation
in a stoichiometric fashion is an alternative, mild way to activate
the ketones (X = OSi, NR2),5 however, it requires an extra step to
prepare these compounds from the corresponding ketones in addi-
tion to the preparation of the conjugate electrophile.

In the past decade, organocatalysis has been brought to the
attention of synthetic chemists and has profoundly diversified
the bond disconnection strategies in organic synthesis design.6

Enamine catalysis, as one of the major models of activation in
organocatalysis, provides a reversible and mild way to activate
the a-position of carbonyl compounds. Amine catalyzed Michael
addition, particularly, has attracted considerable attention
recently.7 The Michael acceptors are often confined to highly
reactive conjugated systems such as nitroalkenes and alkylidene
malonates. The Michael donors are mainly aldehydes and specific
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Table 1
Optimization of the reaction conditions
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5a1 mmol 1 mmol 1 mmol

amine/acid

DMSO (0.2 mL)
+ +

Entrya Amine (equiv) Acid (equiv) T (h) Yieldb (%)

1 6a (0.3) HOAc (0.3) 24 76
2 6b (0.3) HOAc (0.3) 24 55
3 6c (0.3) HOAc (0.3) 24 32
4 6d (0.3) HOAc (0.3) 24 5
5 6e (0.3) HOAc (0.3) 24 —c

6 6a (0.3) No acids 24 —c

7 6a (0.3) TFA (0.3) 24 45
8 6a (0.3) HOAc (0.3) 24 69d

9 6a (0.3) HOAc (0.3) 24 80e

10 6a (0.3) HOAc (0.3) 24 53f

11 6a (0.3) HOAc (0.3) 72 85e

12 6a (0.2) HOAc (0.2) 48 88e

13 6a (0.2) HOAc (0.2) 48 92e,g

a Condition: 1 mmol scale in 0.2 mL DMSO; amine was added slowly followed by
HOAc.

b Values refer to isolated yields after column chromatography.
c No desired product observed.
d 0.4 mL DMSO.
e 0.1 mL DMSO.
f Neat condition.
g 2 equiv ketone was used.
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ketones, that is cyclic aliphatic ketones and acetone.8 High levels of
enantioselectivity (up to 99% ee) have been reported on conjugate
addition of aldehydes or ketones to b-dimethyl(phenyl)silylmeth-
ylene malonate and trifluoroethylidene malonates.9

Along with our studies in multicomponent reactions to prepare
pyridones,10 we became interested to explore the preparation of d-
keto esters through a one-pot, three-component condensation of
ketones, aldehydes, and malonates (Scheme 1). Barbas’s group re-
ported that (S)-1-(2-pyrrolidinylmethyl)pyrrolidine catalyzed
three-component reaction of diethyl malonate, acetone, and benz-
aldehydes in moderate enantioselectivities.8c List and Castello re-
ported that L-proline is efficient in catalyzing a three-component
reaction between Meldrum’s acid, acetone (or cyclic ketones),
and a range of aldehydes.11 Herein we describe a pyrrolidine cata-
lyzed three component condensation of a-cyano ethyl acetate with
a wide range of aldehydes and ketones.12

To realize the preparation of d-keto esters by amine catalyzed
addition of ketones to conjugated system, the choice of suitable
a,b unsaturated ester as the Michael acceptor is critical. The accep-
tor must be electrophilic enough to ensure the reactivity, yet the
electrophilicity must also be maintained at a certain level so that
the amine catalyst would not be quenched by an azo-Michael addi-
tion to the Michael acceptor. At the outset of our study, failure was
encountered when alkylidenemalonate 1 was used as the substrate
with pyrrolidine/acetate salt as the catalysts in DMSO (Scheme 2).
Unsaturated ketone 4 was obtained as the major product, arising
from the retro Knoevenagel reaction and subsequent aldol-conden-
sation of benzyl ketone and benzaldehyde. Another candidate,
alkylidenemalononitrile 2, gave a very complex mixture, though
previously reported as a suitable Michael acceptor in a primary
amine catalyzed Michael addition reaction.8g Pleasingly, desired
product 5a was obtained when 3 was used as the Michael acceptor.
Furthermore, cyanoacrylate 3 could be prepared in situ, making
this process an attractive method by which an aldehyde, an a-cy-
ano ester, and a ketone are condensed sequentially to give the de-
sired d-ketoester with the formation of two C–C bonds under mild
conditions in a catalytic fashion.

Thus, when an equimolar mixture of a-cyano ethyl acetate,
benzaldehyde, and acetophenone was added with 0.3 equiv of pyr-
rolidine and followed by 0.3 equiv of acetic acid, desired d-keto
product 5a was obtained with good yield (Table 1, entry 1). Further
screening of the amines showed that other secondary amines
pyrrolidine (1
HOAc (1 e
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CO2Et
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Scheme 2. Identification of su
(6b–6d) are inferior to pyrrolidine (entries 2–4). Tertiary amine
6e was not capable of catalyzing this reaction at all (entry 5), pro-
ducing only ethyl 2-cyano-3-phenylacrylate as the Knoevenagel
condensation product along with unreacted acetophenone. The ab-
sence of an acid counterpart did not produce desired product (en-
try 6), and a stronger acid (TFA) did not help to improve the yield
(entry 7). Performing the reaction under more dilute conditions led
to decreased yield (entry 8), while running the reaction neat gave
only modest yield (entry 10). The optimal concentration was
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Table 2
Synthesis of a-cyano d-keto estersa,b
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a Condition: 1 mmol scale, pyrrolidine (0.2 equiv) was added followed by HOAc
(0.2 equiv), DMSO (0.1 mL), room temperature, 48 h.
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highly concentrated to maintain the reaction a homogeneous mix-
ture (entry 9). After a brief survey of the reaction time and catalyst
loading, the optimal condition was identified (entry 12). It is note-
worthy that under this condition, an equimolar mixture of the
three components gave excellent yield, and two equivalents of ke-
tone gave only slightly higher yield under the optimized condition
(entry 13), which implies no large excess of ketone is needed to
drive the reaction to completion.
With the optimized condition we then investigated the general-
ity of this method by expanding the substrate scope to both ali-
phatic and aromatic aldehydes and ketones (Table 2).

Aliphatic aldehydes are applicable to this method with modest
yields (5b–5d), while aromatic aldehyde gave excellent yields,
independent of the electronic nature of the substituents (5e–5h).
Aliphatic ketones with various substitutions also worked well
(5i–5l). When aromatic ketones were examined, it was found that
strong electron withdrawing substituent (5p) lowered the yield
considerably comparing to the electron donating substituents
(5m, 5o).

To demonstrate the scalability of this method, a gram scale syn-
thesis of ketoester 5q was executed (Scheme 3). A mixture of a-cy-
ano ester, 4-chloro benzaldehyde, and slightly excessive 4-chloro
acetophenone in DMSO was sequentially treated with a catalytic
amount of pyrrolidine and acetic acid. After stirring at ambient
temperature for 48 h, a clean product was obtained with excellent
yield following purification by Flash chromatography.13

In summary, a catalytic, three-component condensation of an
a-cyano ester, an aldehyde, and a ketone has been realized by a
sequential Knoevenagel–Michael reaction under very mild condi-
tions. This method provides versatile access to d-keto a-cyano es-
ters in a single step from simple, commercially available materials.
Supplementary data

Supplementary data associated with this article can be found,
in the online version, at http://dx.doi.org/10.1016/j.tetlet.2013.
10.145. These data include MOL files and InChiKeys of the most
important compounds described in this article.
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