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ABSTRACT: The ability to understand and predict reactivity is essential for the development of new reactions. In the 
context of Ni-catalyzed C(sp3)–O functionalization, we have developed a unique strategy employing activated 
cyclopropanols to aid the design and optimization of a redox-active leaving group for C(sp3)–O arylation. In this chemistry, 
the cyclopropane ring acts as a reporter of leaving-group reactivity, since the ring-opened product is obtained under polar 
(2e) conditions, and the ring-closed product is obtained under radical (1e) conditions. Mechanistic studies demonstrate 
that the optimal leaving group is redox-active and are consistent with a Ni(I)/Ni(III) catalytic cycle. The optimized reaction 
conditions are also used to synthesize a number of arylcyclopropanes, which are valuable pharmaceutical motifs. 

Introduction 

The design of cross-coupling reactions that enable 
functionalization of new coupling handles that are present 
in readily available building blocks is of high value since 
these tools enable more facile access to important 
molecular motifs, especially those prominent in valuable 
classes of compounds like pharmaceuticals and 
agrochemicals. One significant development in the area of 
Ni catalysis is the use of relatively inert C(sp2)–O and 
C(sp3)–O bonds as coupling partners, which are derived 
from simple alcohols.1 While this strategy has been widely 
explored, the overwhelming reactivity regime for the 
functionalization of these substrates follows a Ni(0)/Ni(II) 
catalytic cycle, which does not utilize the unique redox-
activity and oxidation states of Ni.2 To date, there are very 
few examples of redox-active leaving groups which have 
been directly functionalized by Ni without the aid of an 
external photocatalyst or reductant.3–5 Protocols 
employing redox-active alcohol derivatives possess the 
advantages of radical chemistry, namely being able to 
functionalize activated alcohols without the mechanistic 
limitations of two-electron (SN1- and SN2-type) 
substitution, and the general ability to perform cross-
coupling reactions under relatively mild conditions.2b 

Ultimately, more general strategies which employ redox-
active C(sp3)–O leaving groups in Ni catalysis may aid the 
rational design of future coupling partners. 

The ability to understand the factors that govern 
reactivity and selectivity for specific reaction pathways is 
crucial to efficient reaction development. In line with our 
group’s interest in the chemistry of cyclopropanol 
functionalization6 and related Ni-catalyzed 
transformations,7 we envisioned a unique strategy for the 
C(sp3)–O arylation of cyclopropanols, which may aid in 
the understanding and design of redox-active partners for 
Ni-catalyzed cross-coupling. Namely, cyclopropyl 
electrophiles reveal two-electron versus one-electron 
reactivity via the product obtained in a substitution 
reaction (Figure 1). When cyclopropyl electrophiles are 
treated to two-electron substitution chemistry, the ring-
opened product is typically obtained; concerted 
substitutions result in an SN2’ pathway (Figure 1a, top 
arrow),8 while SN1 reactions occur via rapid ring-opening 
of the cyclopropyl cation9 (Figure 1a, bottom arrow).10,11 
Alternatively, cyclopropyl radicals have a lifetime which 
allows them to be captured without rupture of the 
cyclopropane.12 Thus, the one-electron substitution 
process can retain the cyclopropane ring. In the context of 
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Ni catalysis, a number of redox-active leaving groups have 
been employed for cyclopropane functionalization, 
including iodides,13 bromides,14 N-hydroxyphthalimide 
esters (derived from carboxylic acids),15 and pyridinium 
salts (derived from cyclopropylamines) (Figure 1b).16–18  
Figure 1. Polar and radical cyclopropane reactivity  

 
 
For the Ni-catalyzed C(sp3)–O functionalization 

reaction of cyclopropanols, the product distribution would 
directly reflect the reactivity of the leaving group (Figure 
1c, right arrow), with the arylcyclopropane product being 
obtained from a redox-active leaving group. In this sense, 
the cyclopropane itself acts as a reporter of two- versus 
one-electron reactivity and enables optimization for 
desired reactivity. Using this scheme, we discovered that 
an N-benzoyl carbamothioate derivative is an optimal 
leaving-group structure for C(sp3)–O arylation of 
cyclopropanols (Figure 1c, bottom left box). These redox-
active starting materials are bench-stable, odorless, and 
prepared in one step from readily available cyclopropanols 

(Figure 1, retrosynthesis arrow).19 Further, the arylation of 
these starting materials provides access to desirable 
arylcyclopropane derivatives, which are important motifs 
in pharmaceuticals20–22 (Figure 1c, bottom right box).  

 

Results and Discussion 

We began exploring the reactivity of activated 
cyclopropanols under Ni-catalyzed Negishi-type 
conditions (Table 1), employing an arylzinc reagent 
(3 equiv) (prepared from the corresponding Grignard 
reagent23), Ni source (10 mol %), and ligand, in 1,4-
dioxane/THF at 23 or 110 ºC for 12 h. A heat-map 
representation is employed to demonstrate the leaving 
group’s propensity to undergo polar (2e) reactivity with 
formation of ring-opened product 2a (red) or radical (1e) 
reactivity with formation of ring-intact isomer 3a (green). 
It should be noted that the optimal conditions for polar and 
 
Figure 2. Optimization of the leaving groupa 

 
aReactions performed on 0.10-mmol scale. Yields determined 
by GC-MS using n-dodecane as internal standard. For full 
details, see SI (Table S1); bUsing NiCl2(PPh3)2 at 110 ºC; 
cUsing NiCl2(PCy3)2 at 110 ºC; dUsing Ni(acac)2•xH2O and 
bathocuproine (20 mol %) at 23 ºC; eUsing NiCl2(dme), 
dtbbpy (20 mol %), Ru(bpy)3(PF6)2 (1 mol %), blue LEDs, 
ArZnCl (2 equiv) and acetone/THF (1:1); fUsing NiCl2(dme) 
and neocuproine (20 mol %) at 23 ºC. 
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radical reactivity differ in terms of the Ni source, 
ligand, and reaction temperature. Thus, for simplicity, 
Figure 2 explores the trend in reactivity according to 
conditions that best represent a leaving group’s reactivity 
(see SI for full details). Cyclopropyl tosylate 1a, which is 
known to undergo SN2’-type and SN1 reactions,8.10a 
selectively yielded the ring-opened product using 
NiCl2(PPh3)2 at 110 ºC.24 Under the same conditions, 
mesylate 1b also selectively gave the ring-opened isomer. 
Less labile leaving groups, esters 1c and 1d, were largely 
unreactive under the reaction conditions, however, 2a 
could be obtained in trace amounts from 1c using 
NiCl2(PCy3)2 at 110 ºC. The first evidence that a redox-
active leaving group could deliver the desired arylated 
cyclopropane product was obtained with N-
hydroxyphthalimide oxalate 1e.25,4a While 1e was 
unproductive in the presence of Ni alone, 3a was obtained 
in 1% yield in the presence of photocatalyst 
Ru(bpy)3(PF6)2 and blue LEDs. No ring-opened isomer 2a 
was detected in this case. Phenyl carbonate 1f, as well as 
imidazole carbamate derivative 1g, each yielded trace 
amounts of 3a, however, 2a was also detected in both 
cases. Based on our hypothesis that a radical-based 
strategy could afford the desired cyclopropane product, we 
probed redox-active leaving groups used in Barton–
McCombie deoxygenation reactions.26 Using NiCl2(dme) 
and neocuproine at 23 ºC, N-methyl thiocarbamate 1h 
delivered cyclopropane 3a in 1% yield with no detectable 
amount of 2a. Xanthate 1i and thiocarbonyl imidazolide 1j 
both delivered 3a in moderate yield and good selectivity 
using Ni(acac)2•xH2O and bathocuproine. Finally, N-
benzoyl carbamothioate 1k gave the desired cyclopropane 
in high yield and excellent selectivity. With the exception 
of 1e, the reaction mass balance with low-yielding 
substrates was unreacted starting material. Notably, the 
preference for polar vs. radical reactivity in Figure 2 can 
be attributed to the nature of the leaving group, since the 
reactions of 1a and 1k under the opposite group’s optimal 
ligand set and conditions (bathocuproine and PPh3, 
respectively) still gave the same product selectivity, albeit 
in much lower yields.  

Under the optimized reaction conditions using substrate 
1k, the major side-product is thioester 4a (Figure 3a). 
Thioester 4a is not observed in the absence of Ni (Figure 3a, 
third entry), and the formation of both 3a and 4a shows a 
significant ligand dependence (Table S2). The yield of 4a can 
also be increased by changing the reaction solvent (Figure 3a, 
second entry). Thioester 4 likely arises from the 
recombination of a Ni–aryl species with an 
alkoxythiocarbonyl radical (5),26b followed by reductive 

elimination. Alkoxythiocarbonyl radical 5 is a well-
established intermediate in Barton–McCombie chemistry.27,28 
Further, while leaving group 1k has not been previously 
reported for Barton–McCombie deoxygenation, it readily 
participates in this reaction, indicating that 1k is redox-active; 
in our hands, the deoxygenated product was obtained in 65% 
yield, as determined by 1H NMR (Equation S1). 

It is known that thioesters such as 4 are redox-active and 
can participate in Barton–McCombie deoxygenations.26a 
Thus, we were interested in seeing if 4a could act as an active 
coupling partner under our reaction conditions (Figure 3b). 
When 4a was exposed to standard reaction conditions, full 
conversion was observed, with 82% of 3a being formed, as 
determined by GC-MS (Figure 3b). These results 
demonstrate that 4 is catalytically competent, and strongly 
suggests its role as an intermediate on route to the formation 
of 3a. 

Figure 3. Thioester reactivity 

 
aSee SI for details; bWithout Ni. 
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Figure 4. Proposed reaction mechanism 

cyclopropyl radical 12, which will quickly recombine with 8 
to form Ni(III) species 13. Then, reductive elimination will 
form arylcyclopropane 3 and regenerate Ni(I)–X intermediate 
6. Based on our mechanistic studies (Figure 5), it is likely that 
the radical anions and Ni(II) cations (9 and 8; and 11 and 8) 
are solvent-caged contact-ion pairs. 

Under catalytic conditions, we also noticed a correlation 
between the yield of thioester side-product 4 and the 
electronic properties of the arylzinc reagent (Figure 5a).29 
While the use of the 4-methoxyphenylzinc reagent results in 
good yield of cyclopropane (3a) and only 12% yield of the 
thioester (4a) (entry 1), using the 4-fluorophenylzinc reagent 
results in a more significant 54% yield of the thioester (4b).  
This suggests that the thioester (4) is efficiently formed in 
both cases, but that the OMe-substituted thioester more 
readily goes on to form cyclopropane. To support this 
catalytic scenario, we performed crossover experiments 
between 4-methoxyphenyl thioester 4a and 4-
fluorophenylzinc chloride, as well as between 4-fluorophenyl 
thioester 4b and 4-methoxyphenylzinc chloride (Figure 5b). 
Under standard reaction conditions, 4a gave the desired 
product 3b in 49% yield,30 with no detectable formation of 4-
methoxyphenyl cyclopropane (3a), as determined by GC-
MS. Alternatively, the crossover experiment with 4-
fluorophenyl thioester 4b gave only a 5% yield of desired 
product 3a, with no detectable formation of 4-fluorophenyl 
cyclopropane (3b). These results indicate that the 4-
methoxyphenyl thiobenzoate substituent is a competent 
leaving group and that the arene found in product 3 comes 
from a second equivalent of arylzinc reagent (cf. Table S5). 

This difference in reactivity between electron-rich and -
deficient thiobenzoates was intriguing since we reasoned that 
fragmentation radical anion (11) should be facilitated by a 
more electron-withdrawing substituent that would stabilize 
the anionic intermediate and promote conversion of the 
thiobenzoate ester. Yet, this was at odds with the preference 
of the apparently more electron-rich 4-methoxyphenyl 

thiobenzoate (4a) to undergo conversion to cyclopropane 
(3a). To gain a better understanding of this mechanism, the 
kinetics for fragmentation of a radical anion (11) to form a 
cyclopropyl radical (12) and a thiobenzoate anion (14) were 
studied computationally,  for derivatives with either a 4-
fluorophenyl (X = F, 11b) or 4-methoxyphenyl (X = OMe, 
11a) substituent on the thiobenzoate (Figure 6). When the 
transition state  

Figure 5. Reactivity of para-substituted (a) arylzinc reagents 
and (b) thioesters with arylzinc reagents  

  
 
energies for fragmentation were compared, the barrier for 
fragmentation of the radical anion with a 4-methoxy 
substituent (X = OMe, 11a) was 2.1 kcal/mol lower than that 
for fragmentation of the 4-fluoro derivatives (X = F, 11b), 
consistent with experimental observations (Figure 5). This 
energy difference can be attributed to a key stabilizing effect 
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of the O–CH3 antibonding orbital, which can accept negative 
charge from the aromatic system via hyperconjugation31 

(𝜋!! → 𝜎!"∗  = 2.3 kcal/mol).32 This can be observed in the 
calculated geometry of the OMe group (Figure 6, top right 
structure) does not lie in plane, the usual geometry where the 
p-type lone pair overlaps with the aromatic π-system. Rather, 
the OMe group adopts an orthogonal geometry to enable 
overlap of the O–CH3 antibonding orbital with the π-system. 
Thus, in this case, the OMe group acts not as an electron-
donating group, but as a charge-stabilizing substituent, 
resulting in a lower barrier for fragmentation when compared 
to the F group. The chameleonic nature of methoxy 
substituents in the stabilization of negative charge has been 
previously documented.33,34  

Figure 6. Kinetic profile for fragmentation of radical anion 
6. Level of theory: (SMD=1,4-dioxane)/UωB97X-D2/6-
311++G(2d,p) 

 
 

With this data in hand, experiments were performed to 
validate the role of radical intermediates. First, 
enantioenriched thiocarbamate substrate 15 was exposed to 
standard reaction conditions, and product 16 was obtained as 
a racemic mixture (Figure 7a). This is consistent with 
fragmentation to generate a benzylic radical.35 We also 
submitted diastereomers cis-17, cis-18, and trans-17 to the 
standard reaction conditions (Figure 7b). All of these 
reactions yielded the arylated cyclopropane with complete 
diastereospecificity, and no detection of the opposite 
stereoisomer. It is known that cyclopropyl radicals have a 
barrier to inversion, and that stereochemistry is maintained in 
cases of radical disproportionation36 and in solvent-caged 
recombination with transition metal catalysts.37,38 Namely, 
for solvent-caged cyclopropyl radicals, it has been estimated 

by Walborsky that the rate of reaction within the solvent cage 
is faster than the rate of inversion, and that the configuration 
of the cyclopropane should remain largely intact.12 For this 
reaction, the in-cage reaction would be recombination of the 
Ni(II)–cyclopropyl radical pair to form a Ni(III) intermediate 
(Figure 7b, right bracket).39–41 The remaining mass balance in 
these reactions is the thioester intermediate (4). While the 
yields for the reactions using these multisubstituted 
cyclopropanes are lower than those for 1-arylcyclopropanes, 
increased conversion to the product can be achieved using 
higher catalyst loading (20 mol %) and 4 equiv of arylzinc 
reagent (trans-17, 28%).  

Figure 7. Stereochemical outcome of the reaction     

 
aUsing 20 mol % Ni and 4 equiv 4-OMeZnOMe. 
 

Finally, we explored the scope of cyclopropanes 
accessible under the optimized conditions (Table 1).42 
Electron-rich (3c–3e) and electron-deficient (3f, 3g) 
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π-susbtituents (3h, 3i) work efficiently. Bicyclic 
cyclopropanes (3j–3l) can also be accessed in moderate 
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desired product can be obtained if the 4-methoxyphenyl 
thioester (4a) is used as the redox-active starting material 
instead. 

Table 1. Scope of the reactiona 

 
aReactions performed on 0.10–0.40 mmol scale; bUsing 
ArZnCl (4 equiv), Ni(acac)2•xH2O (20 mol %), and 
bathocuproine (40 mol %); cUsing 4a instead of 1, ArZnCl (2 
equiv), and without MgCl2. For supplementary examples and 
lower-yielding substrates, see Table S8. 
 

Conclusion 

In conclusion, we have discovered a new redox-active 
leaving group to enable the Ni-catalyzed C(sp3)–O arylation 
of cyclopropanols. The discovery of this leaving group was 
accomplished using a unique optimization strategy in which 
the redox-activity of the leaving group was reflected in the 
distribution of ring-closed versus ring-opened products. We 
believe the optimization strategy used here may aid the 

prediction of reactivity of activating groups in Ni catalysis, 
and the development of future cross-coupling reactions. Our 
results also demonstrate the possibility of extremely short 
lifetimes for some radicals, sometimes shorter than the time 
required to activate classical “radical clocks”.39a Our group is 
actively exploring Ni-catalyzed functionalization of other 
alcohol derivatives, using the lessons learned in this 
chemistry to facilitate leaving group design. We will also 
soon disclose the scope and mechanistic insights of a Ni-
catalyzed ring-opening arylation reaction to form product 2. 
 
COMPUTATIONAL DETAILS 
 
All DFT calculations were carried out with the Gaussian 16 
software package.44 Initial geometries were generated with 
openbabel45 from their SMILES strings, and pre-optimized 
with Grimme’s xtb 6.2.3.46 The initial xtb-optimized 
geometries were used for a thorough conformer search with 
Grimme’s crest.47 Further geometry optimizations were 
performed with (SMD48=1,4-dioxane) for solvation 
corrections and the unrestricted wB97X DFT functional49 
employing the 6-311++G(2d,p) basis set for all atoms. 
Grimme’s D2 empirical dispersion corrections50 were also 
included. The integration grid emplowed was of 175,974 
points for the first-row atoms and of 250,974 points for the 
atoms in the second and later rows). Frequency calculations 
were performed to confirm if a structure is a ground or 
transition state. Paton’s GoodVibes51 was used to obtain 
quasi-harmonic corrections to Gibbs Free Energies (via 
quasi-harmonic corrections to both entropy and enthalpy, 
defaulting to the Grimme method for entropy and the Head-
Gordon enthalpy correction approach).  

Natural Bond Orbital52 (NBO) analyses were performed with 
NBO7 as linked to Gaussian 16. They were used to gauge the 
magnitude of the hyperconjugative interactions in the 
presented systems. CYLView53 was used to render the 
molecules. 
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