PL-2

THE CONVERSION OF PERFLUORO-OLEFINS, PERFLUOROKETONES OR PERFLUOROACIDS INTO PERFLUOROETHERS, PERFLUOROALKYLPEROXIDES OR PERFLUOROCARBONS

R. N. Haszeldine

Great Langdale, Cumbria, U.K.

Part of a study to synthesise via radical reactions perfluoroalkanes containing oxygen is illustrated with the olefin $(CF_3)_2C:C(CF_3)_2$. Photochemical oxidation of the olefin with short reaction time gives the ketones $CF_3.CO.CF(CF_3)_2$ (48% yield), $CF_3.O.CF_2.CO.CF_3$, $CF_3.O.CF_2.CO.CF(CF_3)_2$ and $CF_3.CO.CF_3$. The epoxide $(CF_3)_2CO.CF_3$ is a by-product not an intermediate in

these reactions.

Prolonged photochemical oxidation gives perfluorocarbons: $(CF_3)_3CF$, $(CF_3)_2CF$. $CF(CF_3)_2$, $(CF_3)_3C$. $CF(CF_3)_2$, $C(CF_3)_4$ plus perfluoroethers: $CF_3.0.C_2F_5$, and $CF_3.0.CF_2.CF(CF_3)_2$ together with smaller quantities of $CF_3.0.CF(CF_3)_2$, $CF_3.0.CF_3$, $CF_3.0.CF_2.C(OCF_3)(CF_3).CF(CF_3)_2$, $(CF_3)_2C(OCF_3)_2$ and $CF_3.C(OCF_3)_3$.

The CF_3 and $CF_3.0$ radicals are both important intermediates acting (a) via radical addition to >C:C< and to >C:O, and (b) as radical traps; the $CF_3.0$ radical has additional roles (c) as a source of F, and (d) as a source of $CF_3.0$.

 ${\rm CF_3.C0.CF_3}$ or ${\rm CF_3.C0_2H}$ can conveniently be converted photochemically (yields > 50%) into ${\rm CF_3.0.0.CF_3}$ and ${\rm CF_3.0.0.0.CF_3}$ without use of elemental fluorine, metal fluorides or ${\rm CF_3.0F.}$

Photochemical reaction of a perfluoroalkyl peroxide $\rm R_F^{'}O.0R_F^{'}$ with an anhydride $\rm (R_FCO)_2O$ gives the perfluoroether $\rm R_FOR_F^{'}$ (> 50%) and $\rm R_cF.$

Readers are reminded that use of perfluoroalkylperoxides can lead to explosions.