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During the past two years, progress has been achieved inTable 1. Catalytic Enantioselective Negishi Reactions of Racemic
developing nickel-catalyzed cross-coupling reactions of secondary Secondary Benzylic Bromides®
alkyl electrophiles. To fully exploit this family of carbor-carbon entry R-X R'—-ZnBr yield (%) ee (%)
bond-forming processes, one must be able to accomplish them
enantioselectively. We recently described the first examples of M
catalytic asymmetric cross-couplings of secondary electrophiles, 1
employinga-bromoamides as substrafds. this report, we establish
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Upon investigating a variety of conditions, we determined that . o

Negishi reactions of 1-bromoindanes proceed in good enantiomeric OO
excess and yield in the presence of NHliglyme/(-Pr)-Pybox in 8 Brzn N 41 99
DMA at 0 °C (eq 2; 91% ee, 82% yield). Simultaneously with these 5 5

studies, we were exploring asymmetric cross-couplings-bfo-

. ) . B
moamide<; when we applied to 1-bromoindanes the procedure that ' o~
we had developed for amides, we obtained somewhat lower enan- 9 OO’ Brzn Ph 6 9%
tiomeric excess and yield (eq 2; 87% ee, 72% yield; DML, 3- B

dimethyl-2-imidazolidinone).
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Br O/w 10% nickel complex y —
O 13% (S)-(i-Pr)-Pybox aFor the reaction conditions, see eq 1. All data are the average of two
— oo @ experiments? The coupling was performed at room temperature.
Cl BrzZn
racemic  1.3-1.6 equiv cl moindanes in very good enantiomeric excess (entrie$)2

NiBro-diglyme, DMA  91% ee, 82% yield

! f 1-Bromoacenaphthene is also a suitable cross-coupling partner
NiClyglyme, DMITHF ~ 87% ee, 72% yield

(entries 6-8). A branch in thes position of the alkylzinc reagent
Several features of this method are noteworthy. First, both (entry 6 vs entry 7) or the presence of an imide substituent results
catalyst components are commercially available and air-stable. in less-efficient carboacarbon bond formation (entry 8), consistent
Second, while we routinely conduct the cross-couplings under an with our earlier observatiorisOther 1-bromoindane derivatives
inert atmosphere, we have determined that the reactions are noundergo highly enantioselective Negishi cross-coupling (entry 9).
highly oxygen- or moisture-sensitive; under identical conditions, Thus, for cyclic benzylic bromides, this method consistently
couplings run in a capped vial under an atmosphere of air proceedfurnishes enantiomeric excesses greater than 90% (entri@s 1
in comparable enantiomeric excess and yield. Third, although nickel We have also obtained a promising lead in a catalytic asymmetric
complexes can cross-couple aryl halides (including chlofjdear Negishi reaction of an acyclic secondary benzylic bromide with a
catalyst reacts selectively with an alkyl halide (a benzylic bromide). functionalized organozinc reagent (entry £0).
Fourth, the process is stereoconvergent; both enantiomers of the Until now, we have not described success in employing nickel
racemic starting material are preferentially transformed into one catalysts in any cross-couplings (e.g., Negishi, Suzuki, Hiyama, or
enantiomer of the produét. Stille reactions) of secondary chlorid®#/e were, therefore, pleased
Cross-couplings that illustrate the scope of this method are to observe that NiBfPybox achieves reactions of benzylic chlorides
provided in Table £:6 Functionalized organozinc reagents, including with functionalized organozincs with excellent enantioselectivity
those that bear a cyano or a chloride group, couple with 1-bro- (egs 3 and 4).
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Chiral indanes have served as intermediates in the synthesis ofcompound characterization data (PDF). This material is available free

a variety of bioactive compound&}*and we have established that

of charge via the Internet at http://pubs.acs.org.

our new method provides ready access to such targets. For example,

Ligand Pharmaceuticals’ route to LG 121071, the first orally active,
nonsteroidal androgen receptor agonist, proceedsRyia-gthylin-

danone, which was generated in three steps from propiophenone

via a copper-catalyzed enantioselective conjugate reduction (86%
ee)!213 Through a nickel-catalyzed asymmetric Negishi cross-
coupling, we can synthesize the key intermediate in 92% ee in two
steps from commercially available 1-indanone (eq 5).
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= 56% yield
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MacLeod has employed racentians-1,3-dimethylindane in his
syntheses ofranstrikentrin A and isotranstrikentrin B,> both
of which have been isolated from the marine spofg&entrion
flabelliformeand exhibit antibacterial activity. We have established
that this indane can be prepared enantioselectively using two
Negishi cross-couplings (Figure 1). Both diastereomers of inter-

trans-trikentrin A:
R'=Et; R?>=H
iso-trans-trikentrin B:
R'=H; R2= (E)-but-1-enyl

Br Me
MeZnl (1.6 equiv)
10% NiBr,+diglyme
13% (S)-(i-Pr)-Pybox e}
racemic DMA, -15 °C 90% ee
(20 mmol) 67% yield
1) NaBH, (97%)
2) PBr3 (95%)
Me Me
MeZnl (1.6 equiv)
/ 10% NiBr,+diglyme
RAe 13% (S)-(i-Pr)-Pybox Br
94% ee DMA, -15°C ~2:1 trans:cis
85% yield A

>30:1 trans:cis
Figure 1. Catalytic enantioselective synthesigains 1,3-dimethylindane.

mediateA react to generate the desirgdns-1,3-dimethylindané®

In conclusion, we have described the first highly enantioselective
cross-couplings of secondary benzylic halides, specifically, Negishi
reactions of racemic bromides and chlorides with organozinc rea-
gents. Our method employs commercially available catalyst com-
ponents and is not highly air- or moisture-sensitive. Current efforts
are directed at further expanding the scope of nickel-catalyzed
coupling reactions of alkyl electrophiles.
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